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We study the decays of the lightest supersymmetric particle (LSP) in models with spontaneously
broken R-parity. We focus on the two cases that the LSP is either a bino or a neutral singlet
lepton. We work out the most important phenomenological differences between these two scenarios
and discuss also how they might be distinguished from explicit R-Parity breaking models. In both
cases we find that certain ratios of decay branching ratios are correlated with either the solar or the
atmospheric (and reactor) neutrino angle. The hypothesis that spontaneous R-Parity violation is
the source of the observed neutrino masses is therefore potentially testable at the LHC.

I. INTRODUCTION

Experiments on solar and atmospheric neutrinos have demonstrated that neutrinos have non-zero masses
and mixing angles [1, 2, 3]. Indeed, with the latest experimental data by the MINOS [4] and KamLAND [5]
collaborations neutrino oscillation experiments truly have entered the precision era [6].

Many models have been proposed, which potentially can explain these data. Certainly the most popular
are variants based on the see-saw mechanism [7, 8, 9, 10, 11]. However, the classical seesaw mechanism
puts the scale of lepton number violation near the grand unification scale and, therefore, can not be directly
tested. Indirect tests of the seesaw might be possible, if low-scale supersymmetry is realized in nature
[12, 13, 14, 15, 16]. Measurements of masses and branching ratios of supersymmetric particles can be used
to obtain indirect information on the range of allowed seesaw parameters, if some specific scenarios for the
soft-breaking parameters are assumed [13, 14, 15]. On the other hand, a number of neutrino mass models
exist, in which neutrino masses are generated at the electro-weak scale. Examples include the Babu-Zee
model [17], Leptoquarks [18] or in case of supersymmetry the breaking of R-parity [19]. These low energy
models usually lead to testable predictions for future colliders. For example, in the case of R-parity violation
(Rp/ ), in particular for models based on bilinear R-parity breaking terms [20], correlations between certain
branching ratios of the lightest supersymmetric particle decays and the measured neutrino mixing angles
have been found [21, 22, 23, 24, 25].

In Rp/ the neutralino as a dark matter candidate is lost. Recent WMAP data [26], however, have confirmed
the existence of non-baryonic dark matter and measured its contribution to the energy budget of the universe
with unprecedented accuracy. Thus, in Rp/ one needs a non-standard explanation of dark matter (DM).
Examples for DM candidates in Rp/ include (i) light gravitinos [27, 28, 29], (ii) the axion [30, 31] or (iii) its
superpartner, the axino [32, 33], to mention a few.

Whether R-parity is conserved or not can, in principle, be easily decided in the case of explicit R-parity
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violation since (a) neutrino physics implies that the lightest supersymmetric particle (LSP) will decay inside
a typical detector of existing and future high energy experiments [21, 25] and (b) the branching fraction for
(completely) invisible LSP decays is at most O(10%) and typically smaller[21, 34]. Spontaneous violation of
R-parity (s-Rp/ ) [35, 36], on the other hand, implies the existence of a Goldstone boson, the majoron (J). In
s-Rp/ the lightest neutralino can then decay according to χ0 → J + ν, i.e. completely invisible. It has been
shown [34] that this decay mode can in fact be the dominant one, with branching ratios close to 100 %,
despite the smallness of neutrino masses, in case the scale of R-parity breaking is relatively low. In this limit,
the accelerator phenomenology of models with spontaneous violation of R-parity can resemble the MSSM
with conserved R-parity and large statistics might be necessary before it can be established that R-parity
indeed is broken.

In this paper we study scenarios where the lightest neutralino is the LSP focusing on two representative
examples: (i) a bino-like LSP as this case has been extensively studied in the literature, both in case of
conserved R-parity as well as (explicitly) broken R-parity. We will re-iterate our previous result [34] that
there are regions in parameter space, where it will be difficult to obtain clarity about the underlying model
in the first years of LHC. We will also discuss, how measurements of branching ratios can lead to tests of
the model as the origin of the neutrino mass, in case sufficient statistics for the final states with charged
leptons can be obtained. (ii) A singlino-like LSP. This case has not been studied in the past but it is the
only part of the allowed parameter space where singlinos can be produced and studied at future accelerators.
In addition, this case allows interesting cross-checks with respect to neutrino physics different from a bino
LSP.

The paper is organized as follows: in Sect. II we present the model with special emphasis on neutrino
physics as well as the most important couplings of the lightest neutralino. In Sect. III we discuss production
and decays of the lightest neutralino at the LHC as well as a future International Linear Collider (ILC)
putting some emphasis on how to distinguish bino and singlino LSPs. In Sect. IV we discuss the different
correlations between ratios of neutralino decay branching ratios and neutrino mixing angles. Finally, we
draw our conclusions in Sect. V.

II. SPONTANEOUS R-PARITY VIOLATION

A. Model basics

Spontaneous breaking of a global symmetry leads to a Goldstone boson, in case of lepton number breaking
usually called the Majoron. Spontaneous breaking of R-parity through left sneutrinos [35], produces a doublet
Majoron, which is ruled out by LEP and astrophysical data [31, 37]. To construct a phenomenologically
consistent version of s-Rp/ it is therefore necessary to extend the particle content of the MSSM by at least
one singlet field, ν̂c, which carries lepton number. For reasons to be explained in more detail below, the

model we consider [36] contains three additional singlet superfields, namely, ν̂c, Ŝ and Φ̂, with lepton number
assignments of L = −1, 1, 0 respectively.

The superpotential can be written as [36]

W = hij
U Q̂iÛjĤu + hij

DQ̂iD̂jĤd + hij
E L̂iÊjĤd

+ hi
νL̂iν̂

cĤu − h0ĤdĤuΦ̂ + hΦ̂ν̂cŜ +
λ

3!
Φ̂3. (1)

The basic guiding principle in the construction of Eq. (1) is that lepton number is conserved at the level
of the superpotential. The first three terms are the usual MSSM Yukawa terms. The terms coupling the

lepton doublets to ν̂c fix lepton number. The coupling of the field Φ̂ with the Higgs doublets generates an
effective µ-term a lá Next to Minimal Supersymmetric Standard Model [38]. The last two terms, involving

only singlet fields, give mass to ν̂c, Ŝ and Φ̂, once Φ develops a vacuum expectation value (vev).

For simplicity we consider only one generation of ν̂c and Ŝ. Adding more generations of ν̂c or Ŝ does
not add any qualitatively new features to the model. Note also, that the superpotential, Eq. (1), does
not contain any terms with dimension of mass, thus potentially offering a solution to the µ-problem of
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supersymmetry. The inclusion of Ŝ allows to generate a “Dirac”-like mass term for ν̂c, once Φ̂ gets a vev.
The soft supersymmetry breaking terms of this model can be found in [39].

At low energy, i.e. after electro-weak symmetry breaking, various fields acquire vevs. Besides the usual
MSSM Higgs boson vevs vd and vu, these are 〈Φ〉 = vΦ/

√
2, 〈ν̃c〉 = vR/

√
2, 〈S̃〉 = vS/

√
2 and 〈ν̃i〉 = vLi

/
√

2.

Note, that vR 6= 0 generates effective bilinear terms ǫi = hi
νvR/

√
2 and that vR, vS and vLi

violate lepton
number as well as R-parity.

B. Neutralino-neutrino mass matrix

In the basis

(−iλ′,−iλ3, H̃d, H̃u, νe, νµ, ντ , νc, S, Φ̃) (2)

the mass matrix of the neutral fermions following from Eq. (1) can be written as [39, 40]

MN =




Mχ0 mχ0ν mχ0νc 0 mχ0Φ

m
T

χ0ν 0 mD 0 0

m
T

χ0νc m
T

D
0 MνcS MνcΦ

0 0 MνcS 0 MSΦ

m
T

χ0Φ
0 MνcΦ MSΦ MΦ




. (3)

Eq. (3) can be diagonalized in the standard way,

M̂N = N ∗
MNN−1. (4)

We have chosen the basis in eq. (2), such that N reduces to the MSSM neutralino rotation matrix in the
limit where (a) R-parity is conserved and (b) the field Φ is decoupled. The various sub-blocks in eq. (3) are
defined as follows. The matrix Mχ0 is the standard MSSM neutralino mass matrix:

Mχ0 =




M1 0 − 1
2g′vd + 1

2g′vu

0 M2 + 1
2gvd − 1

2gvu

− 1
2g′vd + 1

2gvd 0 −µ

+ 1
2g′vu − 1

2gvu −µ 0


 . (5)

Here, µ = h0vΦ/
√

2. mχ0ν is the R-parity violating neutrino-neutralino mixing part, which also appears in
explicit bilinear R-parity breaking models:

m
T

χ0ν =




− 1
2g′vLe

1
2gvLe 0 ǫe

− 1
2g′vLµ

1
2gvLµ 0 ǫµ

− 1
2g′vLτ

1
2gvLτ 0 ǫτ


 , (6)

where vLi are the vevs of the left-sneutrinos.
mχ0νc is given as

m
T

χ0νc =

(
0, 0, 0,

1√
2

∑
hi

νvLi

)
. (7)
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and m
T

χ0Φ
is

m
T

χ0Φ
= (0, 0,− 1√

2
h0vu,− 1√

2
h0vd). (8)

The “Dirac” mass matrix is defined in the usual way:

(mD)i =
1√
2
hi

νvu. (9)

And, finally,

(MνcS) =
1√
2
hvΦ, MνcΦ =

1√
2
hvS , MSΦ =

1√
2
hvR, MΦ =

λ√
2
vΦ. (10)

The matrix, eq. (3), produces ten eigenvalues with vastly different masses. First, since Det(MN) = 0, one
state is massless at tree-level. Then there are two more very light states, together they form to a good
approximation the three observed, light doublet neutrinos. Their masses and mixing will be discussed in
detail in the next subsection.

The remaining seven eigenstates are typically heavy. They can be sub-divided into two groups: Mainly
doublet and mainly singlet states. There are usually four states which are very similar to the well-known
MSSM neutralinos. Unless h0 is large and λvΦ small, mixing between the phino and the higgsinos is small
[57], and there are three singlets. From these singlets, unless (h− λ) ≤ vR/vΦ, νc and S form a quasi-Dirac
pair, which we will loosely call “the singlino”, S1,2 ≃ 1√

2
(νc∓S). Note, that this is a different state compared

to the NMSSM singlino [41] which corresponds to Φ̃ in our notation.
Which of the seven, heavy states is the lightest depends on a number of unknown parameters and can not

be predicted. In our analysis below we will concentrate on two cases: (a) As in mSugra motivated scenarios
M1 is the smallest parameter and the lightest state mainly a bino. We study this case in order to work out
the differences to (i) the well-studied phenomenology of the MSSM; and (ii) to the explicit R-parity violating
case studied in [21]. The second case we consider is (b) the singlino S being the lightest state. This case
is interesting, since it is the only part of the parameter space, where singlets indeed can be produced and
studied at accelerators.

C. Neutrino masses

Since neutrino masses are much smaller than all other fermion mass terms, one can find the effective neu-
trino mass matrix in a seesaw–type approximation [39, 40]. First we define the small expansion parameters
ξij , which characterize the mixing between the neutrino sector and the seven heavy neutral fermion states,
the “neutralinos” of the model,

ξ = m3×7 · MH
−1. (11)

The sub-matrix describing the seven heavy states of eq. (3) is

MH =




Mχ0 0 0 mχ0Φ

0 0 MνcS MνcΦ

0 MνcS 0 MSΦ

m
T

χ0Φ
MνcΦ MSΦ MΦ




. (12)

and

m3×7 =
(
m

T

χ0ν mD 0 0
)
. (13)
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We have neglected mχ0νc in eq. (12) since it is doubly suppressed. The “effective” (3, 3) neutrino mass
matrix is then given in seesaw approximation by

(meff

νν
) = −m3×7 ·MH

−1
m

T
3×7. (14)

In the following we will use the symbol Nij with i, j = 1, ...7 as the matrix which diagonalizes eq. (12). Our
N reduces to the MSSM neutralino mixing matrix N , in the limit where the singlets decouple, i.e. h0 → 0
or MΦ → ∞. After some straightforward algebra ξij can be written as

ξij = Kj
ΛΛi + Kj

ǫ ǫi, (15)

where the effective bilinear R–parity violating parameters ǫi and Λi are

ǫi = hi
ν

vR√
2

(16)

and

Λi = ǫivd + µvLi
. (17)

The coefficients K are given as

K1
Λ = −2g′M2µ

mγ
a, K1

ǫ = −2g′M2µ

mγ
b (18)

K2
Λ =

2gM1µ

mγ
a, K2

ǫ =
2gM1µ

mγ
b

K3
Λ = −vua +

vdb

2vu
, K3

ǫ = − c

2µv2
u

(4Det(MH)a

h2mγ
− vdvuµ

)
− v2b

2vu

K4
Λ = vda +

b

2
, K4

ǫ =
h2µvu

4Det(MH)
(4M1M2µvu − mγvdv

2)

K5
Λ =

vRb

2vu
, K5

ǫ =
vRc

2vu

K6
Λ =

vSb

2vu
, K6

ǫ =
c

2
√

2vuvRvΦh

[8Det(MH)a

h2mγ
+
√

2hvΦvRvS

]
− 2

√
2Det(MH)b2

h3mγvuvRvΦ

K7
Λ = −vΦb

2vu
, K7

ǫ = −vΦc

2vu

The coefficients a, b and c are defined as

a =
mγh2vΦ

4
√

2Det(MH)
(−hvRvS +

1

2
λv2

Φ + h0vdvu), (19)

b =
mγh2µ

4Det(MH)
vu(v2

u − v2
d),

c =
h2µ

Det(MH)
v2

u(2M1M2µ − mγvdvu).

Det(MH) is the determinant of the (7, 7) matrix of the heavy neutral states,

Det(MH) =
1

16
h0h

2v2
Φ

[
4(2M1M2µ − mγvdvu)(−hvRvS +

1

2
λv2

Φ + h0vdvu) − h0mγ(v2
u − v2

d)2
]

(20)

and v2 = v2
u + v2

d. The “photino” mass parameter is defined as mγ = g2M1 + g′2M2. Note that the Ki
Λ and

Ki
ǫ reduce to the expressions of the explicit bilinear R-parity breaking model [42], in the limit MΦ → ∞ and

in the limit h, h0 → 0, i.e. b = c = 0.
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The effective neutrino mass matrix at tree-level can then be cast into a very simple form

− (meff

νν
)ij = aΛiΛj + b(ǫiΛj + ǫjΛi) + cǫiǫj . (21)

Equation (21) resembles very closely the corresponding expression for the explicit bilinear R-parity breaking
model, once the tree-level and the dominant 1-loop contributions are taken into account [42, 43, 44]. Eq.
(21) reduces to the tree-level expression of the explicit model [58]

(meff
νν)ij =

mγ

4DetMχ0

ΛiΛj (22)

in the limit MΦ → ∞ and in the limit h, h0 → 0. Different from the explicit model, however, the spontaneous
model has in general two non-zero neutrino masses at tree-level. With the lightest neutrino mass zero at
tree-level, the s-Rp/ model could generate degenerate neutrinos only in regions of parameter space where
the two tree-level neutrino masses of eq. (21) are highly fine-tuned against the loop corrections. We will
disregard this possibility in the following.

Neutrino physics puts a number of constraints on the parameters Λi and ǫi. However, in the spontaneous
model there is no a priori reason which of the terms gives the dominant contribution to the neutrino mass
matrix, thus two possibilities to fit the neutrino data exist:

• case (c1) ~Λ generates the atmospheric mass scale, ~ǫ the solar mass scale

• case (c2) ~ǫ generates the atmospheric mass scale, ~Λ the solar mass scale

The absolute scale of neutrino mass requires both |~Λ|/µ and |~ǫ|/µ to be small, the exact numbers depending

on many unknown parameters. For typical SUSY masses order O(100 GeV), |~Λ|/µ2 ∼ 10−6– 10−5. If some
of the singlet fields are light, i.e. have masses in the range of O(0.1 − few) TeV, also |ǫi/µ| can be as small
as |~ǫ|/µ ∼ 10−6–10−5. On the other extreme, independent of the singlet spectrum, |~ǫ|/µ can not be larger
than, say, |~ǫ|/µ ∼ 10−3, due to contributions from sbottom and stau loops to the neutrino mass matrix
[42, 43, 44].

The observed mixing angles in the neutrino sector then require certain ratios for the parameters Λi/Λj and
ǫi/ǫj. This can be most easily understood as follows. As first observed in [45], the so-called tri-bimaximal
mixing pattern

UHPS =




√
2
3

√
1
3 0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2


 . (23)

is a good first-order approximation to the observed neutrino angles. In case of hierarchical neutrinos Mdiag
ν =

(0, m, M), where m (M) stands for the solar (atmospheric) mass scale, rotating with UHPS to the flavour
basis leads to the following neutrino mass matrix

MHPS
ν =

1

2




0 0 0
0 M −M
0 −M M



 +
1

3




m m m
m m m
m m m



 . (24)

In case the coefficient b in eq. (19) is exactly zero, i.e. for tanβ = 1, the model would produce a tri-bimaximal
mixing pattern for Λ1 = 0, Λ2 = −Λ3 and ǫ1 = ǫ2 = ǫ3, in case (i). For case (ii) the conditions on Λi should
be exchanged with the conditions for the ǫi and vice versa.

In reality, since tanβ 6= 1 in general, neither is b exactly zero, nor need the neutrino mixing angles be
exactly those of eq. (23). One then finds certain allowed ranges for ratios of the Λi and ǫi. In case (i) one
gets approximately

( Λ1√
Λ2

2 + Λ2
3

)2

≃ tan2 θR, (25)

(Λ2

Λ3

)2

≃ tan2 θAtm,

( ǫ̃1
ǫ̃2

)2

≃ tan2 θ⊙.



7

Here, ǫ̃ = UT
ν · ~ǫ with (Uν)T being the matrix which diagonalizes the (3, 3) effective neutrino mass matrix.

In case (i) (Uν)T is (very) approximately given by

ǫ̃ =




√
Λ2

2
+Λ2

3

|~Λ| − Λ1Λ2√
Λ2

2
+Λ2

3
|~Λ|

− Λ1Λ3√
Λ2

2
+Λ2

3
|~Λ|

0 Λ3√
Λ2

2
+Λ2

3

− Λ2√
Λ2

2
+Λ2

3

Λ1

|~Λ|
Λ2

|~Λ|
Λ3

|~Λ|


 · ~ǫ (26)

Note that UT
Λ is the matrix which diagonalizes only the part of the effective neutrino mass matrix proportional

to ΛiΛj . Again, for the case (ii) replace Λi ↔ ǫi in all expressions.

D. Approximated couplings

With R-parity violated the lightest supersymmetric particle decays. Here we list the most important
couplings of the lightest neutralino in the seesaw approximation. In the numerical calculation discussed
in the next sections, we always diagonalize all mass matrices exactly and obtain the exact couplings. For
the understanding of the main qualitative features of the LSP decays, however, the approximated couplings
listed below will be very helpful.

We define the “rotated” quantities:

x̃i ≡
(
Uν

)T

ik
xk, ỹij ≡

(
Uν

)T

ik
ykj . (27)

χ̃0
1 − W± − l∓i couplings are found from the general expressions for the χ̃0 − W± − χ̃∓ vertices

L = χ̄−
i γµ

(
Ocnw

Lij PL + Ocnw
Rij PR

)
χ0

jW
−
µ + χ̄0

i γ
µ
(
Oncw

Lij PL + Oncw
Rij PR

)
χ−

j W+
µ (28)

as

Ocnw
Li1 =

g√
2

[gN12Λi

Det+
−

(ǫi

µ
+

g2vuΛi

2µDet+

)
N13 −

7∑

k=1

N1kξik

]
, (29)

Ocnw
Ri1 =

1

2
g(hE)ii

vd

Det+

[gvdN12 + M2N14

µ
ǫi +

g(2µ2 + g2vuvd)N12 + g2vu(µ + M2)N14

2µDet+
Λi

]
.

Det+ is the determinant of the MSSM chargino mass matrix. Here,

Oncw
Li1 =

(
Ocnw

Li1

)∗
, (30)

Oncw
Ri1 =

(
Ocnw

Ri1

)∗
.

The Lagrangian for χ̃0
i − χ̃0

j − Z

L =
1

2
χ̄0

i γ
µ
(
Onnz

Lij PL + Onnz
Rij PR

)
χ0

jZµ (31)

gives for χ̃0
1 − νi − Z

Onnz
Li1 = − g

2 cos θW

[
ξ̃i1N11 + ξ̃i2N12 + 2ξ̃i4N14 + ξ̃i5N15 + ξ̃i6N16 + ξ̃i7N17

]
, (32)

Onnz
Ri1 = −

(
Onnz

Li1

)∗
.

The most important difference to the explicit R-parity violating models comes from the coupling χ0
i −χ0

j −P 0
k

L =
1

2
χ̄0

i

(
Onnp

LijkPL + Onnp
RijkPR

)
χ0

jP
0
k , (33)
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with

Onnp
Li1J = Rp

JmO
′nnp
Li1m, (34)

Onnp
Ri1J =

(
Onnp

Li1J

)∗
.

Because the spontaneous breaking of lepton number produces a massless pseudo-scalar, eq.(33) leads to a
coupling χ̃0

1 − J − νi, i.e a new invisible decay channel for the lightest neutralino. For vL ≪ vR, vS one can
find an approximation to the Majoron which, in leading order, is given by

Rp
Jm ≃

(
0, 0,

vLk

V
, 0,

vS

V
,−vR

V

)
. (35)

Here, V =
√

v2
R + v2

S and terms of order
v2

L

V v have been neglected. The “unrotated” couplings O
′nnp
Li1m are

O
′nnp

Li1L̃0

k

= − i

2

(
Uν

)
ki

(g′N11 − gN12), (36)

O
′nnp

Li1S̃
=

i√
2
h
(
ξ̃i5N17 + ξ̃i7N15

)
,

O
′nnp
Li1ν̃c = −i

ǫ̃i

vR
N14 +

i√
2
h
(
ξ̃i6N17 + ξ̃i7N16

)
.

In the limit vR, vS → ∞ one can derive a very simple approximation formula for Oχ̃0

1
νkJ . It s given by [59]

|Oχ̃0

1
νkJ | ≃ − ǫ̃k

V
N14 +

ṽLk

2V
(g′N11 − gN12) + h.O. (37)

Eq. (37) serves to show that for constant ǫ̃ and ṽL, Oχ̃0

1
νkJ → 0 as vR goes to infinity. This is as expected,

since for vR → ∞ the spontaneous model approaches the explicit bilinear model. Note, that only the presence

of the field ν̂c is essential for the coupling Eq. (37). If Ŝ is absent, replace V → vR.
In addition to the Majoron in considerable parts of the parameter space one also finds a rather light singlet

scalar, called the “scalar partner” of the Majoron in [40], SJ . From the Lagrangian

L =
1

2
χ̄0

i

(
Onns

LijkPL + Onns
RijkPR

)
χ0

jS
0
k, (38)

one finds the coupling χ̃0
1 − SJ − νi as

Onns
Li1SJ

= Rs
SJkO

′nns
Li1k, (39)

Onns
Ri1SJ

=
(
Onns

Li1SJ

)∗
.

Different from the Majoron, however, there is no simple analytical approximation for RSJ
. We write sym-

bolically

Rs
SJk =

(
RSJHd

, RSJHu
, RSJ L̃0

k

, RSJΦ, RSJ S̃ , RSJ ν̃c

)
, (40)

and define unrotated couplings by

O
′nns
Li1Hd

=
1

2

[
(gξ̃i2 − g′ξ̃i1)N13 + (gN12 − g′N11)ξ̃i3 −

√
2h0(ξ̃i7N14 + ξ̃i4N17)

]
, (41)

O
′nns
Li1Hu

=
1

2

[
(g′ξ̃i1 − gξ̃i2)N14 + (g′N11 − gN12)ξ̃i4 −

√
2h0(ξ̃i7N13 + ξ̃i3N17) −

√
2

ǫ̃i

vR
N15

]
,

O
′nns
Li1L̃0

k

=
1

2

(
Uν

)
ki

(g′N11 − gN12),

O
′nns
Li1Φ =

1√
2

[
− h0(ξ̃i3N14 + ξ̃i4N13) + h(ξ̃i6N15 + ξ̃i5N16) + λξ̃i7N17

]
,

O
′nns
Li1S̃

=
1√
2
h
(
ξ̃i5N17 + ξ̃i7N15

)
,

O
′nns
Li1ν̃c = − ǫ̃i

vR
N14 +

1√
2
h
(
ξ̃i6N17 + ξ̃i7N16

)
.
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As eqs (41) shows, χ̃0
1 → SJ + νi has a partial decay width similar in size to the decay χ̃0

1 → J + νi, as soon
as kinematically allowed. Since, on the other hand, SJ decays practically always with a branching ratio close
to 100 % into two Majorons, χ̃0

1 → SJ + νi gives in general a sizeable contribution to the invisible width of
the neutralino.

Finally, we give also the coupling χ̃0
i − J − χ̃0

j , for the case of two heavy neutralinos. Here,

Onnp
LijJ = − i√

2

h

V

[
vS(Nj7Ni5 + Ni7Nj5) − vR(Nj7Ni6 + Ni7Nj6)

]
. (42)

III. LSP PRODUCTION AND DECAYS

In this section we discuss the phenomenology of a neutralino LSP in s-Rp/ at future colliders. We do not
attempt to do an exhaustive study of the (quite large) parameter space of the model. Instead we will focus
on the most important qualitative differences between s-Rp/ , the previously studied case of explicit bilinear
Rp/ [21, 46, 47, 48] and the MSSM. All numerical results shown below have been obtained using the program

package SPheno [49], extended to include the new singlet superfields ν̂c, Ŝ and Φ̂.
Unless mentioned otherwise, we have always chosen the Rp/ parameters in such a way that solar and

atmospheric neutrino data [6] are fitted in the correct way. The numerical procedure to fit neutrino masses
is the following. Compared to the MSSM we have a number of new parameters. For the superpotential of eq.
(1) these are h0, h and λ, as well as the neutrino Yukawas hi

ν . In addition, there are in principle also the soft

SUSY breaking terms, which generate non-zero vevs, vR, vS , vΦ and vLi
for ν̃c, S̃, Φ and ν̃i, respectively.

We trade the unknown soft parameters for the vevs. For any random choice of MSSM parameters, we can
reproduce the “correct” MSSM value of µ for a random value of vΦ, by appropriate choice of h0. For any
random set of h, λ, vS and vR, we can then calculate those values of hi

ν and vLi
, using eq. (21), such that

the corresponding ǫi and Λi give correct neutrino masses and mixing angles. There are two options, how
neutrino data can be fitted, i.e. the cases (c1) and (c2), defined in section II C. We discuss the differences
between these two possibilities below.

In the following we will study only two ’limiting’ cases, which we consider to be the simplest possibilities
to realize within the parameter space of the model: (a) a bino-like LSP and (b) a singlino LSP. We note,
however, that theoretically also other possibilities exist at least in some limited parts of parameter space.
For example, one could also have that the phino, Φ̃, is the lightest Rp odd state. However, with the
superpotential of eq. (1), for any given value of µ, vΦ has a minimum value. Since the product λvΦ also
determines approximately the phino mass, a very light phino requires a certain hierarchy λ ≪ h0, h, which
might be considered to be a rather special case. Also in mSugra in the region where m0 is large one can find
points in which µ ∼ M1 and the lightest (MSSM) neutralino has a significant higgsino component. Since
both, a higgsino as well as a phino LSP show some differences in phenomenology compared to the bino and
singlino LSPs discussed here, we plan to study higgsino and phino LSPs in a future publication.

A. Production

Since neutrino physics requires that the R-parity violating parameters are small, supersymmetric produc-
tion cross sections are very similar to the corresponding MSSM values, see for example [50] and references
therein. Over most of the MSSM parameter space one expects that mainly gluinos and squarks are directly
produced at the LHC and that the lightest neutralinos appear as the “final” decay products at the end of
possibly long decay chains of sparticles. In addition charginos, neutralinos and sleptons can be produced
directly via Drell-Yan processes provided that they are relatively light.

Cross sections for direct production of singlinos are always negligible. There are essentially two possibilities
how singlinos can be produced in cascade decays. Firstly, a somewhat exotic chance to produce singlinos
occurs if at least one of the MSSM Higgsinos is heavier than Φ̃ and both h0 and h are large. In this case
Si appear in decay chains such as H̃u,d → Φ̃ + X1 → S + X2, where Xi denotes the additionally produced
particles. Secondly, there is the possiblity that singlinos are the LSPs. Squarks and gluinos will then decay
fast to the NLSP, which then decays to S. A typical decay chain might be q̃ → q + B̃ → q +S1,2 + J . Other
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NLSPs such as, τ̃1 will decay mainly via τ̃1 → S1,2 + τ , i.e. again ending up in singlinos. The total number
of singlino events therefore will be simply approximately equal to the number of SUSY events for singlino
LSPs.

B. Decays
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Figure 1: Masses of the three lightest neutralinos (left) and branching ratios for the most important decay modes of
the lightest state (right) versus 1√

2
hvΦ for a specific, but typical example point. The MSSM parameters have been

adjusted such that the sparticle spectrum of the standard point SPS1a’ is approximately reproduced. The singlet
parameters have been chosen randomly, vR = vS = 1 TeV, ~ǫ and ~Λ have been fitted to neutrino data, such that ~Λ
generates the atmospheric scale and ~ǫ the solar scale. For a detailed discussion see text.

Here we will discuss the main decay modes of bino and singlino LSPs. We will first discuss the parameter
range, where mχ0

1

≥ mW± , such that two-body decays of χ0
1 to gauge bosons are kinematically allowed. Fig.

(1) shows an example of the three lightest neutralino mass eigenvalues (left) and the main decay modes of
χ0

1 (right) as a function hvΦ√
2

for fixed values of all other parameters. This point has been constructed in such

a way, that the MSSM part of the spectrum, all production cross sections and all decay branching ratios,
apart from the lightest neutralino decays, match very closely the mSugra standard point SPS1a’ [50]. Here,
vR = vS = 1 TeV has been chosen as an arbitrary, but typical example.

The left part of fig. (1) shows how the quasi-Dirac pair S1,2 evolves as a function of hvΦ√
2

. For low values

(i.e. <∼ M1)of this parameter combination S1 is the LSP, for large values a B̃ is the LSP. The right side of
the figure shows the final states with the largest branching ratios. For low values of the LSP mass, J/SJ + ν
is usually the most important, i.e. there is a sizeable decay to invisible final states, even for a relatively high
vR, see also the discussion for fig. (4). Next in importance are the final states involving W± and charged
leptons. Note, that the model predicts

∑
i Br(χ0

1 → Z0 + νi)

2
∑

i Br(χ0
1 → W+ + l−i )

≃ g

4 cos2 θW
(43)

with g being a phase space correction factor, with g → 1 in the limit mχ0

1
→ ∞ [29]. Equation (43) can

be understood with the help of the approximative couplings eq. (29) and eq. (32). The relative size of the
branching ratios for the final states W + e, W + µ and W + τ depends on both, (a) the nature of the LSP
and (b) the fit to the neutrino data. We will discuss this important feature in more detail in section IV.
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Generally, for mχ0

1
≥ mW± three-body final states of the neutralino decay are less important than the

two-body decays shown in fig. (1). Especially one expects that the final state νbb̄ has a smaller branching
than in the case of explicit Rp/ [21]. This is essentially due to the fact, that |~ǫ|/µ is smaller in s-Rp/ with
a “light” singlet spectrum than in a model with explicit bilinear Rp/ , see the discussion in section II C. A

smaller |~ǫ|/µ leads to smaller couplings between χ0
1 − l − l̃, χ0

1 − q − q̃ and especially χ0
1 − ν − h0, see also

couplings in [21]. We have checked numerically, that Br(χ0
1 → ν + h0), if kinematically open, is typically

below 1% for singlets in the O(TeV) range.
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Figure 2: Branching ratios for the most important decay modes of the lightest neutralino state versus 1√
2
hvΦ for a

specific, but typical example point. The MSSM parameters have been adjusted such that the sparticle spectrum of the
standard point SU4 is approximately reproduced. The singlet parameters have been chosen randomly, vR = vS = 1
TeV, ~ǫ and ~Λ have been fitted to neutrino data, such that ~Λ generates the atmospheric scale and ~ǫ the solar scale.
The different final states are as follows. In the left figure, as ordered on the right side, from top to bottom the lines
are Br(χ0

1 → [invisible]) (full line, blue), Br(χ0
1 → µqq′) (short-dashed, red), Br(χ0

1 → τqq′) (large-dashed, light blue),
Br(χ0

1 → νqq̄) (full, yellow), Br(χ0
1 → νbb̄) (full, pink) and Br(χ0

1 → eqq′) (full, green). In the right figure, purely
leptonic modes, from top to bottom (on the right side): Br(χ0

1 → νµτ ) (full, yellow), Br(χ0
1 → νeµ) (dashed, green),

Br(χ0
1 → νeτ ) (full, red), Br(χ0

1 → νµµ) (dashed, light blue), Br(χ0
1 → νττ ) (full, pink) and Br(χ0

1 → νee) (dashed,
darker blue). For a detailed discussion see text.

For the case of mχ0

1
≤ mW± fig. (2) shows an example for the most important final states of the lightest

neutralino decay as a function of hvΦ√
2

. As in the fig. (1) to the left the lightest neutralino is a singlino, to the

right of the “transition” region the lightest neutralino is a bino. Note that the point SU4 [51] produces a bino
mass of approximately mB̃ ≃ 60 GeV, thus the only two body decay modes which are kinematically allowed
are J + ν and - very often, but not always - SJ + ν. One observes that these invisible decay modes have
typically a larger branching ratio than in the case mχ0

1
≥ mW± shown in fig. (1). This fact is essentially due

to the propagator and phase space suppression factors for three body decays. For a bino LSP the invisible
decay has the largest branching fraction. Semileptonic modes are next important with typically liqq

′ being
larger than νqq̄. It is interesting to note, that in the purely leptonic decays, lepton flavour violating final
states such as µτ have branching ratios typically as large or larger than the corresponding charged lepton
flavour diagonal decays (µµ and ττ). These large flavour off-diagonal decays can be traced to the fact
that neutrino physics requires two large mixing angles. The branching ratios shown in fig. (2) should be
understood only as representative examples - not as firm predictions. Especially for the case of a bino LSP,
the partial width to the final state J + ν, i.e. invisible final state, can vary by several orders of magnitude,
see the discussion below. The predictions for relative ratios of the different (partially or completely) visible
final states is much tighter fixed, because these final states correlate with neutrino physics, as we discuss in
section IV.
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If the S is the LSP, a bino NLSP decays dominantly to the singlino plus missing energy, as is shown in fig.
(3). The final state can be either S1 +J or S1 +2J , the latter due to the chain B̃ → S2 +J → S1 +2J , where
the 2nd step has always a branching fraction very close to 100%. However, a special opportunity arises if
h is low. In this case

∑
i Br(χ0

3 ≃ B̃ → W± + l∓i ) can easily reach several percent and it becomes possible
to test the model with the bino decays and the singlino decays at the same time. This would allow a much
more detailed study of the model parameters than for the more “standard” case where only either singlino
or bino decay visibly. We note that for any fixed value of h,

∑
i Br(χ0

3 ≃ B̃ → W± + l∓i ) depends mostly on

vR (and to some extend on vΦ). Low values if vR lead to low
∑

i Br(χ0
3 ≃ B̃ → W± + l∓i ) as we will discuss

next.

Figure 3: Sum over
P

i Br(χ0
3 ≃ B̃ → W± + l∓i ) versus h for MSSM parameters resembling the standard point

SPS1a’, random values of the singlet parameters and with the condition of S1 being the LSP. The dominant decay
mode for the B̃ in all points is B̃ → S1+E/ , with the missing energy due to either J or 2J emission. For low values

of h one can have visible decays of the B̃ reaching (20 − 30)%, for h larger than, for say, h = 0.05 B̃ decays to S1

plus missing energy with nearly 100%.

Fig. (4) shows the sum over all at least partially visible decay modes of the lightest neutralino versus
vR in GeV, for a set of vΦ values vΦ = 10–40 TeV for the mSUGRA parameter point (m0 = 280 GeV,
m1/2 = 250 GeV, tanβ = 10, A0 = −500 GeV and sgn(µ) = +). This point was constructed to produce

formally a Ωχ0

1
h2 ≃ 1 in case of conserved R-parity, much larger than the observed relic DM density [26].

The left plot shows the case χ0
1 ≃ B̃, the right plot χ0

1 ≃ S. For B̃, Br(B̃ → J + ν) very close to 100 %
are found for low values of vR. This feature is independent of the mSugra parameters, see the correspoding
figure in [34]. In this case large statistics becomes necessary to find the rare visible neutralino decays, which
prove that R-parity is broken. The inconsistency between the calculated Ωχ0

1
h2 and the measured ΩCDMh2

might give a first indication for a non-standard SUSY model.
Figure (4) to the right shows that the case χ0

1 ≃ S has a very different dependence on vR. We have
checked that this feature is independent of the mSugra point. For other choices of mSugra parameters larger
branching ratios for Br(S → J + ν) can be obtained, but contrary to the bino LSP case, the sum over the
invisible decay branching ratios never approaches 100 %.

Figure (5) shows the calculated decay lengths for the lightest neutralino for the same choice of parameters

as shown in fig. (4). To the left the case χ0
1 ≃ B̃, to the right χ0

1 ≃ S. Decay lengths depend strongly on
vR. Singlinos tend to have larger decay lengths than binos for the same choice of parameters. However, a
measurement of the decay length alone is not sufficient to decide whether the LSP is a singlino or a bino. If
the nature of the LSP is known, observing a finite decay length allows a rough estimate of the scale vR, or
at least to establish a rough lower limit on vR.

Summarizing this discussion, it can be claimed that observing a decay branching ratio of the LSP into
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Figure 4: Sum over all at least partially visible decay modes of the lightest neutralino versus vR in GeV, for a set
of vΦ values vΦ = 10–40 TeV for the mSUGRA parameter point m0 = 280 GeV, m1/2 = 250 GeV, tanβ = 10,

A0 = −500 GeV and sgn(µ) = +. To the left χ0
1 ≃ B̃; to the right χ0

1 ≃ S . The plot demonstrates that the branching

ratio into B̃ → J + ν does depend strongly on the value of vR and to a minor extend on vΦ. Lowering vR one can get
branching ratios for the invisible decay of the B̃ very close to 100 %, thus a very MSSM-like phenomenology. The
right plot demonstrates that such a possibility does not exist in the case of an S LSP.

Figure 5: Decay length of the lightest neutralino in meter versus vR. To the left: Bino LSP; to the right: Singlino
LSP. All parameters have been chosen as in fig. (4).

completely invisible final states larger than Br(χ0
1 → ∑

[invisible]) ≥ 0.1 is an indication for s-Rp/ . Finding
Br(χ0

1 → ∑
[invisible]) ≃ 100% shows furthermore that the χ0

1 must be a bino and measuring Br(χ0
1 →∑

[visible]) for a bino LSP gives an order-of-magnitude estimate of vR.



14

C. Possible observables to distinguish between Singlino LSP and bino LSP

Since bino and singlino LSP decays have, in principle, the same final states, simply observing some visible
decay products of the LSP does not allow to decide the nature of the LSP. In this subsection we will
schematically discuss some possible measurements, which would allow to check for the LSP nature.

As shown above, if the singlino is the LSP and the bino the NLSP, one can have that for the bino decays
to standard model particles compete with the decay to the singlino LSP. If both particles, the bino and the
singlino LSP have visible decay modes, it is guaranteed that the singlino is the LSP. If the bino decays only
invisibly to the singlino, a different strategy is called for. We discuss two examples in the following.

In the following discussion we will replace the neutralino mass eigenstates by the particles which correspond
to their main content to avoid confusion with indices. At the LHC one will mainly produce squarks and
gluinos which will decay in general in cascades. A typical example is q̃L → qW̃ and the wino decays further
to a bino LSP as for example:

W̃ → e+ẽ− → e−e+B̃ → e−e+µqq̄ (44)

W̃ → e+ẽ− → e−e+B̃ → e−e+Jν (45)

In this case one can measure in principle the neutralino mass from the first decay chain. In the invariant
momentum spectrum of the e+e− pair the edge must correspond to this mass. In the case of the singlino

W̃ → e+ẽ− → e−e+B̃ → e−e+JS → e−e+Jµqq̄ (46)

W̃ → e+ẽ− → e−e+B̃ → e−e+JS → e−e+JJν (47)

In this case one has on average more missing energy than for a bino LSP. However, in both cases one can
study spectra combining the jet stemming from the squark and the e+e− pair and obtain information on the
masses from the so-called edge variables [52]. In addition one can use additional variables like, for example,
mT2 [53, 54, 55] to obtain information on the LSP mass. Note, that this variable works also if there are
additional massless particles involved, although at the expense of available statistics [56]. In addition one
can obtain the invariant mass of the LSP from the final state µqq̄. In the case where the LSP has a decay
length measurable at the LHC, one can separate the latter decay products from the other particles in the
event and, thus, reduce considerably the combinatorial problems associated with the correct assignment of
the jets. In the case of a bino LSP one would find that all the three different measurements yield the same
mass for the LSP. In the case of a singlino LSP, on the other hand, one would obtain that the LSP mass
reconstructed from the edge variables does not coincide with the mass reconstructed from the µqq̄ spectrum.
This would indicate that there are two different particles involved. (Such a difference might also be visible
in the mT2 variable.) However, in all cases detailed Monte Carlo studies will be necessary to work out the
required statistics, etc.

Distinguishing bino and singlino LSPs will become considerably easier at a future international linear
collider. In e+e− one can directly produce a bino LSP but not a singlino LSP and, thus, the identification
of the correct scenario should be fairly straightforward.

IV. CORRELATIONS BETWEEN LSP DECAYS AND NEUTRINO MIXING ANGLES

Correlations between LSP decays and neutrino mixing angles depend on the nature of the LSP. Above
we have discussed some possible measurements which, at least in principle, allow to distinguish bino from
singlino LSPs. In this subsection we assume that the nature of the LSP is known.

1. Bino LSP

We note that the following discussion is valid also if the bino is the NLSP which, as discussed above,
decays with some final, but probably small percentage to visible final states.
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In explicit bilinear R-parity violation the coupling of the bino component of the neutralino to gauge bosons
and leptons is completely dominated by terms proportional to Λi, as has been shown in [21]. Although the
coefficients for the spontaneous model are more complicated, see the discussion in section II D, generation
dependence for the coefficients for the coupling χ0

1 −W − li appear only in the terms Λi and ǫi, i.e. Ki
Λ and

Ki
ǫ are independent of the lepton generation. Numerically one finds than that the terms proportional to Λi

dominate the χ0
1−W − li coupling for a bino LSP always. This is demonstrated in figs. (6) and (7). Here we

have numerically scanned the mSugra parameter space, with random singlet parameters and the additional
condition that the LSP is a bino. For the left (right) figures we have numerically applied the cut N2

11 > 0.5
(N2

11 > 0.9).

Fig. (6) [ (7)] shows the ratio of branching ratios Br(B̃ → W+e)/Br(B̃ → W+µ) [Br(B̃ → W+µ)/Br(B̃ →
W + τ)] versus (Λe/Λµ)2 [(Λµ/Λτ)2]. To establish a correlation between ratios of Λi and the bino decay
branching ratios, a bino purity of N2

11 > 0.5 is usually sufficient. The figures demonstrate that the correlations
get sharper with increasing bino purity.

We have checked that for neutralinos with mass lower than mW one can use ratios of the decays B̃ → liqq
′

for the different li in the same way to perform a measurement of Λi ratios. Plots for this parameter region
are rather similar to the ones shown for the case B̃ → liW , although with a somewhat larger dispersion, and
we therefore do not repeat them here.

With the measurement of ratios of branching ratios different consistency checks of the model can be

performed. In case (c1), i.e. ~Λ explaining the atmospheric scale, the atmospheric and the reactor angle

are related to W + l final states, as shown in fig. (8). Here we show the ratios Rµ =
Br(χ0

1
→µW )

Br(χ0

1
→τW )

versus

tan2 θAtm (left) and Re =
Br(χ0

1
→eW )√

Br(χ0

1
→µW )2+Br(χ0

1
→τW )2

versus sin2 θR (right) for a bino LSP, for an assumed

bino-purity of N2
11 > 0.8. The vertical lines are the 3σ c.l. allowed experimental ranges (upper bound),

horizontal lines the resulting predictions for the two different observables R. Given the current experimental

data, one expects
Br(χ0

1
→µW )

Br(χ0

1
→τW )

in the range [0.4, 2.1] and
Br(χ0

1
→eW )√

Br(χ0

1
→µW )2+Br(χ0

1
→τW )2

≤ 0.06.

Different from fig. (8), in case of (c2), i.e. ~Λ explaining the solar scale, the ratio
Br(χ0

1
→eW )√

Br(χ0

1
→µW )2+Br(χ0

1
→τW )2

correlates with tan2 θ⊙, as shown in fig. (9). Here, from the 3σ c.l. allowed range of the solar angle one

expects to find
Br(χ0

1
→eW )√

Br(χ0

1
→µW )2+Br(χ0

1
→τW )2

≃ [0.25, 0.85]. Finding this ratio experimentally to be larger than

the one indicated by the solar data, i.e.
Br(χ0

1
→eW )√

Br(χ0

1
→µW )2+Br(χ0

1
→τW )2

>> 1, rules out the model as the origin

of the observed neutrino oscillation data. Similarly a low (high) experimental value for this ratio indicates
(for a bino LSP) that case (c1) [(c2)] is the correct explanation for the two observed neutrino mass scales.

2. Singlino LSP

Different from the bino LSP case, for singlinos coupling to a lepton li-W pair terms proportional to ǫi

dominate by far. This is demonstrated in fig. (10), where we show the ratios
Br(χ0

1
→eW )

Br(χ0

1
→µW )

(left) versus

(ǫe/ǫµ)2 and
Br(χ0

1
→µW )

Br(χ0

1
→τW )

(right) versus (ǫµ/ǫτ)2 for a singlino LSP. Note that mixing between singlinos and

the doublet neutralinos of the model is always very small, unless the singlino is highly degenerate with the
bino. Consequently singlinos are usually very “pure” singlinos and the correlations of the li-W with the ǫi

ratios is very sharp.
Depending on which case, (c1) or (c2), is chosen to fit the neutrino data, the corresponding ratios of

branching ratios are then either sensitive to the atmospheric and reactor or the solar angle. This is demon-

strated in figs. (11) and (12). Here, fig. (11) shows the correlation of Re =
Br(χ0

1
→eW )√

Br(χ0

1
→µW )2+Br(χ0

1
→τW )2

with

tan2 θ⊙ for the fit (c1). This result is very similar to the one obtained for the fit (c2) and a bino LSP. For
this reason the nature of the LSP needs to be known, before one can decide, whether the measurement of a
ratio of branching ratio is testing (c1) or (c2).

Figure (12) shows the dependence of Rµ =
Br(χ0

1
→µW )

Br(χ0

1
→τW )

versus tan2 θAtm (left) and Re =
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Figure 6: Ratio
Br(χ0

1
→eW )

Br(χ0

1
→µW )

versus (Λe/Λµ)2 for a bino LSP. To the left: “Bino-purity” N2
11 > 0.5, to the right:

N2
11 > 0.9. All points with mLSP > mW .
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Figure 7: Ratio
Br(χ0

1
→µW )

Br(χ0
1
→τW )

versus (Λµ/Λτ )2 for a bino LSP. To the left: “Bino-purity” N2
11 > 0.5, to the right:

N2
11 > 0.9.

Br(χ0

1
→eW )√

Br(χ0

1
→µW )2+Br(χ0

1
→τW )2

versus sin2 θR (right) for a singlino LSP, using the neutrino fit (c2). Again

one observes that this result is very similar to the one obtained for a bino LSP and fit (c1). This simply
reflects that fact, that neutrino angles can be either fitted with ratios of ǫi or with ratios of Λi and singlinos
couple mostly proportional to ǫi, while binos are sensitive to Λi.

In case the singlino is the LSP and the bino, as the NLSP, decays with some measurable branching ratios
to W − li, both Λi and ǫi ratios could be reconstructed, which would allow for a much more comprehensive
test of the model.
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Figure 8: Ratio Rµ =
Br(χ0

1
→µW )

Br(χ0

1
→τW )

versus tan2 θAtm (left) and Re =
Br(χ0

1
→eW )√

Br(χ0

1
→µW )2+Br(χ0

1
→τW )2

versus sin2 θR (right)

for a bino LSP. “Bino-purity” N2
11 > 0.8. Vertical lines are the 3σ c.l. allowed experimental ranges, horizontal lines

the resulting predictions for the fit (c1), see text.
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Figure 9: Ratio Re =
Br(χ0

1
→eW )√

Br(χ0
1
→µW )2+Br(χ0

1
→τW )2

versus tan2 θ⊙ for a bino LSP. “Bino-purity” N2
11 > 0.8. Vertical

lines are the 3σ c.l. allowed experimental ranges, horizontal lines the resulting predictions for the fit (c2), see text.

V. CONCLUSIONS

We have studied the phenomenology of a neutralino LSP in a supersymmetric model in which neutrino
oscillation data is explained by spontaneous R-parity violation. We have concentrated the discussion on the
case that the LSP is either a bino, like in a typical mSugra point, or a singlino state, novel to the current
model. We have worked out the most important phenomenological signals of the model and how it might
be distinguished from the well-studied case of the MSSM, as well as from a model in which the violation of
R-parity is explicit.

There are regions in parameter space, where χ̃0 decays invisibly with branching ratios close to 100 %,
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1
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(left) versus (ǫe/ǫµ)2 and
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1
→µW )

Br(χ0

1
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(right) versus (ǫµ/ǫτ )2 for a “singlino” LSP.
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Figure 11: Ratio Re =
Br(χ0

1
→eW )√

Br(χ0

1
→µW )2+Br(χ0

1
→τW )2

versus tan2 θ⊙ for a singlino LSP. Vertical lines are the 3σ c.l.

allowed experimental ranges, horizontal lines the resulting predictions for the fit (c1), see text.

despite the smallness of neutrino masses. In this limit, spontaneous violation of R-parity can resemble the
MSSM with conserved R-parity at the LHC and experimentalist would have to search for the very rare
visible decay channels to establish the R-parity indeed is broken.

The perhaps most important test of the model as the origin of the observed neutrino masses comes from
measurements of ratios of branching ratios to W -boson and charged lepton final states. Ratios of these
decays are always related to measured neutrino angles. If SUSY has a spectrum light enough to be produced
at the LHC, the spontaneous model of R-parity violation is therefore potentially testable.
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Figure 12: Ratio Rµ =
Br(χ0

1
→µW )

Br(χ0

1
→τW )

versus tan2 θAtm (left) and Re =
Br(χ0

1
→eW )√

Br(χ0

1
→µW )2+Br(χ0

1
→τW )2

versus sin2 θR

(right) for a singlino LSP. Vertical lines are the 3σ c.l. allowed experimental ranges, horizontal lines the resulting
predictions for the fit (c2), see text.
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