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Discrete dark matter
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We propose a new motivation for the stability of dark matter (DM). We suggest that the same non-
abelian discrete flavor symmetry which accounts for the observed pattern of neutrino oscillations,
spontaneously breaks to a Z2 subgroup which renders DM stable. The simplest scheme leads to
a scalar doublet DM potentially detectable in nuclear recoil experiments, inverse neutrino mass
hierarchy, hence a neutrinoless double beta decay rate accessible to upcoming searches, while θ13 = 0
gives no CP violation in neutrino oscillations.
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Introduction The existence of dark matter (DM)
plays a central role in the modeling of structure formation
and galaxy evolution, affecting also the cosmic microwave
background. Despite the strong evidence in favor of DM,
its detailed nature remains rather elusive. Viable particle
physics candidates for dark matter must be electrically
neutral, and provide the correct relic abundance. There-
fore they must be stable over cosmological time scales. A
simple way to justify the stability of the DM is by assum-

ing some parity symmetry Z2, which might arise from the
spontaneous breaking of an abelian U(1) gauge symme-
try [1–3] 1, or from a non-abelian discrete symmetry, as
might be the case in some string models [4].

Non abelian discrete symmetries are motivated by
neutrino oscillation data [5, 6]. Here we propose that the
same symmetry explaining neutrino mixing angles is also
responsible for the dark matter stability. In our simplest
type-I seesaw [7] realization the flavor symmetry A4

spontaneously breaks to Z2 providing a stable DM
candidate. We extend the scalar sector of the standard
model by adding three Higgs doublets transforming as a
triplet of A4 we show that there is a consistent pattern
of vacuum expectation values (vevs) for which only one
of the three extra Higgs doublets takes a vev, while
the other two give rise to the dark matter candidate.
The model accounts for the observed pattern of mixing
angles [8] indicated by current neutrino oscillation data,
predicting θ13 = 0 and inverted spectrum of neutrino
masses. It will therefore be tested in upcoming double
beta and neutrino oscillation searches [9], while the dark
matter has potentially detectable rates within reach of
nuclear recoil experiments.

Model We assign matter fields to irreducible repre-
sentations of A4, the group of even permutations of four
objects, isomorphic to the symmetry group of the tetra-
hedron. All elements are generated from two elements S

1 In supersymmetry a viable DM particle is the neutralino, whose

stability stems from the imposition of the so-called R-parity.

and T with S2 = T 3 = (ST )3 = I. A4 has four irre-
ducible representations, three singlets 1, 1′ and 1′′ and
one triplet. In the basis where S is real diagonal,

S =





1 0 0
0 −1 0
0 0 −1



 ; T =





0 1 0
0 0 1
1 0 0



 ; (1)

one has the following triplet multiplication rules,

(ab)1 = a1b1 + a2b2 + a3b3 ;
(ab)1′ = a1b1 + ωa2b2 + ω2a3b3 ;
(ab)1′′ = a1b1 + ω2a2b2 + ωa3b3 ;
(ab)31 = (a2b3, a3b1, a1b2) ;
(ab)32 = (a3b2, a1b3, a2b1) ,

(2)

where ω3 = 1, a = (a1, a2, a3) and b = (b1, b2, b3). We as-
sign the standard model Higgs doublet H , to the singlet
1, and we assume three additional Higgs doublets trans-
forming as an A4 triplet, namely η = (η1, η2, η3) ∼ 3.
We have four right-handed neutrinos, three transform-
ing as an A4 triplet NT = (N1, N2, N3), and one singlet
N4. The lepton and Higgs assignments of our model is
in table I. The resulting Yukawa Lagrangian is

Le Lµ Lτ lce lcµ lcτ NT N4 H η

SU(2) 2 2 2 1 1 1 1 1 2 2

A4 1 1′ 1′′ 1 1′′ 1′ 3 1 1 3

TABLE I: Summary of relevant model quantum numbers

L = yeLel
c
e
H + yµLµl

c
µ
H + yτLτ l

c
τ
H +

+yν1Le(NT η)1 + yν2Lµ(NT η)1′′ + yν3Lτ (NT η)1′ +

+yν4LeN4H +M1NTNT +M2N4N4 + h.c.

This way H is responsible for quark and charged lep-
ton masses, the latter automatically diagonal. Note that
we do not discuss the quark sector, assumed to be blind
to A4, namely all left and right-handed up and down-
type quarks transform trivially under A4, their mass and
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mixing hierarchies might arise from an extra family sym-
metry, for example, Frogatt-Nielsen-like [10]. Neutrino
masses arise fromH and η, see below. The relevant terms
of the scalar potential are of the form

V = µ2
ηη

†η + µ2
HH†H + λ1[H

†H ]2 + λ2[η
†η]21+

+ λ3[η
†η]1′ [η

†η]1′′ + λ4[η
†η†]1′ [ηη]1′′ + λ′

4[η
†η†]1[ηη]1

+ λ5

∑

i[η
†η]3i [η

†η]3i + λ′
5([η

†η]31 [η
†η]32 + h.c.)+

+ λ6(
∑

i,j [η
†η†]3i [ηη]3j + h.c) + λ7[η

†η]1H
†H+

+ λ′
7[η

†H ]H†η + λ8

(

[η†η†]1HH + h.c
)

+

+ λ9

(

[η†η]31η
†H + h.c

)

+ λ′
9

(

[η†η]32η
†H + h.c

)

+

+ λ10

(

[η†η†]31ηH + h.c
)

+ λ′
10

(

[η†η†]32ηH + h.c
)

+

+ λ11[η
†η†]1[ηη]1

(3)
where i, j = 1, 2, and [...]3i means the product of two
triplets contracted into a triplet of A4, see eq. (2), [...]1
means the product of two triplets contracted into a sin-
glet of A4 and so on. Note that [η†η]1,1′,1′′ ≡ [ηη†]1,1′,1′′ ,
[ηη]31 ≡ [ηη]32 and so on.

We have studied the minimization of the potential V
solving the equations ∂V/∂vi = 0 where vi are the vevs
of the fields H, η1, η2 and η3. For simplicity we assume
real vevs. We have checked that for suitable parameter
choices of the potential V , an allowed local minimum is

〈

H0
〉

= vh 6= 0,
〈

η01
〉

= vη 6= 0
〈

η02,3
〉

= 0 , (4)

with the eigenvalues of the Hessian ∂2V/∂vi∂vj all posi-
tive.

Note that the alignment 〈η〉 ∼ (1, 0, 0) breaks sponta-
neously A4 to Z2 since (1, 0, 0) is invariant under the S
generator in eq. (1). The Z2 is defined as

N2 → −N2 , h2 → −h2 , A2 → −A2 ,

N3 → −N3 , h3 → −h3 , A3 → −A3 .
(5)

This residual symmetry is responsible for the stability
of our DM candidate and the stability of the minimum.
Note that the potential cannot break spontaneously A4

into Z3 because in this case the alignment 〈η〉 ∼ (1, 1, 1)
is not a minimum unless a fine tuning in the parameters
λ9+λ10 = 0 is assumed. This atractive feature reminds of
the inert doublet model [11], with the difference that here
it follows naturally from the underlying flavor symmetry
which accounts for neutrino oscillations.

We have four Higgs doublets2 giving three physical
charged scalar bosons, plus four neutral scalars, and three
pseudoscalars. After electroweak symmetry breaking we

2 Lepton flavor violating processes are suppressed by the large

right-handed neutrino scale.

can write

H =

(

0

vh + h

)

, η1 =

(

η+1
vη + h1 + iA1

)

,

η2 =

(

η+2
h2 + iA2

)

, η3 =

(

η+3
h3 + iA3

)

.

(6)

There are 3 physical charged scalar bosons, 4 CP even
and 3 CP odd neutral scalars. The mass of the neutral
scalar fields is block diagonal with the standard model
Higgs h mixed with h1, but not with the scalar fields
with zero vev’s h2,3.

Dark matter The lightest combination of the stable
scalar fields h2, h3 plays the role of our dark matter par-
ticle, which we will denote generically by ηDM . We list
below all interactions of ηDM :

1. Yukawa interactions

η
DM

νiN2,3 , (7)

where i = e, µ, τ .

2. Higgs-Vector boson couplings

η
DM

η
DM

ZZ , η
DM

η
DM

WW ,

η
DM

η±2,3W
±Z , η

DM
η±2,3W

± ,

η
DM

A2,3Z .

(8)

3. Scalar interactions from the Higgs potential:

η
DM

A1A2h , η
DM

A1A3h1 ,

η
DM

A1A2h1 , η
DM

A1A3h ,

η
DM

A2A3h3 , η
DM

h1h3h

η
DM

η
DM

hh , η
DM

η
DM

h1h1 .

(9)

After electroweak symmetry breaking, the vevs vh and
vη are generated, so that additional terms are obtained
from those in Eq. (9) by replacing h → vh and h1 → vη.
The flavor symmetry A4 is broken down to the residual
Z2 symmetry in Eq. (5), implying the stability of our
dark matter candidate. As we will see, despite the
many mass and coupling parameters appearing in the
potential, eq. (3), for Mη ≫ Mz, only two determine
the relic dark matter abundance and its direct detection
rates.

Relic Density Assuming that our DM candidate
arises as thermal relic in the early universe, one of
the most important requirements one must check is its
relic abundance. For definiteness we require that ηDM

makes up all the observed DM. For Mη ≫ Mz the most
important annihilation and coanihilation processes are
those with vector bosons, though for large λ >∼ g2, where
16λ2 = (λ7 + λ′

7 + 2λ8)
2 + (2λ2 − λ3 − 2λ4 + λ′

4 + 2λ5 +
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N N

ηDM ηDM

h

N N
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FIG. 1: Feynman diagrams relevant for direct DM detection.
Elastic scattering (left) is generically more important than
inelastic (right).

λ′
5 + λ6)

2, annihilation into Higgs bosons plays an im-
portant role, see Eq. (11). The DM abundance can be
approximated as [12]

nDM(T )

s(T )
≈
√

180

π g∗

1

MPl Tf〈σAv〉
, (10)

where
Mη

Tf
≈ 26 and g∗ = 106.75+n is the number of SM

degrees of freedom plus 1 ≤ n ≤ 12 degrees of freedom
arising from the extra scalars, andMPl = 1.22×1019GeV
is the Planck scale. The cross section for ηDMηDM →
V V where V are vector bosons in the limit of massless
final states, is given by [12]

〈σAv〉 ≃
3g42 + g4Y + 6g22g

2
Y Y

2 + 4λ2

256π M2
η

, (11)

where Y = 1/2 is the weak hypercharge,
g2 =

√

4πα/(1−M2
W /M2

Z) and gY =
√
4παMZ/MW .

From these equations it follows that, in order to provide
the correct relic abundance ΩDMh2 = 0.110 ± 0.006 i.e.
nDM/s = (0.40± 0.02)eV/Mη [13], a correlation between
the mass of the dark matter Mη and the quartic coupling
constant λ is required. For simplicity if we take the limit
of small λ we obtain a mass for the DM candidate of
Mη ≈ 0.51 TeV. For large λ values we have that the DM
mass Mη scales as λ.

Direct detection The quartic couplings η†ηH†H and
η†η†HH give an interaction of the DM candidate with
the nucleon through the interchange of the SM Higgs
boson. Hence our DM candidate can be detected through
the elastic scattering with a nucleus ηDMN → ηDMN via
the exchange of a Higgs, or through inelastic scattering
with a nucleus ηDMN → AN with the exchange of a Z
boson, see Fig. 1, where A is the lightest pseudoscalar,
in general a mixture of A2 and A3.

Barring fine-tuned choices of parameters for which the
threshold for inelastic scattering opens up, the detection
will be dominated by the elastic process, whose cross sec-

tion is given by [14]

σel(nucleon) ≈ λ2 1

1 + (tanβ)2

(

100 GeV

Mh

)4

×

×
(

50 GeV

Mη

)2
(

5× 10−42 cm2
)

,

(12)

where tanβ = vh/vη. Note that all uncertainties as-
sociated with the nuclear form factor in Eq. (12), have
been neglected. From the requirement of correctly re-
producing the relic density, Eqs. (10) and (11), one can
find an expression for λ as function of the DM mass,
Mη. Using this relation and eq. (12) one can plot the
estimated cross section for the direct detection for each
value of tanβ and mass of the Higgs, Mh, as illustrated
in Fig. 2 3. The figure has been generated using [15] and
compares the experimental sensitivities with our model
expectations, fixing mH = 120 GeV and three tanβ val-
ues. This choice of Higgs mass is motivated by the LEP
bounds mH > 114GeV, which however is not strictly
valid in our model due to the additional Higgs doublets.
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FIG. 2: Elastic DM scattering cross section with a nucleon
versus DM mass. We compare present [16, 17] and future
[18, 19] sensitivities with our model expectations, for mH =
120GeV and tanβ = 0.5, 1, 5 (grey solid lines).

Neutrino phenomenology Our model has four heavy
right-handed neutrinos, and is a special case, called (3,4),

3 Here we focus on the region Mη ≫ Mz. The interesting case of

light DM will be treated elsewhere.
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of the general type-I seesaw mechanism [20]. After elec-
troweak symmetry breaking, it is characterized by Dirac
and Majorana mass terms given as

mD =







x1 0 0 y1
x2 0 0 0

x3 0 0 0






,MR = diag(M1,M1,M1,M2) ,

(13)
so that the light neutrinos get Majorana mass by means
of the type-I seesaw relation mν = −mD3×4

M−1
R4×4

mT
D3×4

the light-neutrinos mass matrix Mν being given as









x2

1

M1

+
y2

1

M2

x1x2

M1

x1x3

M1

x1x2

M1

x2

2

M1

x2x3

M1

x1x3

M1

x2x3

M1

x2

3

M1









=







y2 ab ac

ab b2 bc

ac bc c2






. (14)

It falls within the class of scaling matrices introduced in
Ref. [21]. This form of the light neutrino mass matrix
has an inverse hierarchical neutrino mass spectrum and
a zero eigenvalue with m3 = 0 and corresponding eigen-
vector (0, −c/b, 1)T implying a vanishing reactor mix-
ing angle θ13 = 0. One can see explicitly that the solar
and atmospheric square mass differences and mixing an-
gles indicated by neutrino oscillation data [8] can indeed
be fitted by taking, as an example, the tri-bimaximal
(TBM) ansatz [22]. When b = c and y2 = 2c2 − ac the
neutrino mass matrix Eq. (14) is µ − τ invariant yield-
ing maximal atmospheric mixing, sin2 θ23 = 1/2 and
Mν,11 + Mν,13 = Mν,22 + Mν,23, which gives the TBM
value of the solar angle, sin θ212 = 1/3, in good agreement
with experimental data within one σ. The eigenvalues
are {m1,m2,m3} = {2ac + 2c2, 2c2 − ac, 0} , which can
fit the two mass-squared differences required to account
for the observed pattern of neutrino oscillations. By re-
laxing the condition b = c and y2 = 2c2−ac one generates
deviations from the TBM limit, while keeping θ13 = 0.
Note the above imples a neutrinoless double beta decay
effective mass parameter in the range 0.03 to 0.05 eV at
3 σ, within reach of upcoming experiments [23].

Conclusions In summary we have suggested that
DM stability follows from the same non-abelian discrete
flavor symmetry which accounts for the observed pattern
of neutrino oscillations. In the realization we have given
we have an A4 symmetry which spontaneously breaks to
a Z2 parity that stabilizes a scalar doublet dark matter,
potentially detectable in nuclear recoil experiments,
as well as accelerators. Despite the complexity of the
scalar potential, in the heavy dark matter limit both
the relic dark matter abundance and its direct detection
cross section depend just on the DM mass and a single
coupling strength parameter. The model is also mani-
festly unifiable and agrees with electroweak searches as
well as precision tests, as will be shown elsewhere. Our
simple example gives 0νββ rates accessible to upcoming

experiments and no CP violation in neutrino oscillations.
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