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Abstract

The neutrinoless double beta decay (0νββ) induced by light Majo-
rana neutrino exchange between decaying nucleons, accompanied by the
squark exchange inside one nucleon, recently discussed by Babu and Mo-
hapatra, is carefully analyzed both from the particle and nuclear physics
sides. New nuclear matrix elements relevant to this mechanism are cal-
culated. We extend the analysis to include mixing of light neutrinos
with heavy and ”sterile” neutrinos. It introduces another supersym-
metric (SUSY) contribution to 0νββ. We discuss constraints on the
Rp/ MSSM parameters imposed by the current experimental limit on
0νββ decay half-life of 76Ge.

Neutrinoless double beta (0νββ) decay is a sensitive probe of physics be-
yond the standard model, since it violates lepton number. Recent experi-
mental progress has pushed the existing half-life limits of 0νββ decay beyond
T1/2(0νββ) ≥ 7.4×1024 years and further progress can be expected in the near
future [1]. This experimental result casts stringent constraints on new physics.
Particularly, for the conventional mechanism of 0νββ-decay with massive Ma-
jorana neutrino exchange between decaying nucleons (see fig. 1) it implies an
upper bound on the neutrino mass below 1 eV [1]. (There exist, however, other
mechanisms which might induce 0νββ decays as well [2], [3].)

In this paper we study contributions to 0νββ decay within the R-parity
violating Minimal Supersymmetric Standard Model (Rp/ MSSM). The Rp/ MSSM
has been extensively discussed in the literature since it has very interesting
phenomenological [4] and cosmological [5] implications. It also gives a very
natural framework for rare lepton number violating processes and particularly
0νββ decay [6]-[10].

The supersymmetric mechanism of 0νββ decay was first proposed by Mo-
hapatra [6] and later studied in more details in Refs. [7], [8]. In Ref. [9] it was
shown that the gluino exchange contribution to 0νββ-decay leads to a very
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stringent limit on the first generation Rp/ Yukawa coupling λ′

111 ≤ 3.9 · 10−4.
Recently, Babu and Mohapatra [10] found another contribution comparable in
size with the gluino exchange. It allows one to set stringent limits on combi-
nations of the intergeneration Rp/ -Yukawa couplings such as λ′

11iλ
′

1i1, where i
denotes generations.

However, in ref. [10] limits were deduced using a simplified estimation of
the nuclear structure matrix elements. The approach used in [10] is based on
a simple replacement of the virtual particle momenta and energies by the (es-
timated) Fermi momentum pF and energy EF of a nucleon inside the nucleus,
therefore neglecting essentially all nuclear structure effects. Since the stringent
constraints found in [10] may have important consequences for the Rp/ MSSM
phenomenology, it is desirable to substantiate these results by detailed calcu-
lations.

In this letter we present the results of detailed particle and nuclear physics
calculations relevant to the contribution of the diagrams in fig. 2 to 0νββ
decay. We extend the previous work to include mixing of the standard light
neutrinos with exotic heavy neutrinos, neutralinos or some other neutral heavy
particles or light ”sterile” neutrino singlets [11]. Inclusion of mixing leads to
the new slepton exchange diagram in fig. (2.b).

The Rp/ MSSM is an extension of the MSSM which results from the inclusion
of explicit R-parity violating (Rp/ ) terms WRp/ into the superpotential W =
WMSSM + WRp/ , where

WRp/ = λijkLiLjĒk + λ′

ijkLiQjD̄k + λ′′

ijkŪiD̄jD̄k (1)

Indices i, j, k stand for generations. L, Q denote lepton and quark doublet
superfields and Ē, Ū , D̄ lepton and up, down quark singlet superfields. The
first two terms in eq. (1) lead to lepton number violation, while the last one
violates baryon number. For 0νββ decay only the λ and λ′ type couplings are
of relevance.

Mixing between scalar superpartners f̃L,R of the left and right-handed
fermions fL,R will play a crucial role in our subsequent consideration. It occurs
due to non-diagonality of the mass matrix which can be written as

M2
f̃

=

(

m2
f̃L

+ m2
f − 0.42DZ −mf (Af + µ tanβ)

−mf (Af + µ tanβ) m2
f̃R

+ m2
f − 0.08DZ

)

. (2)

Here, f = d, s, b, e, µ, τ and f̃ are their superpartners. DZ = M2
Z cos2β with

tanβ = 〈H0
2 〉/〈H0

1〉 being the ratio of vacuum expectation values of the two
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Higgs doublets, mf̃L,R
are soft sfermion masses, Af are soft SUSY breaking

parameters describing the strength of trilinear scalar interactions, and µ is the
supersymmetric Higgs(ino) mass parameter. Once sfermion mixing is included,
the current eigenstates f̃L, f̃R become superpositions of the mass eigenstates
f̃i with the masses mf̃i

and the corresponding mixing angle θf is defined as

m2
q̃1,2

=
1

2

[

m2
LL + m2

RR ∓
√

(m2
LL − m2

RR)2 + 4m4
LR

]

;

sin2θf =
2m2

(f)LR

m2
f̃1

− m2
f̃2

, (3)

where m2
LR, m2

LL, m2
RR denote the (1, 2), (1, 1), (2, 2) entries of the mass matrix

((2)).
Now it is straightforward to find the effective 4-fermion ν−u−d−e vertex

induced by the sfermion exchange in the diagrams presented in fig. 2. The
corresponding effective Lagrangian, after a Fiertz rearrangement, takes the
form

Leff
SUSY (x) =

GF√
2

[

1

4

(

ηnj
(q)LR − 4ηnj

(l)LR

)

· U∗

ni ·
(

ν̄i(1 + γ5)e
c
j

)

(ū(1 + γ5)d)−

− 2ηnj
(l)LL · Uni ·

(

ν̄i(1 − γ5)e
c
j

)

(ū(1 + γ5)d) + (4)

+
1

2
ηnj

(q)RR · Uni

(

ν̄i γµ(1 + γ5)e
c
j

)

(ū γµ(1 − γ5)d) +

+
1

8
ηnj

(q)LR · U∗

ni ·
(

ν̄i σµν(1 + γ5)e
c
j

)

(ū σµν(1 + γ5)d)
]

.

The Rp/ MSSM parameters η and neutrino mixing matrix Uij are defined as
follows

ηnj
(q)LR =

∑

k

λ′

j1kλ
′

nk1

2
√

2GF

sin 2θd
(k)





1

m2
d̃1(k)

− 1

m2
d̃2(k)



 , (5)

ηnj
(q)RR =

∑

k

λ′

j1kλ
′

n1k

2
√

2GF





sin θd
(k)

m2
d̃1(k)

+
cos θd

(k)

m2
d̃2(k)



 , (6)

ηnj
(l)LR =

∑

k

λ′

k11λnjk

2
√

2GF

sin 2θe
(k)





1

m2
ẽ1(k)

− 1

m2
ẽ2(k)



 , (7)

ηnj
(l)LL =

∑

k

λ′

k11λnkj

2
√

2GF





cos θe
(k)

m2
ẽ1(k)

+
sin θe

(k)

m2
ẽ2(k)



 , (8)
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ν0
i =

∑

j

Uijνj . (9)

Here η(f)LR denotes the contribution vanishing in the absence of f̃L− f̃R - mix-

ing while η(f)LL and η(f)RR in this limit correspond to the f̃L and f̃R exchange
contribution in fig. 2. We use the notations d(k) = d, s, b and e(k) = e, µ, τ .
Due to the antisymmetry of the Yukawa coupling λnjk in nj it follows that
ηnn

(l)LR = 0. This is an essential difference between the slepton l̃L − l̃R and
the squark q̃L − q̃R contributions. The latter is not imposed to vanish at any
combination of indexes.

The matrix element of the SUSY accompanied neutrino exchange mech-
anism can then be calculated according to the the diagrams in fig. 2 with
the point-like 4-fermion vertex described by the effective Lagrangian eq. (4)
with the sfermion exchange parts in the top. The bottom parts of these dia-
grams is the standard model charged current (SMCC) interaction. Applying
the standard procedure (for details see [9]), one can get the matrix element
R0νββ(0+ → 0+) of the 0νββ decay for 0+ → 0+ transitions. For two outgoing
electrons in S-wave states it takes the form

R0νββ(0+ → 0+) = C0νf
2
A [a · ē(1 + γ5)e

c + b · ēγ0γ5e
c] , (10)

a =
(

4ηn1
(l)LR − ηn1

(q)LR

)

U∗

niUeiM(i)
1 (meR)−1 + (11)

+
(

ηn1
(q)RR − δne

)

UniUei
mνi

me
M(i)

2 ,

b = 4 ηn1
(l)LLUniUei

mνi

me
M(i)

3 . (12)

The term proportional to δne corresponds to the ordinary neutrino exchange
contribution with two standard model charged current vertices in fig. 1. The
normalization factor C0ν is defined as C0ν = (G2

F2me)/(8
√

2πR). We would
like to stress that the terms proportional to b in eq. (10) can, in principle, be
discriminated from the terms proportional to a (particularly from the ordinary
mass mechanism of 0νββ-decay) by measuring the angular correlation between
the two outgoing electrons.

The following nuclear matrix elements are involved in the calculation of
R0νββ in eq. (10)

M(i)
1 = α1

[

M(i)
T ′ +

1

3
M(i)

GT ′

]

, (13)

M(i)
2 = α2M(i)

F −M(i)
GT , M(i)

3 = α3M(i)
F . (14)
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They are defined by (summation over nucleons is suppressed)

M(i)
F = < 0+

f ||h+(rab, mνi
)τ+

a τ+
b ||0+

i >, (15)

M(i)
GT = < 0+

f ||h+(rab, mνi
)(~σa~σb)τ

+
a τ+

b ||0+
i >, (16)

M(i)
GT ′ = < 0+

f ||hR(rab, mνi
)(~σa~σb)τ

+
a τ+

b ||0+
i >, (17)

M(i)
T ′ = < 0+

f ||hT ′(rab, mνi
)
[

(~σar̂ab)(~σbr̂ab) −
1

3
(~σa~σb)

]

τ+
a τ+

b ||0+
i > .(18)

Neutrino potentials can be written in the integral form

h+(rab, mνi
) =

2

π
R
∫

∞

0
dq · q2 j0(qrab)f

2(q2)

ω(ω + Ā)
, (19)

hR(rab, mνi
) =

2

π

R2

mP

∫

∞

0
dq · q4 j0(qrab)f

2(q2)

ω(ω + Ā)
, (20)

hT ′(rab, mνi
) =

2

π

R2

mP

∫

∞

0
dq · q4 j0(qrab) − 3j1(qrab)

ω(ω + Ā)
f 2(q2). (21)

Here, ω =
√

q2 + m2
νi

; jk(qr) are spherical Bessel functions and R0 is the

nuclear radius, introduced to make the matrix elements dimensionless. The
following notations are used: rab = (−→r a −−→r b), rab = |rrrab|, r̂ab = rab/rab. The
above formulae have been written in the closure approximation which is well
motivated for the 0νββ decay [2]. Ā in eq. (19) is the average intermediate
state energy.

Note that the nuclear matrix element M(i)
T ′ has never been considered in

the literature before. We have calculated the nuclear matrix elements relevant
for our subsequent numerical analysis using the pn-QRPA model of [13]. We
take into account both short-range correlations and finite nucleon size effects.
The latter is described by introducing nucleon form factors in momentum
space. In the present case these are the SMCC form factors F CC

(V,A)(q
2) and the

isovector scalar and pseudoscalar current form factors F 3
P,S(q2). For all form

factors we take, as usual, a dipole parameterization: F a
i (q2)/F a

i (0) = f(q2) =
(1 + q2/m2

A)
−2

with mA = 0.85GeV. The q-dependent factor f(q2) is included
in the definition of the neutrino potentials in eqs. (19). The form factor
normalizations are F CC

V (A)(0) = fV (A) ≈ 1(1.261). F 3
S,P (0) can be calculated

within the conventional non-relativistic quark model or the bag model. We
take their numerical values from ref. [14] F 3

S(0) ≈ 0.48 F 3
P (0) ≈ 4.41. These

values correspond to the bag model calculations.
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The nucleon structure coefficients in (13) are defined as α1 = (F
(3)
P /(2fA),

α2 = (fV /fA)2, α3 = (fV /fA)(F
(3)
S /fA).

Now having the 0νββ matrix element completely specified the inverse half
life T1/2(0νββ) can be written as

T−1
1/2(0νββ) = |a|2G01 + |b|2h9G09 + Re(a∗b)h6G06, (22)

where h6 = meR/8, h9 = (meR)2/16, and phase space factors G0i are given in
ref. [2].

The formulae presented above describe the contribution of the diagrams in
fig. 2 for a general neutrino content (see eq. (9)). We now turn to a particular
case and assume that all neutrino mass eigenstates fall into two groups: light
neutrinos mνi

< 10MeV and heavy neutrinos mνi
> 10GeV. We denote them

as νi and Ni, respectively. There might be also a “sterile” neutrino νs with
respect to the SM gauge group. Assume further, that the light neutrinos
have non-negligible mixing with some heavy neutrinos Ni or probably with
the “sterile” neutrino νs. Than the neutrino composition (9) and the unitarity
relation for the mixing matrix Uij can be written as

ν0
i =

′
∑

j

Uijνj +
′′
∑

j

Uijνj + Uisνs, (23)

∑

j

U∗

ijUei =
′
∑

j

U∗

ijUei + ∆i, ∆i =
′′
∑

j

U∗

ijUei + Uisνs. (24)

Such a structure of the neutrino sector breaks contributions of each nuclear
matrix elements in eq. (10) into two pieces with a simple dependence on the
neutrino mass. As an example of this effect consider the first term in eq. (11)

∑

i

U∗

niUeiM(i)
1 =

′
∑

i

U∗

niUeiMν
1 +

′′
∑

i

U∗

niUei

M2
Ni

MN
1 . (25)

The ”sterile” neutrino does not contribute being a SM singlet. The matrix
elements are Mν

1 = M(i)
1 (mν = 0) and MN

1 = limM2

N
→∞

MNM(i)
1 (MN). They

do not depend on neutrino masses. Proceeding in a similar way with the other
matrix elements in eq. (10) and substituting the result in the half-life formula
eq. (22) we obtain a polynomial in mν and M−1

N . Assume light neutrinos ν to
be very light while heavy neutrinos N to be very heavy so that one can neglect
terms depending on these masses. Than, keeping only leading terms we retain

T−1
1/2(0νββ) = G01Mν

1 (meR)−1
(

4η̄(l) − η̄(q) + η(q)

)2
, (26)
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where eq. (25) and the property ηnn
(l)LR = 0 have been used. We denoted

η(q) = η11
(q)LR and introduced the effective parameters as

η̄(l,q) =
∑

n

∆nηn1
(l,q)LR (27)

For the η̄(l) summation starts from n = 2. The nuclear matrix element Mν
1 in

eq. (26) can be directly obtained from eq. (13) for M(i)
1 as explained after eq.

(25). This matrix element has never been calculated in the literature before.
Its value calculated in the pn-QRPA for the particular case of 76Ge analyzed
below is M(ν)

1 (76Ge) = 2.1. 1

Now we are ready to discuss constraints on the parameters in eq. (26)
imposed by the current experimental lower half-life limit. We use the result
from the Heidelberg-Moscow 76Ge experiment T 0νββ

1/2 (76Ge, 0+ → 0+) > 7.4 ×
1024 years 90% c.l.

Disregarding a situation with unnatural fine-tuning between the differ-
ent terms in eq. (26) one can extract individual limits, numerically η(q) ≤
2.9 × 10−8, η̄(l) ≤ 7.2 × 10−9. These constraints lead, in principle, to a multi-
dimensional exclusion curve. A simplified picture can be obtained under some
reasonable assumptions. Assume all the MSSM mass parameters in eqs. (5)
and (2), (3) to be approximately equal to the ”effective” SUSY breaking scale
ΛSUSY . Than we get a simplified set of constraints

λ′

11iλ
′

1i1 ≤ ǫ′i

(

ΛSUSY

100GeV

)3

, ∆nλ
′

311λn13 ≤ ǫ
(

ΛSUSY

100GeV

)3

. (28)

In the last equation we kept only the term corresponding to τ̃ exchange. For
the known values of SM quark and lepton masses in the following we use
md1

= md = 7.5MeV, md2
= ms = 150MeV, md3

= mb = 4.5GeV and
mτ = 1.8GeV. These masses are present in eqs. (2), (3). Then, ǫ′1,2,3 =
{6.4 × 10−5, 3.2 × 10−6, 1.1 × 10−7} and ǫ = 6.5 × 10−8.

To obtain information on the Rp/ Yukawa couplings themselves one may use
some reasonable values for ΛSUSY . If one takes, following ref. [10], the value
ΛSUSY = 100 GeV lying in the region of the current experimental lower bound
for the SUSY particles, one gets λ′

113λ
′

131 ≤ 1.1 × 10−7, λ′

112λ
′

121 ≤ 3.2 × 10−6,
λ′2

111 ≤ 6.4× 10−5 and ∆nλ′λ ≤ 6.5× 10−8. The former two limits correspond
to those in ref. [10], but are somewhat weaker than quoted by Babu and
Mohapatra. This difference can be partly traced back to our numerical value

1Recall that this numerical value corresponds to our dimensionless convention.
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of the matrix element, which turns out to be smaller than anticipated. The
limit on λ′2

111 can be compared with the corresponding limit obtained from
the gluino exchange diagram in ref. [9]. The latter being λ′2

111 ≤ 1.52 · 10−7 is
much more stringent then the one derived here. More conservative estimations
can be derived from eq. (28) implying ΛSUSY ∼ 1TeV motivated by the SUSY
naturalness arguments. Then, λ′

113λ
′

131 ≤ 1.1 × 10−4, λ′

112λ
′

121 ≤ 3.2 × 10−3,
λ′2

111 ≤ 6.4 × 10−2 and ∆nλ′λ ≤ 6.5 × 10−4.
Neglecting mixing between the light SM non-singlet neutrinos and the non-

standard sector discussed above, one arrives at the case considered by Babu
and Mohapatra [10]. In this case ∆n = 0 and in turn η̄(l, q) = 0. Then the
squark exchange diagram in fig. 2(a) is the only contribution to eq. (26).
Introducing mixing one can obtain new information about λ type interactions.
In this case, however, this information is accessible only in a form of some
effective value of the Rp/ Yukawa couplings ∆λ′λ. The upper limit for the
couplings itself implies an extra uncertainty due to the unknown mixing factor
∆.

The new contributions analysed in this letter together with the previously
discussed in the literature [6]-[9] complete the tree-level mechanisms of 0νββ
decay within the R-parity violating Minimal Supersymmetric Standard Model
(Rp/ MSSM). A detailed presentation of the analysis will be given elsewhere.

In conclusion we would like to stress that the current experimental limit
on 0νββ decay half life allows one to establish rather stringent limits on
Rp/ violating SUSY interactions. This might be an additional valuable mo-
tivation for present and forthcoming 0νββ decay experiments.
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Figure Captions

Fig.1 Feynman graphs for the conventional mechanism of 0νββ decay by ex-
change of a massive Majorana neutrino.

Fig.2 Feynman graphs for the supersymmetry accompanied Majorana neutrino
exchange mechanism of the 0νββ decay corresponding to (a) squarks and
(b) sleptons contributions.
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