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Abstract

We consider contributions of R-parity conserving softly broken su-
persymmetry (SUSY) to neutrinoless double beta (0νββ) decay via the
(B-L)-violating sneutrino mass term. The latter is a generic ingredient
of any weak-scale SUSY model with a Majorana neutrino mass. The
new R-parity conserving SUSY contributions to 0νββ are realized at
the level of box diagrams. We derive the effective Lagrangian describ-
ing the SUSY-box mechanism of 0νββ-decay and the corresponding
nuclear matrix elements. The 1-loop sneutrino contribution to the Ma-
jorana neutrino mass is also derived.

Given the data on the 0νββ-decay half-life of 76Ge and the neu-
trino mass we obtain constraints on the (B-L)-violating sneutrino mass.
These constraints leave room for accelerator searches for certain mani-
festations of the 2nd and 3rd generation (B-L)-violating sneutrino mass
term, but are most probably too tight for first generation (B-L)-violating
sneutrino masses to be searched for directly.
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1 Introduction

Neutrinoless double beta (0νββ) decay [1, 2] is a unique example of a nuclear
process which allows one to probe for lepton number violation. Given the fact
that the standard model conserves L at the classical level, 0νββ decay can
proceed only via non-SM interactions. Therefore - taking into account the
stringent experimental limits [3] - 0νββ decay is extremely sensitive to physics
beyond the standard model.

The simplest source of lepton number violation directly leading to 0νββ
decay is a finite Majorana neutrino rest mass. It violates lepton number by two
units ∆L = 2 precisely what is necessary for 0νββ-decay. The corresponding
contribution is described by the tree-level diagram of the 4th order in the
weak coupling constant with one Majorana neutrino propagator as shown in
Fig.1(a).

Supersymmetric extensions of the SM bring in new sources of lepton num-
ber violation and, as a result, new mechanisms of 0νββ-decay. Even with the
minimal matter and Higgs field content there are renormalizable L and B vi-
olating terms in the superpotential and in the sector of soft-supersymmetry
breaking interactions which are not forbidden by gauge symmetry. These terms
violate not only L and B but also R-parity defined as Rp = (−1)3B+L+2S with
S being a particle spin. Models containing such interaction terms are usually
referred to as SUSY models with explicit RP -breaking [4]. (RP can also be bro-
ken spontaneously via a non-zero vacuum expectation value of the sneutrino
field < ν̃ > 6= 0 [5].)

Formerly it was widely believed that supersymmetry can contribute to
0νββ decay only if RP is broken [6]-[10]. The corresponding mechanisms have
been comprehensively studied in the last few years [7]-[11]. In particular, it
was shown that the current experimental limits from non-observation of 0νββ-
decay sets upper bounds on certain Rp/ Yukawa coupling constants which are
more stringent [7, 8] than previously known from various accelerator and non-
accelerator experiments. Moreover, they turned out to be more stringent than
those from some forthcoming accelerator experiments. This conclusion has put
0νββ-decay forward as an interesting probe of supersymmetry.

Although there are no compelling theoretical arguments for R-parity con-
servation, there exist a number of well-known phenomenological drawbacks for
supersymmetric models in which RP is violated. Maybe the most serious one
is the instability of the lightest SUSY particle. As a result, the supersym-
metric solution for the dark matter problem is lost unless Rp/ Yukawa coupling
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constants λ become unnaturally small, typically λ ≤ 10−16.
In view of this and other problems for Rp/ SUSY there arises a natural ques-

tion whether RP -violation is an inevitable condition for SUSY to contribute
to 0νββ-decay. The present paper addresses this question. We will demon-
strate that there is a non-trivial R-parity conserving SUSY contribution to
0νββ-decay. In Fig.1(b) we present an example of a diagram associated with
the lowest order contribution to 0νββ-decay within the R-parity conserving
minimal supersymmetric standard model (MSSM) with a Majorana neutrino
mass mν

M . This particular example gives an explicit answer to the above ques-
tion: R-parity violation is not a necessary condition for a SUSY contribution
to 0νββ-decay.

It is also obvious that this SUSY contribution is strongly suppressed com-
pared to the non-SUSY diagram in Fig.1(a). This is because it is of higher
order in perturbation theory, contains heavy sparticles in intermediate states
and receives a typical suppression due to the loop integration. Moreover, this
diagram is proportional to the very small factor mν

M/pF where pF ≈ 80MeV
is the nucleon Fermi momentum. The latter is also true for the simplest non-
SUSY diagram in Fig. 1(a). The reason is common for both diagrams. In fact,
both the SM and the MSSM interactions conserve lepton number L. Therefore,
the only source for ∆L = 2 violation, necessary for 0νββ-decay to proceed,
is the Majorana neutrino mass term. If mν

M = 0 lepton number would be a
conserved quantity and the 0νββ-decay amplitude should vanish, R0νββ = 0.
Such a behavior corresponds to R0νββ ∼ mν

M/pF in the limit of small mν
M .

Thus, the diagram in Fig.1(b), given its very small contribution to 0νββ-
decay, provides just a principal demonstration of the fact that 0νββ-decay
can be triggered by R-parity conserving supersymmetry. No practical conse-
quences can be obtained from this new diagram in the sense of establishing
new constraints either on SUSY parameters or on mν

M from non-observation
of 0νββ-decay.

However, we will show that there are other R-parity conserving SUSY con-
tributions via the lepton number violating sneutrino mass term. As was shown
in [12] the Majorana neutrino mass, the (B-L)-violating sneutrino mass and
the 0νββ-decay amplitude are generically connected to each other. Namely,
non-vanishing of one of these three quantities implies non-zero values of the re-
maining two. Thus, the 0νββ-amplitude should always contain a contribution
corresponding to the (B-L)-violating sneutrino mass term.

We will study this contribution and extract constraints on the (B-L)-
violating sneutrino mass term from the current experimental data on 0νββ-
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decay of 76Ge.
This paper is organized as follows. In section 2 we give a short account

on the structure of neutrino-sneutrino mass terms and the theorem which es-
tablishes the above mentioned relations between the neutrino and sneutrino
masses and 0νββ-decay. Sect.3 is devoted to some general properties of pos-
sible SUSY contributions to 0νββ-decay. In this section we specify the box
diagrams describing the RP -conserving SUSY contribution. Our approach to
the derivation of the corresponding 0νββ-transition operators and nuclear ma-
trix elements is outlined in sect. 4. Sect. 5 deals with 0νββ-decay constraints
on the (B-L)-violating sneutrino mass. In section 6 we calculate the sneu-
trino contribution to the Majorana neutrino mass and derive then limits from
experimental data on neutrino masses. We then close with a short summary.

2 Structure of the Neutrino-Sneutrino Mass

Terms

As shown in [12], the self-consistent form of the neutrino and sneutrino mass
terms is

Lνν̃mass = −1

2
(mν

Mν
c
LνL + h.c.)− 1

2
(m̃2

M ν̃Lν̃L + h.c.)− m̃2
Dν̃

∗
Lν̃L. (1)

where ν = νc is a Majorana field. The first two terms violate the global
(B-L) symmetry while the last one respects it. The first term is a Majorana
mass term of the neutrino. We call the second term a ”Majorana”-like mass,
while the third one is referred to as a ”Dirac”-like sneutrino mass term. This
reflects an analogy with Majorana and Dirac mass terms for neutrinos. In the
presence of the right handed neutrino field νR the Dirac neutrino mass term
mν
D(ν̄LνR + ν̄RνL) could also be included in Eq. (1) but it is not required

by the self-consistency arguments. Note that m̃2
M is not a positively defined

parameter.
Eq. (1) is a generic consequence of weak-scale softly broken supersymmetry

and does not depend on the specific mechanism of mass generation in the low-
energy theory. For the sake of simplicity and without any loss of generality we
ignore possible neutrino mixing.

The low-energy theorem proven in ref. [12] relates the following three (B-
L)-violating quantities: the neutrino Majorana mass mν

M , the ”Majorana”-like
sneutrino mass m̃M and the amplitude of 0νββ-decay R0νββ . Here we shortly
describe the proof of this theorem.
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It is relatively easy to see that if at least one of the quantities is non-
zero the two others are generated in higher orders of perturbation theory as
demonstrated in Fig. 2, where only dominant diagrams are shown. Inter-
nal lines in these diagrams are neutralinos χi, gluinos g̃, charginos χ±, selec-
tron ẽ, u-squark ũ and sneutrino ν̃. The latter is to be identified with the
(B-L)-violating “Majorana” propagator proportional to m̃2

M . The sneutrino
“Majorana” propagator was explicitly derived in ref. [12] and will be given
below.

The various diagrams lead to relations among the three (B-L)-violating
observables, which we write down schematically

zi =
∑

i6=j

aij · zj +Ai. (2)

Here, zi can stand for zi = mν
M , m̃2

M , R0νββ . The coefficients aij correspond to
contributions of the diagrams in Fig.2(a)-(f) so that i, j = a, b, c, d, e, f . Terms
Ai represent any other possible contributions. The explicit form of aij and Ai
is not essential in the following. Important is only the presence of a correlation
between mν

M , m̃
2
M , R0νββ, expressed by Eq. (2).

Now we are going to prove that if zi1 = 0 then zi2 = zi3 = 0 (the same
will be true for any permutation). On the basis of Fig. 2 and Eqs. (2) one
can expect such properties of the set of observables zi. Indeed zi1 = 0 in the
left-hand side of Eq. (2) strongly disfavors zj2 6= 0 and zj3 6= 0, because it
requires either all the three terms in the right-hand sides to vanish or their
net cancelation. The latter is ”unnatural”. Even if such a cancelation would
be done by hand, using (unnatural) fine-tuning of certain parameters, in some
specific order of perturbation theory, it would be spoiled again in higher orders
of perturbation theory. The cancelation of all terms in the right-hand side of
Eqs. (2) in all orders of perturbation theory could only be guaranteed by a
special unbroken symmetry. Let us envisage this possibility in details.

The effective Lagrangian of a generic model of weak scale softly broken
supersymmetry contains after electro-weak symmetry breaking the following
terms [13]

L = −
√

2gǫi · νLχiν̃L − gǫ−i · eLχ−
i ν̃L − gǫ+i · νLχ+

i ẽL + (3)

+
g√
2
(νLγ

µeL + uLγ
µdL)W

+
µ + g · χ̄iγµ(OL

ijPL +OR
ijPR)χ+

j W
−
µ

+ ... + h.c.

Dots denote other terms which are not essential for our further considerations.
Here, ν̃L and ẽL represent scalar superpartners of the left-handed neutrino νL
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and electron eL fields. The chargino χ±
i and neutralino χi are superpositions

of the gaugino and the higgsino fields. The contents of these superpositions
depend on the model. Note that the neutralino is a Majorana field χci = χi.
The explicit form of the coefficients ǫi, ǫ

±
i and OL,R

ij is also unessential. For the
case of the MSSM one can find them, for instance in [13]. Eq. (3) is a general
consequence of the underlying weak scale softly broken supersymmetry and
the spontaneously broken electro-weak gauge symmetry.

The Lagrangian (3) does not posses any continuous symmetry having non-
trivial (B-L) transformation properties. Recall, that U(1)B−L is assumed to
be broken since we admit (B-L)-violating mass terms in Eq. (1). However,
there might be an appropriate unbroken discrete symmetry. Let us specify this
discrete symmetry group by the following field transformations

ν → ηνν, ν̃ → ην̃ ν̃, eL → ηeeL, ẽL → ηẽẽL, (4)

W+ → η
W
W+, χi → ηχi

χi, χ+ → ηχ+χ+, qL → ηqqL.

Here ηi are phase factors. Since the Lagrangian (3) is assumed to be invariant
under these transformations one obtains the following relations

η∗νην̃ηχi
= 1, ηeηχ+η∗ν̃ = 1, ... (5)

ηeηW
η∗ν = 1, η∗W ηχ+η∗χi

= 1, ηdηW η
∗
u = 1 ....

Dots denote other relations which are not essential here. The complete set
of these equations defines the admissible discrete symmetry group of the La-
grangian in Eq. (3).

Let us find the transformation property of the operator structure respon-
sible for 0νββ-decay under this group. At the quark level 0νββ-decay implies
the transition dd→ uuee, described by the effective operator

O0νββ = αi · ūΓ(1)
i d · ūΓ(1)

i d · ēΓ(2)
i ec, (6)

where αi are numerical constants, Γ
(k)
i are certain combinations of Dirac γ

matrices. The 0νββ-decay amplitude R0νββ is related to the matrix element
of this operator

R0νββ ∼< 2e−(A,Z + 2)|O0νββ|(A,Z) > (7)

where (A,Z) is a nucleus with the atomic weight A and the total charge Z.
The operator in Eq. (6) transforms under the group (4) as follows

O0νββ → η2
0νββO0νββ (8)
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with

η0νββ = ηdη
∗
uη

∗
e (9)

Solving Eqs. (5), (9), one finds

η2
ν = η2

ν̃ = (η∗0νββ)
2. (10)

This relation proves the statements 1,2. To see this we note that the observable
quantity zi = (mν

M , m̃
2
M , R0νββ) is forbidden by this symmetry if the corre-

sponding discrete group factor is non-trivial, i.e. η2
i 6= 1. Contrary, if η2

i = 1,
this quantity is not protected by the symmetry and appears in higher orders of
perturbation theory, even if it is not included at the tree-level. Relation (10)
claims that if one of the zi is forbidden then the two others are also forbidden
and, vice versa, if one of them is not forbidden they are all not forbidden.

This completes the proof of the theorem relating the neutrino Majorana
mass mν

M , the ”Majorana”-like sneutrino mass m̃M and the amplitude of 0νββ-
decay R0νββ . The proven theorem can be considered as a supersymmetric
generalization of the well-known theorem [14] relating only neutrino Majorana
mass and the neutrinoless double beta decay amplitude.

Let us show that the ”Dirac”-like (B-L) conserving sneutrino mass m̃D

should also be present in the theory to ensure the stability of the vacuum
state. Towards this end consider the last two terms of Eq. (1) which we
denote as Lν̃mass and use the real field representation for the complex scalar
sneutrino field

ν̃ = (ν̃1 + iν̃2)/
√

2, (11)

where ν̃1,2 are real fields. Then

Lν̃mass = −1

2
(m̃2

M ν̃Lν̃L + h.c.)− m̃2
Dν̃

∗
Lν̃L = −1

2
m̃2

1ν̃
2
1 −

1

2
m̃2

2ν̃
2
2 (12)

where

m̃2
1,2 = m̃2

D ± |m̃2
M | (13)

Assume the vacuum state is stable. Then m̃2
1,2 ≥ 0, i.e. m̃2

D ≥ |m̃2
M |, otherwise

the vacuum is unstable and subsequent spontaneous symmetry breaking occurs
via non-zero vacuum expectation values of the sneutrino fields < ν̃i > 6= 0. The
broken symmetry in this case is the R-parity. It is a discrete symmetry defined
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as Rp = (−1)3B+L+2S , where S, B and L are the spin, the baryon and the
lepton quantum number.

Therefore, as indicated at the beginning of this section the self-consistent
structure of the mass terms of the neutrino-sneutrino sector is given by Eq. (1).
The mass parameter m̃M gives a measure of sneutrino-antisneutrino mixing
(ν̃ − ν̃∗). This (B-L)-violating effect is an evident manifestation of the 2nd
term in Eq. (1). On the other hand, a finite m̃M gives rise to splitting the
complex scalar field ν̃ = (ν̃1 + iν̃2)/

√
2 into two real mass eigenfields ν̃1,2 with

the masses m̃2
1,2 = m̃2

D ± |m̃2
M |. According to the above definition, ν̃1 is the

CP-even state while ν̃2 is the CP-odd one.
Let us write down the explicit form of the above mentioned (B-L)-violating

“Majorana” propagator ∆M
ν̃ for the sneutrino [12] which is necessary for our

subsequent considerations. It can be derived by the use of the real field rep-
resentation as in Eq. (12). For comparison we also give the (B-L)-conserving
“Dirac” ∆D

ν̃ sneutrino propagator,

∆D
ν̃ (x− y) = i < 0|T (ν̃L(x)ν̃

†
L(y)|0 >=

1

2
(∆m̃1(x− y) + ∆m̃2(x− y)), (14)

∆M
ν̃ (x− y) = i < 0|T (ν̃L(x)ν̃L(y)|0 >==

1

2
(∆m̃1(x− y)−∆m̃2(x− y)), (15)

where

∆m̃i
(x) =

∫ d4k

(2π)4

e−ikx

m̃2
i − k2 − iǫ (16)

is the ordinary propagator for a scalar particle with mass m̃i. Using the defi-
nition of m̃1,2 as in Eq. (12) one finds

∆D
ν̃ (x) =

∫ d4k

(2π)4

m̃2
D − k2

(m̃2
1 − k2 − iǫ)(m̃2

2 − k2 − iǫ)e
−ikx, (17)

∆M
ν̃ (x) = −m̃2

M

∫ d4k

(2π)4

e−ikx

(m̃2
1 − k2 − iǫ)(m̃2

2 − k2 − iǫ) . (18)

It is seen that in absence of the (B-L)-violating sneutrino “Majorana”-like
mass term m̃2

M = 0 the (B-L)-violating propagator ∆M
ν̃ vanishes while the

(B-L)-conserving one ∆D
ν̃ becomes the ordinary propagator of a scalar particle

with mass m̃1 = m̃2 = m̃D.
Majorana neutrino fields can propagate in a virtual state conserving the

(B-L) quantum number as well as violating it. In the Majorana representation
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of the neutrino field

ν = PLνL + PR(νL)
c (19)

where νc = ν, the corresponding (B-L)-conserving (SD) and (B-L)-violating
(SM) propagators can be written as

SD(x− y) = i < 0|T (νL(x)ν̄L(y)|0 >= iPL < 0|T (ν(x)ν̄(y)|0 > PR =(20)

=
∫ d4k

(2π)4

γµk
µ

m2
ν − k2 − iǫe

−ik(x−y),

SM(x− y) = i < 0|T (νL(x)νcL(y)|0 >= PL < 0|T (ν(x)ν̄(y)|0 > PL =(21)

= mν

∫

d4k

(2π)4

1

m2
ν − k2 − iǫe

−ik(x−y),

where mν ≡ mν
M for simplicity. Therefore, the effect of (B-L)-violation orig-

inating from the neutrino propagator is proportional to the Majorana neu-
trino mass while a (B-L)-conserving contribution to 0νββ decay via neutrino
propagation in the Dirac mode does essentially not depend on the neutrino
mass and leads to a contribution proportional to the mean neutrino momen-
tum in a nucleus. The latter is typically of the order of the Fermi momentum
∼ pF ≈ 80MeV. As a result such a contribution, if it exists, is greatly enhanced
compared to the Majorana mass contribution.

3 MSSM contribution to 0νββ-decay. General

properties and Effective Lagrangian

In this section we are considering the general properties of the RP -conserving
MSSM contribution to 0νββ-decay and derive the corresponding effective La-
grangian in terms of color-singlet quark charged currents.

Within our supersymmetric framework there are two sources of lepton
number violation, the Majorana neutrino mass, mν

M , and the (square of the)
“Majorana”-like sneutrino mass, m̃2

M . Both of them violate - by construction
- lepton number by two units. 0νββ decay also violates L by two units. The
0νββ amplitude R0νββ will therefore be proportional

R0νββ ∼ mν
MO(1) + m̃2

MO(2), (22)

with O(i) representing some matrix elements. Contributions proportional to
mν
M can be classified by O(1) = O(1)

(SM) +O(1)
(SUSY ), where the first part stands

9



symbolically for the usual mass mechanism diagram, see Fig. 1(a), while the
second part summarizes all kinds of diagrams involving virtual SUSY particles.
An example of this type of contribution was given in the introduction, see Fig.
1(b). Clearly, all diagrams of 0νββ decay involving SUSY particles must have
at least 6 basic vertices. They are thus of higher order compared to Fig. 1(a)

and can be safely neglected: O(1) = O(1)
(SM) +O(1)

(SUSY )
∼= O(1)

(SM).
Let us consider R0νββ in more details. At the quark level neutrinoless

double beta decay is induced by the transition of two d quarks into two u
quarks and two electrons. This process is schematically represented by the
diagram in Fig. 3(a) encoding all possible contributions to 0νββ-decay. In
the RP conserving supersymmetric model it is useful to decompose the basic
diagram Fig. 3(a) as shown in Fig. 3(b-g).

Given that the low-energy theory contains a light neutrino there are always
contributions involving a long-distance interaction component associated with
the light neutrino exchange. Let us use this fact for a decomposition of the
quark-lepton 0νββ-effective vertex in Fig. 3(a) into different parts explicitly
showing the presence of the neutrino line, Fig. 3(b-d). It is also instructive
to isolate the SUSY contributions in the form of effective vertices induced by
heavy SUSY particles exchange. This decomposition is indicated by the small
black spots corresponding to the short-distance, approximately point-like, ef-
fective SUSY induced interactions, Fig. 3(c-g). The first diagram, Fig. 3(b),
corresponds to the conventional standard model Majorana neutrino exchange
contribution mentioned above. The crossed neutrino line indicates the lepton
number violating Majorana neutrino propagator, SM . Diagrams Fig. 3(c,d)
correspond to the neutrino accompanied SUSY contributions. Here, neutrino
lines are uncrossed and correspond to lepton number conserving neutrino prop-
agators, SD. (As noted above we neglect SUSY diagrams with lepton number
violating propagators proportional to the small neutrino mass mν

M .) The last
three diagrams represent the purely supersymmetric contribution and are of
short-ranged nature.

This decomposition allows one to apply, if necessary, a Fierz rearrangement
to the approximately point-like black-spot SUSY vertices in Fig. 3 and rep-
resent them in the form of a product of color-singlet quark charged currents
and a leptonic part. Such a representation is crucial for the derivation of the
0νββ-transition operators in the non-relativistic impulse approximation and
for the subsequent nuclear structure calculations discussed in the sect. 4.

Assuming the Fierz rearrangement applied to the point-like SUSY vertices
one can write down the general form of the effective Lagrangian reproducing
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the decomposition in Fig. 3 within 4th order of perturbation theory. It can be
written in the form:

L0νββ = LWf̄f +
λ

(1)
i

mn1
SUSY

ji · ēΓi(1)νcL + +
λ

(2)
i

mn2
SUSY

W−
µ · ēΓµi(2)νcL (23)

+
λ

(3)
i

mn3
SUSY

W−
µ W

−
ν · ēΓµνi(3)ec +

λ
(4)
i

mn4
SUSY

jµi W
−
µ · ēΓi(4)ec

+
λ

(5)
ij

mn5
SUSY

jijj · ēΓij(5)ec,

where the SM term LWf̄f is also introduced (see Eq. (68) in Appendix A).
Color-singlet local diquark operators are defined as

ji = ūαOidα (24)

with α being a color index. The objects Γi(k) and Oi are constructed of Dirac
gamma matrices as well as derivatives.

Effective couplings λ(k) are dimensionless constants. Different terms are
scaled out by the characteristic SUSY breaking mass scale mSUSY with an
appropriate degree ni to accommodate correct physical dimension of the cor-
responding term. As seen from the leptonic part of the effective Lagrangian
(23), the first term conserves lepton number (∆L = 0) while the remaining
five terms violate it by two units (∆L = 2).

In the effective Lagrangian (23) we neglected possible L-conserving terms
with the lepton operator structure ∼ ēΓiνL. Their contributions to the 0νββ-
amplitude are strongly suppressed compared to the contributions of the similar
L-violating terms ∼ ēΓiν

c
L. To see this fact let us have a closer look at the

corresponding leading order diagrams in Fig. 3(c,d). The bottom parts of
these diagrams are the SM charged current (SMCC) interactions of the form
(ūγµPLd)(ēγ

µPLνn) ·Uen, while the top parts correspond to the effective SUSY
vertices. If they are given by the 2nd and 3rd terms of the effective Lagrangian
Eq. (23), the resulting leptonic tensor LSUSY can then be written schematically
as

L∆L=2 ∼ ēγµPL < 0|T (νkν̄n)|0 > PRΓec · UekU∗
en ∼ ēγµγνPRΓec · qν/q2, (25)

where q is the neutrino momentum. In the right hand side neutrino masses
mνn

M are neglected since mνn

M << 〈q〉, where 〈q〉 ∼ pF ≈ 100MeV is the average
momentum of a neutrino propagating in a nucleus (pF is the nucleon Fermi
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momentum). The mixing matrix elements disappear on the right hand side
due to the unitarity relation UekU

∗
enδkn = 1. This should be compared with the

contribution of the possible L-conserving terms ∼ ēΓiνL which we neglected
in the effective Lagrangian in (23). The leptonic tensor in this case takes the
form

L∆L=0 ∼ ēΓiPL < 0|T (νkν̄n)|0 > PLγρe
c · UekUen ∼ ēΓiγρPRe

c · 〈mν〉/q2, (26)

where 〈mν〉 = mνn

MU
2
en. The same structure appears in the standard neutrino

mass mechanism with the SMCC at both ends of the virtual neutrino line.
Comparing Eqs. (25) and (26) one can see that the SUSY contribution

corresponding to the ∆L = 2 operators receives from the leptonic sector a
huge enhancement compared to the contribution of the ∆L = 0 operators. In
fact

L∆L=2/L∆L=0 ∼ pF/〈mν〉 ∼ 108 · (1eV/〈mν〉) (27)

For this reason we neglected the SUSY induced ∆L = 0 operators in the
effective Lagrangian (23).

Now let us turn from the general consideration to the concrete case of the
SUSY contribution to 0νββ-decay within the MSSM. The following Lagrangian
terms are relevant to 0νββ-quark transitions in Fig. 3(a)

Lint = LWf̄f + LWf̃f̃ + Lχ+ff̃ + Lχff̃ + Lg̃q̃q + LWχ+χ. (28)

The Lagrangian terms in the r.h.s. are explicitly given in Appendix A.
Starting from this Lagrangian one can find 14 dominant diagrams propor-

tional to m̃2
M which contribute to the 0νββ-quark transition in Fig.3(a). They

are listed in Fig.4. (Note, that in addition to the graphs shown, there exist
several graphs corresponding simply to an exchange of two of the external mo-
menta and are not shown for brevity.) As seen, all diagrams in Fig.4 fall into 5
classes represented by the last 5 diagrams of the decomposition in Fig.3. The
supersymmetric part of these diagrams, as discussed above, can be parameter-
ized by the effective Lagrangian L0νββ given in the general form of Eq. (23).
One can reconstruct a specific form of this Lagrangian in the MSSM comparing
diagrams in Fig.3 and Fig.4 and separating the basic SUSY vertices denoted
in Fig.3 by the black spots representing five different terms of the effective
Lagrangian L0νββ in Eq. (23). The next step of the derivation is based on
the standard approximate procedure relying on the fact that all intermediate
particles involved in evaluation of the effective SUSY vertices are heavy SUSY
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particles with typical masses of order mSUSY . As a result these vertices can
approximately be represented in the form of local operators. The local form of
the SUSY operators allows one to apply the Fierz rearrangement and to collect
the quark fields in the color-singlet quark charged currents. Straightforward
realization of this strategy leads to an effective Lagrangian with the following
leading order operators violating the lepton number L by 2 units

L∆L=2 = −(η
(1)
WW + η

(2)
WW + η

(3)
WW )

W−
µ W

− µ

mSUSY
· ē(1 + γ5)e

c + (29)

+ (ηg̃ũ + ηg̃d̃)
jµ

AV
jµAV

m5
SUSY

· ē(1 + γ5)e
c.

The color-singlet quark charged currents are defined as usual

jµ
AV

= cos θc ūγ
µ(1− γ5)d. (30)

Note that since we take only the leading order contributions into account in
Eq. (29) not all possible terms of the decomposition Eq. (23) are retained in
Eq. (29). Naively one might have expected that the diagrams in Fig. 4 (and
the corresponding terms in Eq. (23)) are ordered with respect to decreasing
importance, since a larger number of heavy sparticles in the loops results in
larger (loop) suppression factors. However, the explicit calculation shows that
this is not the case. Terms corresponding in structure to the 2nd, 3rd and
the 5th terms in Eq. (23) are suppressed by the helicity structure of the basic
MSSM interactions and/or typical suppression factors of orderme/mSUSY from
left-right sfermion mixing or higgsino-like interactions.

Retaining only leading contributions to the operator structures in Eq. (29),
the dimensionless lepton number violating parameters take the form

ηg̃d̃ =
g2
sg

4

72

( m̃M

mSUSY

)2∑

i,j

Ui1Vi1Uj1Vj1
( mχ±j

mSUSY

)( mχ±
i

mSUSY

)

× (31)

×
( mg̃

mSUSY

)

G(mg̃, mχ±j
, mχ±i

),

ηg̃ũ =
g2
sg

4

72

( m̃M

mSUSY

)2∑

i,j

V 2
i1V

2
j1

( mg̃

mSUSY

)

F(mg̃, mχ±
j
, mχ±

i
), (32)

η
(1)
WW =

g4

4

( m̃M

mSUSY

)2 ∑

i,j,k

Vk1Vj1 × (33)
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×
[

OLikOLij
( mχi

mSUSY

)

J (mχi
, mχ±j

, mχ±
k
)

+ ORikOLij
( mχ±

k

mSUSY

)

J (mχi
, mχ±

j
, mχ±

k
)

+ ORikORij
( mχ±j

mSUSY

)( mχ±
k

mSUSY

)( mχi

mSUSY

)

I(mχi
, mχ±

j
, mχ±

k
)
]

,

η
(2)
WW =

g4

4

( m̃M

mSUSY

)2∑

i,j

J (mẽ, mχi
, mχ±

j
)ǫLi

(e)Vj1 × (34)

×
[

ORij
( mχ±j

mSUSY

)

+OLij
( mχi

mSUSY

)

]

,

η
(3)
WW =

g4

4

( m̃M

mSUSY

)2∑

i

J (mχi
, mẽ, mẽ)ǫ

2
Li

(e)
( mχi

mSUSY

)

(35)

The dimensionless loop factors F(mi),G(mi),J (mi) and I(mi) are given in
Appendix B. They depend on the sparticle masses mi in the corresponding
loop. Recall that g and gs are the SU(2)L and SU(3)c coupling constants.
Further definitions on couplings and mixing parameters can be found in Ap-
pendix A.

The next step of the calculation deals with reformulating the problem in
terms of nucleon degrees of freedom instead of quark ones. This is relevant for
the nuclear structure part of the calculations.

4 From quark to nuclear level

So far the discussion has focussed on particle physics aspects, deriving the low-
energy effective Lagrangian in Eq. (29) formulated in terms of quark fields.
However our goal is the calculation of the amplitudeR0νββ of 0νββ-decay which
is a nuclear process proceeding not at the level of quark degrees of freedom
but at the level of nucleon ones. Formally one can write down

R0νββ = < (A,Z + 2), 2e−|S − 1|(A,Z) >= (36)

= < (A,Z + 2), 2e−|Texp[i
∫

d4xL0νββ(x)]|(A,Z) >

where the effective Lagrangian L0νββ = LWf̄f + L∆L=2 is given by Eqs.
(68), (29). The nuclear structure is involved via the initial (A,Z) and the final
(A, Z+2) nuclear states having the same atomic weight A, but different electric
charges Z and Z+2. The standard framework for the calculation of this nuclear
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matrix element is the non-relativistic impulse approximation(NRIA). It implies
the substitution of the quark current jµAV in the effective Lagrangian L0νββ

in Eq. (36) by the non-relativistic nucleon current

jµAV

NRIA−→ Jµ.

The latter is an incoherent sum over individual nucleon currents of a nucleus
and is given by the formula [15]

Jµ(x) =
∑

i

τ
(i)
+

[

(fV − fACi)gµ0 − (fAσ
k
i + fVD

k
i )g

µk
] m3

A

8π
e−mA|x−ri|,(37)

Here fV ≈ 1, fA ≈ 1.261, gµν is the metric tensor, τ
(i)
+ is the isospin raising

operator, ri is the position of the ith nucleon, the superscript k stands for the
spatial component. Ci and Di are the well-known scalar and the vector nuclear
recoil terms given by [2]

Ci =
1

2mP

[

(pi + p′
i) · σσσi −

fP
fA

(Ei − E ′
i) qi · σσσi

]

(38)

Di =
1

2mP

[

(pi + p′
i) + i(1− 2mP

fW
fV

)qi × σσσi
]

, (39)

Here (pi, Ei) and (p′
i, E

′
i) are initial and final 3-momentum and energy of

the ith nucleon and the 3-momentum transfer is qi = pi − p′
i. The nucleon

couplings obey the relations

fW/fV = −(µp − µn)/(2mP ) ≈ 3.7/(2mP ), fP/fA = 2mP/m
2
π, (40)

where mπ is the pion mass and µp(n) is the proton (neutron) magnetic moment.
Since we are interested in the dominant contributions only, recoil terms

will be neglected in the rest of this paper and have been given above for
completeness.

The exponential factor in Eq. (37) is introduced instead of the local delta
function in order to take into account the finite nucleon size. It is the Fourier
transform of the nucleon form factor F (q 2) in the conventional parameteriza-
tion a dipole form

F (q2) =

(

1 +
q2

m2
A

)−2

(41)
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with mA = 0.85GeV. The finite nucleon size effects are known [16] to be
important for the short-distance contributions to the 0νββ-amplitude such as
those corresponding to the dominant terms in the effective Lagrangian (29).

Now, starting from Eq. (36), it is straightforward to calculate the 0νββ-
amplitude R0νββ within the non-relativistic impulse approximation. The final
result for the 0+ → 0+ transition amplitude can be written as follows

R0νββ(0
+ → 0+) =

ηSUSY

m5
SUSY

√
2 · C−1

0ν

[

ē(1 + γ5)e
c
]

< F |ΩSUSY |I > . (42)

The normalization factor is

C0ν =
4π

mPme

R0

f 2
A

. (43)

Here, R0 is the nuclear radius, mP and me are the proton and the electron
masses.

The effective lepton number violating parameter is defined as

ηSUSY = (ηg̃d̃ + ηg̃ũ) + g2
(mSUSY

MW

)4
(η

(1)
WW + η

(2)
WW + η

(3)
WW ). (44)

In Eq. (42) we have introduced the transition operator ΩSUSY in order to
separate the nuclear physics part of the calculation from the particle physics
one. Having the transition operator one can calculate the corresponding nu-
clear matrix element for any 0νββ-decaying candidate isotope within any spe-
cific model of nuclear structure. From now on we define

MSUSY =< F |ΩSUSY |I > (45)

This nuclear matrix element is found to be equal to those for heavy neutrino
exchange [17]

MSUSY =
{

MF,N −MGT,N

}

, (46)

where

MGT,N =
( m2

A

memp

)

〈F |ΩGT,N |I〉 (47)

where

〈F |ΩGT,N |I〉 = 〈F |
∑

i6=j

τ
(i)
+ τ

(j)
+ σσσi · σσσj

(

R0

rij

)

FN(xA)|I〉 (48)
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and

MF,N =
( m2

A

memp

)

(
fV
fA

)2〈F |ΩF,N |I〉 (49)

where

〈F |ΩF,N |I〉 = 〈F |
∑

i6=j

τ
(i)
+ τ

(j)
+

(

R0

rij

)

FN(xA)|I〉. (50)

Here, FN (xA) is the short-ranged potential

FN(xA) = 4πm6
Arij

∫

d3q

(2π)3

1

(m2
A + q2)4

eiqrij (51)

with xA = mArij . This potential takes into account the finite nucleon size, see
Eq. (41), its analytic solution is given by the formula

FN(x) =
x

48
(3 + 3x+ x2)e−x. (52)

The above definitions are general in the sense that one can apply nuclear
wave functions of any nuclear structure model for their calculation. For the
following analysis, on the other hand, numerical values for the matrix elements
are needed.

In our numerical analysis we will use the following value for the 0νββ decay
of 76Ge [17]

MSUSY = 289. (53)

This value is based on a pn-QRPA model [18], which has been discussed al-
ready several times in the literature [18] and has been applied previously to
calculations of the R-parity violating contributions to 0νββ decay [8, 10], as
well as to 0νββ decay in left-right symmetric models [17]. We will therefore
not repeat the details of the calculation here, and refer for brevity to [18]. Un-
certainties associated with the pn-QRPA have been discussed in [8] forMF,N

andMGT,N .

5 0νββ constraints on (B-L)-violating Sneutrino

Mass

The 0νββ-decay amplitude given in Eq. (42) leads to the following half-life
formula

[T 0νββ
1/2 (0+ → 0+)]−1 = G01

4m2
P

G4
F

∣

∣

∣

∣

∣

ηSUSY

m5
SUSY

MSUSY

∣

∣

∣

∣

∣

2

. (54)
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Here G01 is the standard phase space factor tabulated for various nuclei in [2].
Eq. (54) takes into account only the contributions from sneutrino exchange.

There might be other contributions which we assume not to cancel the SUSY
contribution. If there is no unnatural fine tuning between different contribu-
tions we may retain only the SUSY one in deriving upper bounds for the lepton
number violating parameters.

The most stringent experimental lower limit on 0νββ-decay has been ob-
tained for 76Ge [3]

T 0νββ−exp
1/2 (0+ → 0+) ≥ 1.0× 1025years 90% c.l. (55)

Combining this bound with Eq. (54) and the numerical value of the nuclear
matrix element MSUSY given in Eq. (53) we get the following constraint on
the effective MSSM parameter

ηSUSY ≤ 1.0× 10−8
( mSUSY

100GeV

)5
(56)

Since we are interested in deriving constraints on the (B-L)-violating sneutrino
mass m̃M from ηSUSY , we will adopt the following simplifying assumptions.
Assume all SUSY particle masses to be equal to the effective SUSY breaking
scale mSUSY introduced in Eq. (23) and consider two limiting cases for the
lightest neutralino χ composition. In the first case it is assumed to be a pure
B-ino as suggested by the SUSY solution of the dark matter problem [19], in
the second a pure Higgsino. These two cases can be understood as extreme
cases, and actual values for m̃M for other choices of the neutralino composition
should therefore lie in between the two extreme values given below. In the
Higgsino case essentially only the last three graphs in Fig.4 with gluino lines
contribute to 0νββ-decay. As seen from Eq. (31) the corresponding lepton
number violating parameter ηq̃ does not depend on the neutralino composition
and survives in this limiting case. With the currently accepted [20] values of
the gauge coupling constants and W-boson mass we derive

m̃M ≤ 2
( mSUSY

100GeV

)3/2
GeV, χ ∼ B̃, (57)

m̃M ≤ 11
( mSUSY

100GeV

)7/2
GeV, χ ∼ H̃. (58)

6 Neutrino mass constraints

As already mentioned, the sneutrino contributes to the Majorana neutrino
mass mν

M at the 1-loop level via the (B-L)-violating propagator Eq. (18)
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proportional to the sneutrino (B-L)-violating mass parameter m̃2
M . The corre-

sponding diagram given in Fig. 2(f) gives rise to an induced Majorana neutrino

mass δmν . Thus, in the presence of a non-zero tree-level contribution m
ν(tree)
M

the total neutrino mass is

mν
M = m

ν(tree)
M + δmν . (59)

As seen from Eq. (18) the (B-L)-violating sneutrino propagator in momentum
space is a rapidly decreasing function of momentum q. In the ultraviolet limit
it behaves as ∆M

ν̃ (q) ∼ 1/q4 unlike an ordinary scalar propagator decreasing
only as ∼ 1/q2. As a result, the 1-loop diagram in Fig. 2(f) leads to a finite
loop integral. Hence, the sneutrino induced Majorana neutrino mass δmν is a
calculable object. It is given by the formula

δmν(i) = g2
4
∑

k=1

ǫν
2

Lk
mχk

m̃2
M(i)

I(m̃2
M , m̃

2
D, mχk

) (60)

where the subscript i stands for generation. The neutralino-neutrino-sneutrino
coupling is ǫνLk

= tan θWNk1 −Nk2. The loop integral is defined as

I(m̃2
M , m̃

2
D, mχk

) = −i
∫ d4q

(2π)4

1

(m̃2
1 − q2)

1

(m̃2
2 − q2)

1

(m2
χk
− q2)

. (61)

For an approximate numerical estimation we take all superpartner masses equal
to the common mass scale of supersymmetry breaking mχk

≈ m̃1 ≈ m̃2 ≈
mSUSY . Then in this approximation one gets for the lightest neutralino χ
contribution the following constraint on the sneutrino mass splitting parameter

m̃M(i) ≤
1.7 · 10−2

| tan θWN11 −N12|
(

mSUSY

100GeV

)1/2
(

mexp
ν(i)

1eV

)1/2

GeV. (62)

Here mν(i) ≤ mexp
ν(i)

are the best laboratory limits on the neutrino masses which

can be summarized as [20] mexp
ν(e)

= 15eV, mexp
ν(µ)

= 170KeV, mexp
ν(τ)

= 23MeV.

Eq. (62) assumes that there is no significant cancellation in Eq. (59) between
the tree and 1-loop level contributions.

If the neutralino is B-ino dominant, than we derive the following limits on
the sneutrino mass splitting parameter

m̃M(e) ≤ 120MeV, m̃M(µ) ≤ 13GeV, m̃M(τ) ≤ 149GeV. (63)
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Thus, for the second and third generation sneutrinos large splittings are not
excluded by experimental data.

An interesting question to ask is whether there are certain loopholes in
the constraints on the sneutrino mass splitting derived from the experimen-
tal upper limits on neutrino masses. It could happen, for instance that the
lightest neutralino is higgsino dominated, in which case one would expect that
the bound (62) might have to be relaxed considerably. However, one should
remember that all neutralino states contribute to (60), so that even if there
is no constraint from the lightest neutralino the other mass eigenstates will
provide a finite contribution to the neutrino mass.

In order to investigate this question a little bit more quantitatively we did
a numerical scan of the SUSY parameter space, calculating upper bounds on
m̃M taking into account all four neutralino states. In this case instead of Eq.
(62) we have

m̃M(i) ≤
1.7 · 10−2GeV

(
∑4
i=1(tan θWNi1 −Ni2)2yiC3(x, yi))1/2

(

mSUSY

100GeV

)

(

mexp
ν(i)

1eV

)1/2

. (64)

Here x = m̃D/mSUSY and yi = mχi
/mSUSY . C3(x, yi) takes into account the

fact that the masses of the particles in the loop are no longer taken to be equal.
In the limit where m̃M ≪ m̃D the 1-loop integral C3(x, yi) is given by

C3(x, y) = 2
x2 + y2(Log(y2)− Log(x2)− 1)

(y2 − x2)2
(65)

C3(x, y) is normalized such that it approaches 1 in the limit where x and y
approach 1. We let the parameters of the neutralino mass matrix vary from
(0 − 1000) GeV for µ and M2, tanβ from (1 − 50), for both positive and
negative µ. The unification conditionM1 = (5/3) tan2 θWM2 has been assumed
in this calculation. We required the lightest mass eigenstate to be heavier
than 20 GeV, motivated by the LEP measurements. About 108 solutions
were calculated. From these we calculated the “average constraint” and an
“absolute” upper bound. These are:

m̃M(i) ≤ 60(125)

(

mexp
ν(i)

1eV

)1/2

MeV. (66)

on average (“absolute”), if m̃D ≈ mSUSY = 100 GeV is assumed. These
numbers are about a factor of 2 (4) less stringent than taking only the lightest
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neutralino (being bino) fixed at 100 GeV. This simply reflects the fact that
within the above-mentioned parameter ranges many solutions exist where even
the lightest neutralino mass state can be considerably heavier than 100 GeV.
On the other hand, it seems that within the typical range of SUSY parameters,
the constraint on m̃M is essentially “stable” and has to be taken seriously.
(This conclusion remains unchanged even if we drop the unification assumption
on M1, although the bounds might have to be slightly relaxed in some cases.)

Note that, in principle, more stringent limits on m̃M than in Eq. (63)
could be derived from the upper bounds on the neutrino mass given by non-
observation of 0νββ decay. However, in this case the situation is more complex,
since 0νββ decay measures an effective neutrino mass 〈mν

M〉 =
∑′ U2

ejmj , where
Uej are mixing coefficients connecting the weak and the mass eigenstate basis
for neutrinos. Thus limits on m̃M derived from the neutrino mass limit of 0νββ
decay will also depend on assumptions on neutrino mixing. If one assumes for
simplicity Uej ≈ δe1 one could derive m̃M(e) ≤ 22 MeV from the data on 76Ge
[3].

7 Conclusion

In summary, we have proven a low-energy theorem for weak scale softly broken
supersymmetry relating the (B-L)-violating mass terms of the neutrino and
the sneutrino as well as the amplitude of neutrinoless double beta decay. This
theorem can be regarded as a supersymmetric generalization of the well-known
theorem [14] relating only the neutrino Majorana mass and the neutrinoless
double beta decay amplitude.

According to Eq. (12) the parameter m̃M describes a splitting in the
sneutrino mass spectrum. This splitting leads to mixing in the sneutrino-
antisneutrino (ν̃ − ν̃c) system and to the effect of lepton number violating
ν̃ − ν̃c oscillations [21], [22].

The mass splitting parameter m̃M is constrained by the experimental data
on neutrinoless double beta decay 0νββ and the neutrino mass discussed in the
present paper. The neutrino mass constraint on m̃M is found to be more strin-
gent then the direct 0νββ-decay constraint. This is opposite to the conclusion
reached for R-parity violating SUSY, for which the direct double beta decay
constraints have been found to be more stringent than those derivable from
the neutrino mass [7, 8]. However, in contrast to the neutrino mass limits,
the corresponding constraint on m̃M from neutrinoless double beta decay is
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completely independent of assumptions about neutralino masses and mixings.
The constraints derived here, nevertheless, leave quite some room for ac-

celerator searches for sneutrino mediated (B-L)-violating effects for the second
and third generation. The sneutrino mass splitting parameter m̃M might be
searched for at future colliders such as the NLC or a first muon collider [21],
[22]. Probably, dedicated searches for Majorana sneutrinos have a chance of
detecting positive signal, within the above discussed low-energy limits. For
ν̃e, on the other hand, these limits seem to be too stringent and accelerator
experiments should not be expected to give positive signals.
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8 Appendix A. Supersymmetric Lagrangian terms

contributing to the 0νββ-decay amplitude

In the presence of the (B-L)-violating (s)neutrino masses, given in Eq. (1),
0νββ-decay is triggered by the following terms of the MSSM Lagrangian

LMSSM = LWf̄f + LWf̃f̃ + Lχ+ff̃ + Lχff̃ + Lg̃q̃q + LWχ+χ (67)

The individual terms can be found in the standard sources like ref. [13], [23].
Let us list them explicitly.

a) Gauge boson-fermion-fermion

This is nothing but the usual standard model charged-current Lagrangian,

LWf̄f = − g√
2

[

W+
µ (ūLγ

µdL + ν̄Lγ
µeL) + h.c.

]

(68)

≡ LWq̄q + LWl̄l. (69)

b) Gauge boson-sfermion-sfermion
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Only the charged-current part of this type of the MSSM interactions is of
interest in 0νββ decay:

LWf̃f̃ ≡ LWq̃q̃ + LWl̃l̃ (70)

= − ig√
2
W+
µ (ũ∗L

−→
∂
←−
∂
µ
d̃L)−

ig√
2
W+
µ (ν̃∗L

−→
∂
←−
∂
µ
ẽL) + h.c. (71)

Note that
−→
∂
←−
∂
µ

is defined by
−→
∂
←−
∂
µ

=
←−
∂
µ −−→∂ µ

.

c) Chargino-fermion-sfermion

Lχ+ff̃ = Cu
LL · ūLχ+

i d̃L + Cd
LL · d̄Lχc+i ũL + Cu

LR · ūLχ+
i d̃R + (72)

+ Cu
RL · ūRχ+

i d̃L + Cd
RL · d̄Rχ−

i ũL + Cd
LR · d̄Lχ−

i ũR +

+ Cν
LL · ν̄Lχ+

i ẽL + Ce
LL · ēLχ−

i ν̃L + h.c.,

where the following shorthands have been defined:

Cu,ν
LL = −gUi1, Cd,e

LL = −gVi1,
Cu
LR =

gmd√
2mW cosβ

Ui2, Cu
RL =

gmu√
2mW sinβ

V ∗
i2,

Cd
RL =

gmd√
2mW cosβ

U∗
i2, Cd

LR =
gmu√

2mW sinβ
Vi2.

Coefficients CLL, CRR are fermion-sfermion couplings to the gaugino compo-
nent of the chargino while CLR, CRL describe couplings to the Higgsino com-
ponent. The latter are proportional to the fermion mass and, therefore, can
be neglected in the fermion-sfermion sector as is done in the present paper.

The chargino mixing matrices Uij and Vij are defined from the diagonal-
ization of the chargino mass matrix Mχ±

U∗ ·Mχ±V
† = Diag{mχ±}, (73)

For details see Ref. [23].

d) Neutralino-fermion-sfermion

The neutralino interaction can be written as

Lχff̃ = −
√

2g [ǫψL(i)ψ̄Lχiψ̃L + ǫψR(i)ψ̄Rχiψ̃R + (74)

+ ǫψLR(i)ψ̄Lχiψ̃R + ǫψRL(i)ψ̄Rχiψ̃L]− h.c.,
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where ψL = uL, dL, eL, νL and their scalar superpartners ψ̃L = ũL, d̃L, ẽL, ν̃L.
The corresponding chiral coefficients are

ǫψL(i) = −T3(ψ)Ni2 + tanθW [T3(ψ)−Q(ψ)]Ni1,
ǫψR(i) = Q(ψ)tanθWNi1, (75)

ǫuLR(i) =
mu

mWsinβ
N ∗
j4, (76)

ǫuRL(i) =
mu

mWsinβ
Nj4, (77)

ǫdLR(i) =
md

mW cosβ
N ∗
j3, (78)

ǫdRL(i) =
md

mW cosβ
Nj3. (79)

Coefficients Nij are elements of the orthogonal neutralino mixing matrix
diagonalizing the neutralino mass matrix Mχ. In the Rp/ MSSM the neu-
tralino mass matrix is identical to the MSSM one [13] and in the basis of
fields (B̃, W̃ 3, H̃0

1 , H̃
0
2 ) has the form:

Mχ =











M1 0 −MZsW cβ MZsWsβ
0 M2 MZcW cβ −MZcWsβ

−MZsW cβ MZcW cβ 0 −µ
MZsW sβ −MZcW sβ −µ 0











, (80)

where cW = cos θW , sW = sin θW , tW = tan θW , sβ = sin β, cβ = cosβ. The
angle β is defined as tan β =< H0

2 > / < H0
1 >. Here < H0

2 > and < H0
1 >

are vacuum expectation values of the neutral components H0
2 and H0

1 of the
Higgs doublet fields with weak hypercharges Y (H0

2 ) = +1 and Y (H0
1 ) = −1,

respectively. The mass parameters M1,M2 are the soft SU(2)L and U(1)Y
gaugino masses. In grand unification scenarios they are related to each other
as follows

M1 =
5

3
tan2 θW ·M2 (81)

By diagonalizing the mass matrix (80) one can obtain four neutralinos χi with
masses mχi

and the field content

χi = Ni1B̃ +Ni2W̃ 3 +Ni3H̃0
1 +Ni4H̃0

2 . (82)

Recall again that we use notations W̃ 3, B̃ for neutral SU(2)L×U(1) gauginos
and H̃0

1 , H̃0
2 for higgsinos which are the superpartners of the two neutral Higgs

boson fields H0
1 and H0

2 .
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We apply a diagonalization by means of a real orthogonal matrixN . There-
fore the coefficients Nij are real and masses mχi

are either positive or negative.
The sign of the mass coincides with the CP-parity of the corresponding neu-
tralino mass eigenstate χi. If necessary, a negative mass can be always made
positive by a redefinition [23] of the neutralino field χi. It leads to a redefinition
of the relevant mixing coefficients Nij → i · Nij .

e) Gluino-squark-quark

The gluino interaction is given by

Lg̃ = −
√

2g3

λ
(a)
αβ

2

(

q̄αLg̃
(a)q̃βL − q̄αRg̃(a)q̃βR

)

+ h.c., (83)

Here λ(a) are 3× 3 Gell-Mann matrices (a = 1, ..., 8). Superscripts α, β in eq.
(83) are color indices.

f) Gauge boson-chargino-neutralino

In the notation of ref. [13]

LWχ+χ = gW−
µ χ̄iγ

µ
(

OLijPL +ORijPR
)

χ+
j + h.c., (84)

where

OLij = − 1√
2
Ni4V ∗

j2 +Ni2V ∗
j1 (85)

ORij = +
1√
2
N ∗
i3Uj2 +N ∗

i2Uj1. (86)

Further details and conventions on the definitions used can be found in the
paper by Haber and Kane [13].

9 Appendix B. Box Integrals

In this appendix some relevant formulas for the calculation of the loop integrals
are summarized. There are four kinds of integrals encountered in the Eqs.
(31)-(35):

G(m1, m2, m3) = −i
∫ d4k

(2π)4
(87)

× m10
SUSY

(m̃2
1 − k2)(m̃2

2 − k2)(m2
d̃
− k2)2(m2

1 − k2)(m2
2 − k2)(m2

3 − k2)
,
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F(m1, m2, m3) = −i
∫ d4k

(2π)4
(88)

× m8
SUSY k

2

(m̃2
1 − k2)(m̃2

2 − k2)(m2
ũ − k2)2(m2

1 − k2)(m2
2 − k2)(m2

3 − k2)

I(m1, m2, m3) = −i
∫ d4k

(2π)4
(89)

× m6
SUSY

(m̃2
1 − k2)(m̃2

2 − k2)(m2
1 − k2)(m2

2 − k2)(m2
3 − k2)

J (m1, m2, m3) = −i
∫ d4k

(2π)4
(90)

× m4
SUSY k

2

(m̃2
1 − k2)(m̃2

2 − k2)(m2
1 − k2)(m2

2 − k2)(m2
3 − k2)

All four integrals are finite and can be calculated analytically using stan-
dard methods. Simple solutions can be found for the case when the masses of
all particles in the loops are assumed to be equal to mSUSY . In this limit one
finds

G(mSUSY ) = (480π2)−1, F(mSUSY ) = (960π2)−1, (91)

I(mSUSY ) = J (mSUSY ) = (192π2)−1.
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Figure Captions

Fig.1.: (a) the conventional Majorana neutrino mass mechanism of 0νββ-
decay; (b) an example of a RP conserving SUSY contribution to the 0νββ-
decay.

Fig.2.: Lowest order perturbation theory diagrams representing the relation
between the neutrino Majorana mass mν

M , the ”Majorana”-like (B-L)-violating
sneutrino mass m̃M and the amplitude of neutrinoless double beta decay R0νββ .
(a) the neutrino and (b) an example of sneutrino contribution to the 0νββ-
decay amplitude R0νββ. 0νββ-vertex contribution to (c) the neutrino Majorana
mass and (d) to the ”Majorana”-like sneutrino mass; (e) neutrino contribution
to the sneutrino ”Majorana”-like mass and (f) sneutrino contribution to the
neutrino Majorana mass. Crossed (s)neutrino lines correspond to the (B-L)-
violating propagators.

Fig.3.: The decomposition of the 0νββ-effective vertex. (a) to the left:
The 0νββ-effective vertex. To the right the decomposition: (b-d) first line:
neutrino-accompanied contributions to 0νββ decay, (e-g) second line: purely
supersymmetric contributions without neutrinos.

Fig.4.: RP conserving MSSM contributions to the 0νββ-decay amplitude.
Leading order diagrams, see also the text.
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