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Edificio Institutos de Paterna, Apt 22085, E–46071 Valencia, Spain

2Departamento de F́ısica and CFTP, Instituto Superior Técnico
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Abstract

We reconsider the possible presence of charge and colour breaking minima in the scalar

potential of the minimal supersymmetric standard model (MSSM) and its minimal gener-

alization with R–parity explicitly broken by bilinear terms (RMSSM). First we generalize

some results previously derived for the MSSM case. Next we investigate how robust is

the MSSM against its RMSSM extension. We examine the constraints on the RMSSM

parameter space that follow from the required absence of charge breaking minima in the

scalar potential. We point out the possibility of generating non–zero vacuum expecta-

tion values for the charged Higgs field which is not present in the MSSM. However, given

the smallness of neutrino masses indicated by neutrino oscillation data, we show that the

RMSSM represents only a slight perturbation of the MSSM and is thus as safe (or unsafe)

as the MSSM itself from unwanted minima in the scalar potential.
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I. INTRODUCTION

Softly broken supersymmetric models contain a fairly large number of scalar

fields not present in the standard model. Their existence leads to a complicated

scalar potential, which might contain undesirable minima which spontaneously break

charge and/or color symmetry, a situation which can not happen within the Standard

Model. The condition that the “realistic” minimum is the global minimum of the

theory can be used to obtain restrictions on the parameter space of supersymmetric

models, as already realized more than 20 years ago [1, 2, 3]. This way a disadvantage

of supersymmetry may turn into a virtue by shedding some light into the unknown

supersymmetry breaking mechanism itself.

Due to the enormous complexity of the full scalar potential in the minimal su-

persymmetric extension of the standard model (MSSM) early papers on this sub-

ject [1, 2, 3, 4] have only analyzed particular, but especially dangerous directions in

field–space. Casas et al [5] have presented a more detailed analysis of this subject.

They were able to show that in the constrained MSSM (CMSSM) with minimal

supergravity boundary conditions strong constraints arise ruling out sizeable parts

of the parameter space [5].

Similar studies in R–parity violating versions of the MSSM, however, have not

been published 1. Our main goal is to present a detailed analysis of the ’unbounded–

from–below’ (UFB) as well as charge/colour breaking minima (CCB) in the bilinear

R–parity breaking model (RMSSM) [7]. This model breaks lepton number and

R–parity explicitly through the simplest bilinear terms. The justification for such

emphasis is threefold.

First, it represents the simplest possible scheme of R–parity violation, a mere

six parameter extension of the MSSM. It is therefore interesting to investigate the

“stability” of the MSSM against such “innocuous” perturbation. For this reason we

can also call this model the generalized MSSM where R–parity breaks in the minimal

way. Second, this model is motivated by the fact that it produces the paradigm

for the idea that supersymmetry is the origin of neutrino mass [8], leading to a

pattern of neutrino masses [9] that successfully describes current neutrino data [10].

Last, but not least, it represents the only model of R–parity breaking consistent

1 The work of Abel and Savoy [6] contains a discussion on the possibility of lifting flat directions by

adding explicit trilinear R–parity violating terms to the superpotential. However, they discuss

the impact of bilinear terms only briefly. This is our main emphasis.
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with a spontaneous violation of R–parity [11, 12], where it is the vacuum, not the

fundamental theory, that breaks the symmetry.

In this model the atmospheric neutrino mass scale [13] is generated at the tree–

level, through the mixing of the three neutrinos with the neutralinos [14], in an

effective ‘low–scale” variant of the seesaw mechanism. In contrast, the solar mass

and mixings needed to account for solar neutrino data [15, 16] are generated radia-

tively [9].

A very important difference between such a supersymmetric approach to the

origin of neutrino mass and seesaw–type schemes, is that here the dimension–five

operator responsible for (Majorana) neutrino masses is generated at an accessibly

low energy scale – namely the weak scale. This makes this model potentially testable

by experiment. In fact it has been shown that such a low–scale scheme for neutrino

masses has the advantage of being testable also “outside” the realm of neutrino

physics experiments. Although neutrino properties can not be predicted from first

principles, interpreting current neutrino data in this framework implies unambigu-

ous tests of the theory at accelerator experiments [17, 18, 19, 20, 21] which can

potentially be used to falsify the model.

This paper is organized as follows. In the next section we will briefly recall

some basics of the discussion on CCB and UFB bounds in the MSSM. This will

serve as a basis for section 3, where we will discuss new features related to the

R–parity violating terms. We show how the bounds from unbounded–from–below

directions have to be modified, once non–zero bilinear R–parity violating (BRpV)

terms are allowed. We point out the novel possibility to generate a non–zero vacuum

expectation value of the charged Higgs field, albeit in regions of parameter space

which are now excluded by neutrino physics [10]. We show that, given current

data on neutrino masses, bilinear R–parity violation can be understood as a small

perturbation of the MSSM. From the point of view of charge breaking minima the

RMSSM is thus as safe (or unsafe) as the MSSM itself. We will then close with a

short summary.

II. REVIEW OF THE MSSM RESULTS ON UFB AND CCB

To set up the notation, the superpotential of the MSSM can be written as

W = εab

[
hij

U Q̂a
i ÛjĤ

b
u + hij

DQ̂b
iD̂jĤ

a
d + hij

EL̂b
iR̂jĤ

a
d − µĤa

d Ĥb
u

]
. (1)
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Here, hij
U , hij

D and hij
E are 3 × 3 Yukawa matrices, Q̂, Û and D̂ are quark doublet

and singlet superfields and L̂ and R̂ are the usual lepton doublet and singlet fields.

Supersymmetry must be broken and the most general set of soft breaking terms

allowed by the standard model gauge group under the assumption of lepton number

conservation can be written as

VSB =M ij2
Q Q̃a∗

i Q̃a
j + M ij2

U ŨiŨ
∗
j + M ij2

D D̃iD̃
∗
j + M ij2

L L̃a∗
i L̃a

j + M ij2
R R̃iR̃

∗
j +

2∑

i=1

m2
Hi

Ha∗
i Ha

i

+

[
−1

2

3∑

i=1

Miλiλi + εab

(
Aij

Uhij
U Q̃a

i ŨjH
b
u + Aij

Dhij
DQ̃b

iD̃jH
a
d + Aij

Ehij
EL̃b

iR̃jH
a
d

−BµHa
dHb

u

)
+ h.c.

]
(2)

The Higgs doublets giving mass to the standard model fermions are

Hd =

(
H0

d

H−
d

)
, Hu =

(
H+

u

H0
u

)
(3)

and the parameters in Eq. (2) are to be understood at some renormalization scale Q

chosen to minimize the effects of the one loop corrections. This way we can neglect

in the analysis the effect of the one loop radiative corrections [5]. Without loss of

generality, we now consider that the fields take the following vev’s2,

〈
H+

u

〉
= 0,

〈
H−

d

〉
= v−,

〈
H0

d

〉
= vd,

〈
H0

u

〉
= vu (4)

to obtain

VHiggs =
(
m2

Hu
+ µ2

)
v2

u +
(
m2

Hd
+ µ2

) (
v2

d + v2
−

)
− 2Bµvuvd −

1

2
g2v2

uv
2
d

+
1

8

(
g2 + g′2

) (
v4

u + v4
d + v4

− + 2v2
dv

2
−

)
+

1

4

(
g2 − g′2

) (
v2

d + v2
−

)
v2

u (5)

This Higgs potential has the property that v− = 0. To see this we note that the

potential can be written in the form,

VHiggs = C4v
4
− + C2v

2
− + C0 (6)

where

C4 =
1

8

(
g2 + g′2

)

C2 =
1

4

(
g2 − g′2

)
v2

u +
1

4

(
g2 + g′2

)
v2

d +
(
m2

Hd
+ µ2

)

C0 =
1

8

(
g2 + g′2

) (
v2

u − v2
d

)2
+
(
m2

Hu
+ µ2

)
v2

u +
(
m2

Hd
+ µ2

)
v2

d − 2Bµvuvd (7)

2 Our normalization here for the vev’s differs from Refs. [7, 9] by a factor of
√

2.
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Now since g > g′ we must have C2 > 0, unless m2
Hd

+ µ2 < 0 3. Therefore the

minimum of the Higgs potential occurs for vanishing vev of the charged Higgs boson.

By using the minimization equations,

0 = −2Bµvd + 2
(
m2

Hu
+ µ2

)
vu −

1

2

(
g2 + g′2

) (
v2

d − v2
u

)
vu

0 = −2Bµvu + 2
(
m2

Hd
+ µ2

)
vd +

1

2

(
g2 + g′2

) (
v2

d − v2
u

)
vd (8)

one can find the value of the Higgs potential at the real minimum,

VMIN = −1

8

(
g2 + g′2

) (
v2

u − v2
d

)2
(9)

Eq. (9) will be important to compare with the values of other (and potentially

deeper) minima.

Before starting the discussion of the dangerous directions, a word of caution

should be added, namely, that the condition that the realistic minimum is the global

one might actually be too conservative. In fact, it is possible that the universe

resides in a false vacuum which is stable because the tunneling time into the global

minimum is large with respect to the age of the universe. In this sense, CCB and

UFB constraints on the supersymmetric parameter space are sufficient but might

not be necessary, see for example [22, 23]. However, we will not follow this line of

reasoning any further.

A. UFB directions

The ’unbounded–from–below’ (UFB) directions are those where the quartic D–

terms vanish and some coefficient(s) quadratic in the vev’s are negative. Then the

potential at the weak scale seems to be unbounded from below. However, this is a

slight misnomer, since if one assumes that all soft masses are positive at the high

unification scale, it appears that these dangerous directions are not really unbounded

from below but there exists a true local minimum at some large scale. It then must

be checked that this local minimum is not deeper than the physical one. As was

shown in Ref. [5] there are three kinds of such directions. The first and most obvious

one corresponds to the D–flat direction where |vu| = |vd|, all other vev’s being zero.

3 Casas et al. [5] assume that only m2

Hu
+ µ2 can be negative. Even though in mSugra at very

large tanβ values m2

Hd
+ µ2 < 0 can occur in exceptional cases, we will follow their assumption.
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The potential along this direction reads,

VUFB−1 =
(
m2

Hu
+ m2

Hd
+ 2µ2 − 2|Bµ|

)
v2

u (10)

and a sufficient condition to avoid developping a deep minimum at large values of

the field is

m2
Hu

+ m2
Hd

+ 2µ2 − 2|Bµ| > 0. (11)

In principle, one should check the depth of the true minimum along the dangerous

direction when this coefficient is negative. For simplicity, we will stick however to

the condition given in Eq. (11).

The second dangerous direction corresponds to the case where a slepton Li takes a

vev vi. Then a combination of vu, vd and vi can cancel the D–term and the potential

reads,

VUFB−2 =

(
m2

Hu
+ µ2 + m2

Li
− |Bµ|2

m2
Hd

+ µ2 − m2
Li

)
v2

u −
2m4

Li

g2 + g′2
(12)

which constrains the coefficient of the quadratic term as

m2
Hu

+ µ2 + m2
Li

− |Bµ|2
m2

Hd
+ µ2 − m2

Li

> 0. (13)

Note that in the case of a universal m0 at the unification scale the mLi
are usually

the smallest soft masses at the weak scale. Dropping the universality assumption

the bound obtained for mLi
, Eq. (13), must be verified for the squark soft masses

as well.

Finally the last UFB direction corresponds to the case where vd = 0 but we have

a neutral slepton Li with nonzero vev, like in the UFB-2 case. This direction is both

D– and F–flat. The difference with respect to UFB-2 is that the F–term is canceled

by giving vev’s to the charged sleptons. The resulting potential reads

VUFB−3 =
(
m2

Hu
+ m2

Li

)
v2

u +
|µ|
hej

(
m2

Li
+ m2

Lj
+ m2

ej

)
vu −

2m4
Li

g2 + g′2
(14)

Since m2
Hu

must be negative in order to break electroweak symmetry and m2
Li

is

small when one assumes universality of the soft terms, the coefficient quadratic in

vu is generally negative. As shown in Refs. [5, 6] in the case of universal soft masses

at the GUT scale, the condition that the minimum along this UFB-3 direction is

not deeper than the physical minimum implies m0 > αM1/2, where α is a coefficient

of O(1).
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B. CCB minima

For the classical CCB minima, dangerous negative contributions to the scalar poten-

tial are generated by cubic (A–type) soft supersymmetry breaking terms. Therefore

these directions cannot be F–flat, but they are still D–flat. The traditional bound

of Ref. [1] corresponds to the case where

〈
Q1
〉

=
〈
H2

u

〉
= 〈U〉 = v (15)

all other vev’s vanishing. This choice cancels the D–term and the potential reads,

VCCB = v2
(
3h2

uv
2 + 2Auhuv + m2

Hu
+ µ2 + m2

Q + m2
U

)
(16)

In order to avoid a very deep color and charge breaking minimum we must make sure

that the parenthesis in Eq. (16) never vanishes, which happens if the corresponding

second order equation can not have real solutions. This leads to the well known

condition,

|Au|2 < 3
(
m2

Hu
+ µ2 + m2

Q + m2
U

)
(17)

A more complete and general analysis of this and similarly dangerous directions can

be found in Ref. [5]. Note again, that the bound given in Eq.(17) for Au must be

checked for all A–terms in the general non–universal MSSM.

III. UFB AND CCB IN THE RMSSM

The RMSSM is simply the bilinear R–parity violating model, defined by the

following superpotential [7]

W = WMSSM + εabǫiL̂
a
i Ĥ

b
u (18)

and corresponding soft supersymmetry breaking terms,

VSB = VMSSM + BiǫiL̃
a
i H

b
u . (19)

It is therefore a rather mild extension of the MSSM. In the following it will be

sufficient to consider for simplicity only a one generation version of the model 4.

4 We do not believe that this simplification has any impact on the following discussion, since

neutrino oscillation data require ǫ
µ
≪ 1 and intergenerational effects between different families

of leptons due to BRpV terms scale as ( ǫ
µ
)2.
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We are mainly interested in studying how the appearance of the new terms in the

superpotential (and in VSB) changes the conclusions which hold for the MSSM. Since

the MSSM is the limit of the RMSSM when ǫ → 0 we expect that the results of the

MSSM will hold in that limit. Note also that the structure of the trilinear terms is

not modified, so conclusions like those of Eq. (17) are expected also to hold in our

case. Defining

〈
H+

u

〉
= 0,

〈
H−

d

〉
= v−,

〈
H0

d

〉
= vd,

〈
H0

u

〉
= vu,

〈
L0
〉

= v′,
〈
L−
〉

= v′
−

(20)

one finds for the scalar potential

V = M2
Hu

v2
u + M2

Hd

(
v2

d + v2
−

)
+ M2

L

(
v′2 + v′2

−

)
− 2Bµ vdvu + 2B′ǫ vuv

′

+ǫ2
(
v2

u + v′2
− + v′2

)
+ µ2

(
v2

u + v2
d + v2

−

)
− 2µǫ

(
v′vd + v−v′

−

)

+
g2

8

[(
v2

u − v2
d − v′2 + v2

− + v′2
−

)2
+ 4

(
vdv− + v′v′

−

)2]

+
g′2

8

(
v2

u − v2
d − v′2 − v2

− − v′2
−

)2
(21)

where B′ characterizes the soft supersymmetry and R–parity violating bilinear term.

We note that it is not possible to have an UFB direction with non vanishing charged

vev’s in this potential, because the D–terms can not be made to vanish for v− and

v′
− different from zero. The minimization equations can be found in the usual way

taking derivatives with respects to the fields

0 =

[
2
(
M2

Hd
+ µ2

)
− g2

2

(
v2

u − v2
d − v′2 − v2

− + v′2
−

)
− g′2

2

(
v2

u − v2
d − v′2 − v2

− − v′2
−

)]
vd

−
(
2ǫµ − g2v−v′

−

)
v′ − 2Bµvu

0=

[
g2

2

(
v2

u − v2
d − v′2 + v2

− + v′2
−

)
+

g′2

2

(
v2

u − v2
d + v′2 − v2

− − v′2
−

)]
vu

+2
(
M2

Hu
+ µ2 + ǫ2

)
vu + 2 (B′ǫv′ − Bµvd)

0=

[
2
(
M2

L + ǫ2
)
− g2

2

(
v2

u − v2
d − v′2 + v2

− − v′2
−

)
− g′2

2

(
v2

u − v2
d − v′2 − v2

− − v′2
−

)]
v′

−
(
2ǫµ − g2v−v′

−

)
vd + 2B′ǫvu

0=

[
2
(
M2

Hd
+ µ2

)
+

g2

2

(
v2

u + v2
d − v′2 + v2

− + v′2
−

)
− g′2

2

(
v2

u − v2
d − v′2 − v2

− − v′2
−

)]
v−

−
(
2ǫµ − g2vdv

′
)
v′
−

0=

[
2
(
M2

L + ǫ2
)

+
g2

2

(
v2

u − v2
d + v′2 + v2

− + v′2
−

)
− g′2

2

(
v2

u − v2
d − v′2 − v2

− − v′2
−

)]
v′
−

−
(
2ǫµ − g2vdv

′
)
v− (22)
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Since we are dealing with a set of five coupled equations this system is difficult to

solve for the vev’s. We can however use the following trick. Instead of solving for

the five vev’s we try to solve those equations for the three soft masses squared M2
Hu

,

M2
Hd

and M2
L [12] and for the charged vev’s. Using this approach we could find two

types of solutions.

Before discussing the general case, however, we consider first the limit in which

RMSSM is considered a perturbation of the MSSM. This is a reasonable approach

since the BRpV parameters must be small to account for the neutrino data [9].

Therefore we can pose the following question. Suppose that in the limit ǫ → 0

the parameters are such that the MSSM has no UFB directions or CCB minima.

This means vu 6= 0 , vd 6= 0 and v′ = v− = v′
− = 0. If we now consider a small

non–vanishing value for the ǫ what will be the corresponding minimum? In order

to answer this question in perturbation theory we write

vd =
∞∑

i=0

v
(i)
d ǫi, vu =

∞∑

i=0

v(i)
u ǫi, v′ =

∞∑

i=0

v′(i) ǫi, v− =
∞∑

i=0

v
(i)
− ǫi, v′

− =
∞∑

i=0

v′(i)
− ǫi

(23)

Now we substitute back in the extremum Eq. (22) and solve order by order in

perturbation theory. The result that we get is as follows,

vd = v
(0)
d + v

(2)
d ǫ2 + v

(4)
d ǫ4 + · · ·

vu = v(0)
u + v(2)

u ǫ2 + v(4)
u ǫ4 + · · ·

v′ = v′(1)ǫ + v′(3)ǫ3 + v′(5)ǫ5 + · · ·

v− = 0

v′
− = 0 (24)

where v
(0)
u , v

(0)
d are the MSSM values for ǫ = 0. This is precisely the solution of type

I that we will discuss shortly. Note that if ǫ 6= 0 then also v′ 6= 0. In fact,

v′ =
µv

(0)
d − B′v

(0)
u

M2
L − 1

4
(g2 + g′2)

(
v

(0)
u

2 − v
(0)
d

2
) ǫ + · · · (25)

So we can formulate the following important result: If we start with the MSSM

parameters such that in the limit ǫ → 0 the minimum has no UFB or CCB problems,

then by turning on perturbatively a small value for ǫ we get a correspondingly safe

minimum of the RMSSM. However, as we will now discuss, in general there are two

types of solutions for the minimum equations.
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Type I

This solution corresponds to the case where the charged vev’s vanish. We are

then in the situation studied usually [7] in the bilinear R–parity model. We get

M2
Hd

= ǫ µ
v′

vd

− µ2 + B µ
vu

vd

+
g2 + g′2

4

(
v2

u − v′2 − v2
d

)

M2
Hu

= −ǫ2 − µ2 + B µ
vd

vu
− B′ ǫ

v′

vu
− g2 + g′2

4

(
v2

u − v′2 − v2
d

)

M2
L = −ǫ2 + ǫ

(
µ

vd

v′
− B′ vu

v′

)
+

g2 + g′2

4

(
v2

u − v′2 − v2
d

)

v− = 0

v′
− = 0 (26)

This corresponds to the neutral Higgs potential that we will discuss further below.

Here we just note that the value of the potential at the minimum can be shown to

be

VBRpV = −g2 + g′2

8

(
v2

u − v2
d − v′2

)2
. (27)

Type II

In the general case we can find the solutions of the minimization equations in the

following way. We start by solving the first three equations in Eq. (22) for the soft

masses. We get,

M2
Hd

= M2
Hd

(0) − 1

4

(
g2 − g′2

) (
v2
− + v′2

−

)

M2
Hu

= M2
Hu

(0) − 1

4

(
g2 + g′2

) (
v2
− + v′2

−

)
− 1

2
g2 v′

vd
v′
−v−

M2
L = M2

L(0) +
1

4

(
g2 − g′2

)
v2
− − 1

4

(
g2 + g′2

)
v′2
− − 1

2
g2 v′

vd
v′
−v− (28)

where M2
Hd

(0), M2
Hu

(0) and M2
L(0) are the soft masses when v− = v′

− = 0 and are

given in Eq. (26). Now we substitute Eq. (28) into the last two equations in Eq. (22)

to obtain,

0=−g2

(
v′2v− − v′vdv

′
− + v2

−v′
−

v′

vd

− v−v′2
−

)
+ 2ǫµ

(
v−

v′

vd

− v′
−

)
+ 2Bµv−

vu

vd

+ g2v−v2
u

0=g2

(
v′2v− − v′vdv

′
− + v2

−v′
−

v′

vd
− v−v′2

−

)
vd

v′
− 2ǫµ

(
v−

v′

vd
− v′

−

)
vd

v′
(29)
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−2B′ǫv′
−

vu

v′
+ g2v′

−v2
u

Multiplying the second of the equations in Eq. (29) by v′/vd and adding them one

obtains,

v′
− = κ v− (30)

where

κ =
2Bµ + g2vdvu

2B′ǫ − g2v′vu
(31)

Finally we use Eq. (30) to reduce either one of Eq. (29) to

0 = v−

(
D2 v2

− − D0

)
(32)

where

D2 = g2

(
κ2 − v′

vd
κ

)

D0 = g2
(
v′2 − vdv

′κ − v2
u

)
− (Bvu + ǫv′)

2µ

vd

+ 2ǫµκ (33)

Eq. (32) has the trivial solution v− = 0 which corresponds to type I, the BRpV

solutions. However, if
D0

D2
> 0 (34)

we have a new type of solutions for the minimization equations,

v− = ±
√

D0

D2

, v′
− = κ v− (35)

As D0,2 do not have in general a well defined sign it can happen that such solutions

do exist for some combination of the parameters. We will discuss this later in more

detail.

A. UFB Directions

We have seen before that for the Higgs potential of the RMSSM the UFB direc-

tions can only arise when the charged Higgs vev’s vanish, otherwise it is not possible

to cancel the quartic D–terms. The neutral Higgs potential obtained from Eq. (21)

when v− = 0, v′
− = 0 is given by

VNeutral =
(
M2

Hu
+ ǫ2 + µ2

)
v2

u +
(
M2

Hd
+ µ2

)
v2

d +
(
M2

L + ǫ2
)
v′2

−2Bµ vdvu + 2B′ǫ vuv
′ − 2µǫv′vd +

g2 + g′2

8

(
v2

u − v2
d − v′2

)2
(36)
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From this equation we can see that we can make the D–term vanish if we choose

the condition

v2
u = v2

d + v′2 (37)

To implement this condition it is convenient to write

vd = vu cos θ, v′ = vu sin θ (38)

Then we get

VNeutral = B(θ)v2
u (39)

where

B(θ) =
[
M2

Hu
+ ǫ2 + µ2 +

(
M2

Hd
+ µ2

)
cos2 θ +

(
M2

L + ǫ2
)
sin2 θ

− 2Bµ cos θ + 2B′ǫ sin θ − 2µǫ sin θ cos θ
]

(40)

Therefore the condition for avoiding an UFB direction is that,

B(θmin) > 0 (41)

where θmin is the value of θ that corresponds to the minimum of B(θ). Now consider

Eq. (40) in the limit ǫ → 0 and take the derivative,

dB

dθ
= 2 sin θ

[
−(M2

Hd
+ µ2 − M2

L) cos θ + Bµ
]

(42)

The right hand side vanishes when θ = 0 and when cos θ = Bµ
M2

Hd
+µ2−M2

L

. These

two solutions correspond to the UFB-1 and UFB-2 directions given in Eqs. (11) and

(13), respectively, when ǫ = 0.

For ǫ 6= 0 it does not seem possible to have an analytical expression for θmin.

However for a given set of parameters it is always easy to verify whether Eq. (41)

holds for θ ∈ [0, 2π]. It is also clear from Eq. (40) that the MSSM condition, Eq. (11),

is not enough to ensure that we are free from UFB directions. This fact can be best

illustrated from figure (1) that shows a typical example.

One can see clearly that starting from a large value of B(0) is not enough to

decide upon the sign of B(θmin). However it is easy to check numerically whether

B(θmin) > 0 or not. Therefore, although we lack a simple analytical formula, the

criterium for avoiding UFB directions is easily implemented.

Finally we comment briefly on the direction UFB-3. It can be easily shown that

at large values of the field the potential in direction UFB-3 is given as

VUFB−3 =
(
m2

Hu
+ m2

Li
+ ǫB′

)
v2

u + · · · (43)

12
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FIG. 1: B(θ) as a function of θ for an example where B(θmin) < 0 but B(0) > 0. The

right panel is an enlarged view of the left one close to the zeros of B(θ).

where the dots stand for irrelevant terms. Since in our notation ǫB′ < 0 this leads,

in principle, to a slightly more stringent requirement than the one corresponding

to the R–parity conserving MSSM. However, since ǫ
µ
∼ O(10−(3−4)) is required by

neutrino oscillation data [9], this modification is numerically irrelevant. This is in

agreement with the argument presented in Ref. [6].

B. Nonzero charged Higgs and Slepton Vev’s

We now turn to the solutions of type II. We have already seen in Eqs. (32) - (35)

that there are potentially dangerous solutions for the Higgs potential with nonzero

vev’s for the charged scalars. These solutions, if they exist, would provide new CCB

solutions different from those already present in the MSSM, as explained above.

As can be seen from Eq. (34) such solutions can exist if the parameters satisfy the

relation D0/D2 > 0, where the Di are given in Eq. (33).

Since it does not seem possible to give a strict analytic criterion which relates

the condition D0/D2 < 0 (guaranteeing the absence of unwanted minima) to the

parameters of the potential we have resorted to a numerical scan of the parameter

space. Our approach to find the minima of the potential was as follows. We always

started with a random set of parameters with zero charged vev’s and subject to the

requirement that,

v2
u + v2

d + v′2 = v2 =
(
2
√

2GF

)−1/2

= 174.1 GeV (44)

Note that with this procedure we should always have,

|η| =
|v′|
v

< 1. (45)
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We then search for the global minimum numerically. If we find a minimum deeper

than the realistic minimum but which breaks charge this part of parameter space

should be discarded. Two examples are shown in Fig. (2).
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FIG. 2: Range of RMSSM parameters where nonzero charged vev’s for the Higgs and

slepton fields are favoured over the realistic minimum for two examples of tan β, left

tan β = 1.05, right tan β = 1.2. Here we fix for convenience B = B′ = µ = 100 GeV. For

a discussion see text.

The results shown in Fig. (2) can be understood qualitatively as follows. Starting

with the definitions Eqs (31) and (33) and taking into account the smallness of ǫ
µ

one can show that in the limit ǫ → 0 we always have D2 > 0. On the other hand

the condition D0 > 0 requires

v′2 > v2 tan2 β − 1

1 + tan2 β
+

2Bµ

g

tan2 β − 1

tanβ
. (46)

Note that this condition is not strictly valid for tanβ ≡ 1, because in this limit

we can no longer neglect the terms proportional to ǫ in the definitions of D0 and

D2. Eq. (46) shows that charge breaking minima in the limit of small values of ǫ

require that v′ take up a sizeable fraction of v. This trend is clearly visible from

Fig. (2). The figure also illustrates how these solutions disappear very quickly with

tan β greater than 1.

Although we find it amusing that such solutions exist, we wish to stress that

consistency with neutrino data requires ǫ
µ

∼ O(10−(3−4)) and v′

v
∼ O(10−(3−4)).

We therefore conclude that the RMSSM is automatically safe from these unwanted

minima in those “physical” parts of parameter space which account for the neutrino

oscillation data.
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IV. CONCLUSIONS

We have studied charge breaking minima and unbounded from below directions

within bilinear R–parity breaking supersymmetry. Such a “reference model” is

nothing but the simplest broken R–parity version of the Minimal Supersymmet-

ric Standard Model. We have first generalized some results obtained previously in

the R–parity conserving MSSM. Subsequently we discussed new ways to generate

a nonzero vacuum expectation value of the charged Higgs and slepton fields. How-

ever, such unwanted solutions occur only in regions of parameter space which are

now excluded by neutrino oscillation data.

In summary it can be said that, given the data on neutrino masses, bilinear R–

parity violation can be understood as a small perturbation of the MSSM. From the

point of view of CCB and UFB directions the RMSSM is as robust as the R–parity–

conserving MSSM: it is equally safe from unwanted minima in the same portions of

parameter space.
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