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Abstract

We study the stability of the Harrison-Perkins-Scott (HPS) mixing pattern, assumed to hold at

some high energy scale, against supersymmetric radiative corrections. We work in the framework

of a reference minimal supergravity model (mSUGRA) where supersymmetry breaking is universal

and flavor-blind at unification. The radiative corrections considered include both RGE running

as well as threshold effects. We find that in this case the solar mixing angle can only increase

with respect to the HPS reference value, while the atmospheric and reactor mixing angles remain

essentially stable. Deviations from the solar angle HPS prediction towards lower values would

signal novel contributions from physics beyond the simplest mSUGRA model.
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I. INTRODUCTION

The discovery of neutrino oscillations [1, 2, 3, 4, 5] has indicated a very peculiar structure

of lepton mixing [6], quite distinct from that of quarks. These data have triggered a rush of

papers attempting to understand the values of the leptonic mixing angles from underlying

symmetries at a fundamental level. An attractive possibility is that the observed pattern

of lepton mixing results from some kind of flavour symmetry, such as A4, valid at a some

superhigh energy scale where the dimension-five neutrino mass operator arises [7].

Here we reconsider the Harrison-Perkins-Scott (HPS) mixing pattern [9] within a simple

reference model approach. Our only assumption is that at the high energy scale the tree-level

neutrino mass matrix mtree
ν is diagonalized by the so-called HPS matrix, taken as,

UHPS =







√

2/3 1/
√

3 0

−1/
√

6 1/
√

3 −1/
√

2

−1/
√

6 1/
√

3 1/
√

2






, (1)

which corresponds to the following mixing angle values:

tan2 θatm = tan2 θ0
23 = 1 ,

sin2 θChooz = sin2 θ0
13 = 0 ,

tan2 θsol = tan2 θ0
12 = 0.5 .

(2)

These predictions which hold at high energies may be regarded as a good first approximation

to the observed values [6] indicated by oscillation experiments [1, 2, 3, 4, 5]. The diagonal

neutrino mass matrix can be written as m̂tree
ν = UT

HPS · mtree
ν · UHPS = diag(m1, m2, m3), so

that the tree-level neutrino mass matrix becomes

mtree
ν =









2
3
m1 + 1

3
m2 −1

3
m1 + 1

3
m2 −1

3
m1 + 1

3
m2

−1
3
m1 + 1

3
m2

1
6
m1 + 1

3
m2 + 1

2
m3

1
6
m1 + 1

3
m2 − 1

2
m3

−1
3
m1 + 1

3
m2

1
6
m1 + 1

3
m2 − 1

2
m3

1
6
m1 + 1

3
m2 + 1

2
m3









. (3)

This form corresponds to a specific structure for the dimension-five lepton number violating

operator. For example, it constitutes the most general ansatz that follows from a basic

A4 symmetry for the neutrino mass matrix and the quark mixing matrix [7]. One of the

central open questions in neutrino physics is to identify the exact mechanism of producing

Fig. 1. As a first step, here we will adopt a model-independent approach of considering the

implications of Eq. (3) assuming only the evolution expected in flavor-blind softly broken

minimal supergravity at unification. This will provide us with a reference value that can be

useful in the future for treating different models of neutrino mass [8].
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Figure 1: Dimension five operator responsible for neutrino mass.

II. RADIATIVE CORRECTIONS

It has already been noted that radiative corrections present in the Standard Model renor-

malization group equations (RGEs), leave the HPS “reference” predictions essentially sta-

ble [10]. In addition to Minimal Supersymmetric Standard Model RGE evolution, here we

consider also the effect of one-loop threshold effects [11]. We will first consider the evolution

of the neutrino oscillation parameters that follow from Eq. (3), which covers both the cases

of degenerate as well as hierarchical neutrino masses. The radiatively corrected neutrino

mass matrix in this case becomes

m1-loop
ν = mtree

ν + δ̂T · mtree
ν + mtree

ν · δ̂ , (4)

where

δ̂ =







δ′ee δµe δτe

δeµ δ′µµ δτµ

δeτ δµτ δ′ττ






. (5)

The diagonal elements include the threshold correction and the RGE running

δ′αα = δαα + δα , (6)

where the RGE running effect is [12]

δα =
−h2

α

16π2
ln

(

MGUT

MEWSB

)

. (7)

In order to get the analytic expressions for the threshold corrections, we proceed as in

Ref. [13]. However, now we do not neglect Yukawa couplings, taking into account the fact

that right- and left-handed charged sleptons mix. Therefore, the analytic expressions for
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the deltas are

δ
(a)χ+

αβ =
6
∑

i=1

2
∑

A=1

1

16π2
(gU∗

A1R
ℓ̃
iα − hαU∗

A2R
ℓ̃
iα+3)(gUA1R

ℓ̃∗
iβ − hβUA2R

ℓ̃∗
iβ+3)

× B1(m
2
χ+

A

, m2
ℓ̃i

) ,

δ
(a)χ0

αβ =

3
∑

i=1

4
∑

A=1

1

32π2
|gNA2 − g′NA1|2Rν̃

iαRν̃∗
iβ B1(m

2
χ0

A

, m2
ν̃i

) ,

δ
(c)χ+

αβ =
6
∑

i=1

2
∑

A=1

2
∑

B=1

1

4π2
(gU∗

A1R
ℓ̃
iα − hαU∗

A2R
ℓ̃
iα+3)gUA1|VB2|2Rℓ̃∗

iβC00(m
2
χ+

A

, m2
χ+

B

, m2
ℓ̃i

) ,

δ
(c)χ0

αβ =

3
∑

i=1

4
∑

A=1

4
∑

B=1

1

8π2
|gNA2 − g′NA1|2|NB4|2Rν̃

iαRν̃∗
iβ C00(m

2
χ0

A

, m2
χ0

B

, m2
ν̃i

) ,

(8)

where we have evaluated the Feynman diagrams at zero external momentum, which is an

excellent approximation as the neutrino masses are tiny. Here δ
(a,c)χ+

αβ , (α, β = e, µ, τ), are

the contributions from the chargino/charged slepton diagrams in Fig. 2 (a,c), respectively,

while δ
(a,c)χ0

αβ are the contributions from the neutralino/sneutrino diagrams. The values of

the δαβ ’s, in Eqs. (5) and (6) are the sum of the four contributions given above. Analogous

contributions exist corresponding to the symmetrized terms in Eq. (4), required by the Pauli

principle, as displayed in Fig. 2 (b,d). In the above formulas, U and V are the chargino

mixing matrices and mχ+

A

, (A = 1, 2), are chargino masses, while N is the neutralino mixing

matrix with mχ0
A
, (A = 1, .., 4), denoting the neutralino masses. Finally, the matrices Rℓ̃/ν̃

denote the slepton/sneutrino mixing matrices, respectively. The coupling constant of the

SU(2) gauge group is denoted g and that of U(1) is g′. Here hα is the charged lepton Yukawa

coupling in the basis where the charged lepton masses are diagonal. Furthermore B1 and

C00 are Passarino-Veltman functions given by

B1(m
2
0, m

2
1) = −1

2
∆ǫ +

1

2
ln

(

m2
0

M2
EWSB

)

+
−3 + 4t − t2 − 4t ln(t) + 2t2 ln(t)

4(t − 1)2
, (9)

where t = m2
1/m

2
0 and

C00(m
2
0, m

2
1, m

2
2) =

1

8
(3 + 2∆ǫ)−

1

4
ln

(

m2
0

M2
EWSB

)

+
−2r2

1(r2 − 1) ln(r1) + 2r2
2(r1 − 1) ln(r2)

8(r1 − 1)(r2 − 1)(r1 − r2)
,

(10)

where r1 = m2
1/m

2
0 and r2 = m2

2/m
2
0. We have used dimensional regularization, with ǫ = 4−n

and n is the number of space-time dimensions. The term ∆ǫ = (2/ǫ) − γ + 4 ln(4π), where

γ is Euler’s constant, is divergent as ǫ → 0.
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Figure 2: Feynman diagrams responsible for neutrino mass radiative corrections. The blob indicates

an effective Lagrangian term obtained from integrating out the heavy right-handed neutrinos

III. CORRECTIONS TO MIXING ANGLES: NUMERICAL RESULTS

We now describe our numerical procedure. In order to compute the magnitude of the

radiative corrections expected in the HPS anzatz we work in the framework of a refer-

ence minimal supergravity model approach, with universal flavor-blind soft supersymmetry

breaking terms at unification. Therefore the off-diagonal elements in the matrix in Eq. (5)

are all zero 1

δeµ = δeτ = δµτ = δµe = δτe = δτµ = 0 . (11)

We first have used the SPheno package [14] to calculate spectra and mixing matrices

within mSUGRA within the ranges: M1/2, M0, A0 ∈ [100, 1000] GeV, A0 with both signs,

tan β ∈ [2.5, 50] and µ with both signs. Then we have calculated the RGE running, Eq. (7),

and the threshold corrections, Eqs. (8). We have explicitly checked that the dominant

contribution to δ′αα, defined in Eq. (6), always comes from the threshold corrections for

α = e, µ. Also for α = τ , threshold corrections are usually more important than RGE

running contributions, typically

δαα ∼ O(10(−4,−3)) , ∀α (12)

1 Nonzero off-diagonal elements may arise due to running, see discussion.
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while

δe ∼ O(10(−11,−9)) δµ ∼ O(10(−7,−4)) δτ ∼ O(10(−4,−2)) . (13)

Note that only for very large values of tanβ, the RGE effect δτ is slightly larger than the

threshold corrrections δττ . Using these radiative corrections we have computed the delta

matrix in Eq. (5) and inserted it in the neutrino mass matrix at 1-loop given in Eq. (4). We

have then numerically diagonalized the 1-loop neutrino mass matrix in Eq. (4) in order to

obtain the neutrino masses and mixing angles.

Notice that the HPS scheme only fixes neutrino mixing angles. Thus, the neutrino masses

are free parameters. Making use of this freedom, we have used an iterative procedure in order

to choose the parameters m1, m2 and m3, so that the numerically calculated 1-loop neutrino

masses are such that the solar and atmospheric squared-mass splittings ∆m2
sol

and ∆m2
atm

reproduce the current best fit point value. In our numerical calculation we concentrate on

normal hierarchy. We will comment on the case of inverse hierarchy at the end of the next

section.

The numerically calculated atmospheric and reactor neutrino mixing angles at low ener-

gies do not deviate significantly from its HPS reference value at high energies. Indeed, the

numerical results are:

tan2 θatm . tan2 θ0
23 + O(10−1) ,

sin2 θChooz . sin2 θ0
13 + O(10−7) .

(14)

However, the solar neutrino mixing angle can be significantly affected. In Fig. 3, we

have plotted the maximum deviation of the solar angle from the HPS reference value for

tan β ∈ [2.5, 50], as a function of mν1
, for both extreme CP parity combinations for mν1

and

mν2
: same sign (left panel) and opposite sign (right panel). All the other CP possiblities

lie in between these two extreme cases. As can be seen, the solar mixing angle remains

essentially stable in the case of opposite CP signs, while deviations are maximal in the case

of same CP signs. In this case, the solar mixing angle always increases with respect to the

HPS value, irrespective of mSUGRA parameters. Moreover we can get a rough upper bound

on mν1
of order

mν1
<∼ 0.2 eV (15)

for the mSUGRA parameter values: M1/2 = 100 GeV, M0 = −A0 = 103 GeV, µ > 0 and

tan β = 2.5. Note that the upper bound is sensitive to the values of tanβ. For higher values

of tanβ the radiative corrections are larger, implying a more stringent bound on mν1
, as

indicated by the upper boundary of the red (dark) band of the left panel in Fig. 3. Here

we have fixed solar and atmospheric mass squared splittings at their best-fit values from
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Ref. [6]. However, we have explicitly checked that the effect of letting ∆m2
atm

and ∆m2
sol

vary within their current 3σ allowed range is negligible, i. e. the bands obatined at the

extreme values almost coincide with the ones in Fig. 3.

10
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Figure 3: Upper bound for the solar mixing parameter tan2 θsol, as a function of mν1
(in eV),

for tan β = 2.5 (lower border of the red band) and tanβ = 50 (upper border of the red band).

On the left panel, mν1
and mν2

have the same CP sign. On the right panel, mν1
and mν2

have

opposite CP sign. The neutrino mass splittings are assumed to have their best fit value from [6].

The horizontal band corresponds to the 3σ allowed range for tan2 θsol [6].

IV. ANALYTICAL UNDERSTANDING

The numerical results presented above can be understood analytically as follows. If we

perform the original HPS rotation to the 1-loop neutrino mass matrix in Eq. 4, we get:

m̂1-loop
ν = UT

HPS · m1-loop
ν · UHPS (16)

=











(1 + δ11)m1 δm1

12 m1 + δm2

12 m2 δm1

13 m1 + δm3

13 m3

δm1

12 m1 + δm2

12 m2 (1 + δ22)m2 δm2

23 m2 + δm3

23 m3

δm1

13 m1 + δm3

13 m3 δm2

23 m2 + δm3

23 m3 (1 + δ33)m3











, (17)

where

δ11 =
1

3
(4δ′ee + δ′µµ + δ′ττ − 2δeµ − 2δµe − 2δeτ − 2δτe + δµτ + δτµ) ,

δ22 =
2

3
(δ′ee + δ′µµ + δ′ττ + δeµ + δµe + δeτ + δτe + δµτ + δτµ) ,

δ33 = δ′µµ + δ′ττ − δµτ − δτµ ,
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δm1

12 =
1

3
√

2
(2δ′ee − δ′µµ − δ′ττ − δeµ + 2δµe − δeτ + 2δτe − δµτ − δτµ) ,

δm2

12 =
1

3
√

2
(2δ′ee − δ′µµ − δ′ττ + 2δeµ − δµe + 2δeτ − δτe − δµτ − δτµ) , (18)

δm1

13 =
1

2
√

3
(δ′µµ − δ′ττ − 2δµe + 2δτe + δµτ − δτµ) ,

δm3

13 =
1

2
√

3
(δ′µµ − δ′ττ − 2δeµ + 2δeτ − δµτ + δτµ) ,

δm2

23 =
1√
6
(−δ′µµ + δ′ττ − δµe + δτe − δµτ + δτµ) ,

δm3

23 =
1√
6
(−δ′µµ + δ′ττ − δeµ + δeτ + δµτ − δτµ) .

The matrix in Eq. (17) should be nearly diagonal and its off-diagonal elements determine

the deviations from tri-bimaximality. We define the following parameters characterizing the

deviations from tri-bimaximality:

ǫij ≃
1

2
tan(2ǫij) =

(m̂1-loop
ν )ij

(m̂1-loop
ν )jj − (m̂1-loop

ν )ii

, (19)

so that

θatm ≡ θ23 ≃ θ0
23 + ǫ23 ,

θChooz ≡ θ13 ≃ θ0
13 + ǫ13 ,

θsol ≡ θ12 ≃ θ0
12 + ǫ12 .

(20)

Substituting the matrix elements in Eq. (17) into Eq. (19), we get:

ǫ23 =
δm2

23 m2 + δm3

23 m3

(−1 − δ22)m2 + (1 + δ33)m3
, (21)

ǫ13 =
δm1

13 m1 + δm3

13 m3

(−1 − δ11)m1 + (1 + δ33)m3
, (22)

ǫ12 =
δm1

12 m1 + δm2

12 m2

(−1 − δ11)m1 + (1 + δ22)m2
. (23)
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Taking into account that for mSUGRA the off-diagonal elements in the matrix in Eq. (5)

are all zero, see Eq.(11), the δ’s in Eq. (18) become

δ11 = δ0
11 =

1

3
(4δ′ee + δ′µµ + δ′ττ ) ,

δ22 = δ0
22 =

2

3
(δ′ee + δ′µµ + δ′ττ ) ,

δ33 = δ0
33 = δ′µµ + δ′ττ ,

δm1

12 = δm2

12 = δ0
12 =

1

3
√

2
(2δ′ee − δ′µµ − δ′ττ ) ,

δm1

13 = δm3

13 = δ0
13 =

1

2
√

3
(δ′µµ − δ′ττ ) ,

δm2

23 = δm3

23 = δ0
23 =

−1√
6
(δ′µµ − δ′ττ ) .

(24)

The deviations of the neutrino mixing angles from the HPS value given in Eqs. (21-23) then

become

ǫ23 =
δ0
23(m2 + m3)

(−1 − δ0
22)m2 + (1 + δ0

33)m3

, (25)

ǫ13 =
δ0
13(m1 + m3)

(−1 − δ0
11)m1 + (1 + δ0

33)m3

, (26)

ǫ12 =
δ0
12(m1 + m2)

(−1 − δ0
11)m1 + (1 + δ0

22)m2
. (27)

If ǫ12, given in Eq. (27), is always positive, θsol can only increase, see Eq. (20). The denom-

inator in Eq. (27) can be approximated to

(−1 − δ0
11)m1 + (1 + δ0

22))m2 ≃ −m1 + m2 > 0 (28)

and hence, by assumption, is always positive. The sign of ǫ12 will be the sign of δ0
12 given by

Eq. (24). Considering the expressions for the deltas given in Eq. (8) and bearing in mind

that the Passarino-Veltmann functions depend rather smoothly on their arguments, we can

take them out of the sum. The following very rough estimations of the threshold corrections

result

δαα ≃ 1

32π2
(3g2(B1 + 4C00) + g′2(B1 + 4C00)) , (α = e, µ) ,

δττ ≃ 1

32π2
(3g2(B1 + 4C00) + g′2(B1 + 4C00) + 2h2

τB1) ,
(29)

where we have neglected the charged lepton Yukawa couplings for α = e, µ. Using

lim
m2

L̃i

→∞

B1(m
2
χA

, m2
L̃i

)

C00(m2
χA

, m2
χB

, m2
L̃i

)
= −2 , (30)
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Eq. (29) becomes

δαα ≃ −B1

32π2
(3g2 + g′2) , (α = e, µ) ,

δττ ≃ −B1

32π2
(3g2 + g′2 − 2h2

τ ) .

(31)

Therefore, the contribution of the threshold corrections to δ0
12 is roughly

2δee − δµµ − δττ ≃ −B1

16π2
h2

τ . (32)

Besides the threshold correction contributions, one has also to consider the RGE running

contribution. Here the dominant part obviously is δτ , given in Eq. (7). The approximated

expression for δ0
12, defined in Eq. (27), is then

δ0
12 ≃

1

3
√

2
(2δee − δµµ − δττ − δτ ) ≃

1

3
√

2

h2
τ

16π2

[

−B1 + ln

(

MGUT

MEWSB

)]

. (33)

Considering that in the limit where the slepton mass goes to infinity, the Passarino-Veltman

function B1 behaves as

lim
m2

L̃i

→∞
B1(m

2
χA

, m2
L̃i

) ≃ 1

2
ln

(

m2
L̃i

m2
χA

)

, (34)

one obtains, from Eq. (33),

δ0
12 ≃

1

3
√

2
(2δee − δµµ − δττ − δτ ) ≃

1

3
√

2

h2
τ

16π2

[

ln

(

MGUT

MEWSB

)

− ln

(

mL̃i

mχA

)]

, (35)

which is always positive, thus explaining why ǫ12 > 0. Note that although the threshold

corrections are in general larger than the RGE contributions, in δ0
12 there is a cancellation

among the threshold corrections so that the δτ RGE contribution becomes the relevant term.

We have numerically checked that

2δee − δµµ − δττ ∼ O(10(−6,−3)) . (36)

This cancellation among the threshold corrections is the reason why the solar neutrino

mixing angle can only increase with respect its HPS reference value.

We now turn to the other two neutrino mixing angles. In the mSUGRA framework

the deviations from the HPS predictions are much smaller than found for the solar mixing

parameter, and fit within their current experimental 3σ allowed range given in Ref. [6] for

acceptable mν1
values. The reason for this can be understood from Eqs. (25-27). On the

one hand, the deltas on the numerators, given by Eq. (24), are all of the same order. For

small values of mν1
the deviations are all negligible, since they are all proportional to the
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previous deltas. For large mν1
values the neutrino masses are nearly degenerate so that the

numerators in Eqs. (25-27) are all of the same order. The denominators in Eqs. (25-27) can

be approximated as

(−1 − δ0
22)m2 + (1 + δ0

33)m3 ≃ m3 − m2 , (37)

(−1 − δ0
11)m1 + (1 + δ0

33)m3 ≃ m3 − m1 , (38)

(−1 − δ0
11)m1 + (1 + δ0

22)m2 ≃ m2 − m1 . (39)

Although these mass differences are very small, m3 − m2 and m3 − m1 are larger than

m2 − m1, thus making ǫ23 and ǫ13 smaller than ǫ12.

We now comment briefly on inverse hierarchy. As can be seen from Eqs. (37-39), for

inverse hierarchy, m2 − m1 is still much smaller than m3 − m2 or m3 − m1, while the latter

two just change sign but not the magnitude. We therefore expect that the above discussion

remains essentially correct also for inverse hierarchy.

We should stress that we have considered so far the CP conserving case HPS ansatz,

with same-CP -sign neutrino mass eigenvalues,

m1, m2, m3 > 0 . (40)

However, for all other CP combinations the denominators in Eqs. (25-27) are larger such

that the deviations from HPS mixing pattern become smaller and correspondingly relax the

bound in Eq. (15). In particular for the case of opposite CP signs there is no bound, as seen

in right panel in Fig. 3.

V. SUMMARY AND DISCUSSION

We have studied the stability of the HPS mixing ansatz that could arise from a flavor sym-

metry valid at some high energy scale, against supersymmetric radiative corrections (RGE

running and threshold effects). We have adopted a model-independent minimal supergravity

framework where supersymmetry breaking is universal and flavor-blind at unification. In

this case we have found that the solar mixing angle can only be increased with respect to

the HPS reference value. Under the assumption that all neutrino masses have the same

CP -sign, this sets a rough upper bound on the mass of the lightest neutrino which, in turn,

implies that the neutrinoless double beta decay rate is also bounded as a function of the

mSUGRA parameters. In contrast, in the case of opposite CP signs there is no bound on

the lightest neutrino mass. We have also shown that the atmospheric and reactor mixing

angles remain essentially stable in all cases. It should not be surprising that the effect of

radiative corrections is more important for the solar angle than for the others. It simply

reflects the fact that the solar is the smallest of the two neutrino mass splittings.
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We stress that in our approach we have assumed only that the matrix mtree
ν is diagonalized

by the HPS matrix at the unification scale and this gets modified only by minimal supergrav-

ity radiative corrections, universal and flavor-blind at unification. This concerns the struc-

ture of the dimension-five operator, Fig. 1. Additional radiative corrections [12] to the solar

angle HPS prediction are expected, if the neutrino mass arises a la seesaw [15, 16, 17, 18].

Their magnitude will be determined by the strength of the Yukawa coupling characterizing

the Dirac neutrino mass entry in the seesaw mass matrix [19]. This will depend strongly

on the details of the model, in particular, on whether Higgs triplets are present in the see-

saw [17] or on whether the seesaw is extended [20]. Scrutinizing the schemes for which it

is possible to decrease the solar mixing angle value predicted by the HPS mixing pattern

towards its currently preferred best fit point value will be considered elsewhere [21], together

with the related issue of the lepton flavor violating processes that would be expected in these

schemes.
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