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Abstract
We study the mass spectra, production and decay properties of the lightest supersymmetric

CP-even and CP-odd Higgs bosons in models with spontaneously broken R-parity (SBRP). We

compare the resulting mass spectra with expectations of the Minimal Supersymmetric Standard

Model (MSSM), stressing that the model obeys the upper bound on the lightest CP-even Higgs

boson mass. We discuss how the presence of the additional scalar singlet states affects the Higgs

production cross sections, both for the Bjorken process and the “associated production”. The main

phenomenological novelty with respect to the MSSM comes from the fact that the spontaneous

breaking of lepton number leads to the existence of the majoron, denoted J , which opens new

decay channels for supersymmetric Higgs bosons. We find that the invisible decays of CP-even

Higgses can be dominant, while those of the CP-odd bosons may also be sizeable.
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I. INTRODUCTION

Unveiling the mechanism of symmetry breaking and mass generation constitutes one of

the main goals in the agenda of upcoming accelerators, like CERN’s Large Hadron Collider

(LHC) and the International Linear Collider (ILC). Precision electroweak data currently hint

that the mechanism responsible for electroweak symmetry breaking [1] involves a weakly-

coupled Higgs sector, as predicted by supersymmetry. Supersymmetry also stabilizes the

Higgs boson mass against quadratic divergences, thus accounting for the hierarchy between

the electroweak and the Planck scales in a technically natural way. A very exciting pos-

sibility is that the experimentally observed [2, 3, 4] neutrino masses and mixings [5] have

a supersymmetric origin [6]. The key requirement for this to be possible is that R–parity,

defined as Rp = (−1)3B+L+2S (with S, B, L denoting spin, baryon and lepton numbers,

respectively) be violated. The simplest way to do this is through a bilinear term in the

superpotential.

The resulting model is interesting in two ways. First it provides the most economical

description of R-parity violation as a “perturbation” to the Minimal Supersymmetric Stan-

dard Model: it may be taken as the reference R-parity violation model, which we may

call RMSSM [7]. The model offers a minimal low-scale mechanism to generate neutrino

masses, that successfully accounts for the observed pattern of neutrino masses and mixing

[8, 9] 1. In contrast to the seesaw mechanism, it makes well defined predictions that will

be tested at upcoming colliders LHC/ILC, namely, the decay branching ratios of the light-

est supersymmetric particle are related to the neutrino mixing angles measured in neutrino

experiments [12].

On the other hand the model also provides the simplest effective description of theories

where the breaking of R-parity occurs spontaneously, like that of the electroweak gauge

symmetry itself, due to the existence of non-zero singlet sneutrino vacuum expectation

values (vevs) [13, 14, 15, 16]. A general feature of models where neutrino masses arise

from low-scale spontaneous violation of ungauged lepton number is that the lightest CP-

even supersymmetric Higgs boson will have an important decay channel into the singlet

Goldstone boson (called majoron) associated to lepton number violation [17]:

h→ JJ . (1)

Thus the Higgs boson may decay mainly to an invisible mode characterized by missing

energy, instead of the Standard Model channels. This general possibility can also be realized

in spontaneously broken R–parity supersymmety [18].

We have recently reanalyzed this suggestion in view of the data on neutrino oscillations

that indicate non-zero neutrino masses [19]. We found that this proposal remains valid,

1 For papers dealing with trilinear terms see, for example [10, 11].
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despite the smallness of neutrino masses required to fit current neutrino oscillation data [5].

In Ref. [19] we have shown explicitly that the invisible decays of the lightest CP-even Higgs

boson can be dominant, unsuppressed by the small neutrino masses, for the same parameter

values for which Higgs production in e+e− annihilation is comparable in cross section to

that characterizing the standard case. A necessary ingredient in this case is the existence of

an SU(2) ⊗ U(1) singlet superfield Φ coupling to the electroweak doublet Higgses, which

may provide a solution to the so-called µ-problem.

In this follow-up paper we extend the analysis and study in detail the possibility that

the lightest CP-even Higgs boson is produced also in association with a CP-odd boson in

electron-positron collisions. The first aspect to consider is the theoretically expected mass

spectra of CP-even and CP-odd scalar bosons. An important feature of any supersymmetric

model is the existence of an upper bound on the mass of the lightest CP-even scalar boson.

We verify explicitly that this feature emerges in the present model. We also explain how the

supersymmetric Higgs boson mass upper limit should be understood in terms of the SBRP

model fields.

Then we turn to the Higgs production cross sections. Although individual Higgs boson

production cross sections, via the familiar Bjorken process or the associated mode, are

potentially suppressed with respect to those of the MSSM, given enough center-of-mass

energy and luminosity, all Higgses can be potentially explored due to unitarity. We carefully

analyze the decay properties of the first and second lightest Higgs bosons. The case of the

lightest CP-even Higgs boson was already considered in Ref. [19]. We revisit this case, and

confirm that the invisible dacay mode for either the first or the second lightest CP-even

Higgs boson can easily dominate, in contrast to that of the lightest CP-odd which may arise

at subleading level up to 20 % level at most.

II. THE MODEL

For completeness we recall here the main ingredients of the model. In addition to the

Minimal Supersymmetric Standard Model superfields it contains SU(2) ⊗ U(1) singlet

superfields (ν̂c
i , Ŝi, Φ̂) carrying lepton number assigned as (−1, 1, 0). With this choice the

most general superpotential terms conserving lepton number are given as [18]

W=εab

(
hij

U Q̂a
i ÛjĤ

b
u + hij

DQ̂b
iD̂jĤ

a
d + hij

EL̂b
i ÊjĤ

a
d + hij

ν L̂a
i ν̂

c
j Ĥ

b
u− µ̂Ĥa

d Ĥb
u− (h0Ĥ

a
d Ĥb

u + δ2)Φ̂
)

+ hijΦ̂ν̂c
i Ŝj + M ij

R ν̂c
i Ŝj +

1

2
MΦΦ̂2 +

λ

3!
Φ̂3 . (2)

The first three terms together with the µ̂ term define the R-parity conserving MSSM, the

terms in the last row involve only couplings among the SU(2) ⊗ U(1) singlet superfields

(ν̂c
i , Ŝi, Φ̂). The remaining terms couple the singlets to the MSSM fields. We stress the
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importance of the Dirac-Yukawa term which connects the right-handed neutrino superfields

to the lepton doublet superfields, thus fixing lepton number.

Like all other Yukawa couplings in general hν is an arbitrary non-symmetric complex

matrix in generation space. However, for technical simplicity we will consider only the case

with just one pair of lepton–number–carrying SU(2) ⊗ U(1) singlet superfields, ν̂c and Ŝ,

in order to avoid inessential complication. This in turn implies, hij → h and hij
ν → hi

ν .

The scalar potential along neutral directions is given by

Vtotal = |hΦS̃ + hi
ν ν̃iHu + MRS̃|2 + |h0ΦHu + µ̂Hu|2 + |hΦν̃c + MRν̃c|2 (3)

+| − h0ΦHd − µ̂Hd + hi
ν ν̃iν̃c|2 + | − h0HuHd + hν̃cS̃ − δ2 + MΦΦ +

λ

2
Φ2|2

+

3∑

i=1

|hi
ν ν̃

cHu|2 +
[
AhhΦν̃cS̃ − Ah0

h0ΦHuHd + Ahν
hi

ν ν̃iHuν̃c −Bµ̂HuHd

−Cδδ
2Φ + BMR

MRν̃cS̃ +
1

2
BMΦ

MΦΦ2 +
1

3!
AλλΦ3 + h.c.

]

+
∑

α

m̃2
α|zα|2 +

1

8
(g2 + g′2)

(
|Hu|2 − |Hd|2 −

3∑

i=1

|ν̃i|2
)2

,

where zα denotes any neutral scalar field in the theory. For simplicity we assume CP

conservation in the scalar sector, taking all couplings real.

Electroweak symmetry breaking is driven by the isodoublet vevs 〈Hu〉 = vu√
2

and 〈Hd〉 =
vd√
2
, with the combination v2 = v2

u + v2
d +

∑
i v

2
Li fixed by the W mass, while the ratio of

isodoublet vevs yields tan β = vu

vd
. Here, vLi√

2
are the vevs of the left-scalar neutrinos. They

vanish in the limit where hi
ν → 0. In this limit R–parity is restored and neutrinos become

massless, as in the MSSM, and, apart from Φ, the extra singlets become phenomenologically

irrelevant, one reaches the NMSSM limit [20, 21].

The spontaneous breaking of R-parity is driven by nonzero vevs for the right-scalar neu-

trinos. The scale characterizing R-parity breaking is set by the isosinglet vevs
〈
ν̃c

〉
= vR√

2

and 〈S̃〉 = vS√
2
. Finally, 〈Φ〉 = vΦ√

2
gives a contribution to the µ–term.

With the above choices and definitions we can obtain the neutral scalar boson mass

matrices as described in Ref. [14]. This results in 8 × 8 mass matrices for the real and

imaginary parts of the neutral scalars. Their complete definition can be found in [19].

The spontaneous breaking of SU(2) ⊗ U(1) and lepton number leads to two Goldstone

bosons, namely G0 , the one “eaten” by the Z0, as well as J , the majoron. In the basis

P ′0 = (H0I
d , H0I

u , ν̃1I , ν̃2I , ν̃3I , ΦI , S̃I , ν̃cI) these fields are given as,

G0 = (N0 vd,−N0 vu, N0 vL1, N0 vL2, N0 vL3, 0, 0, 0)

J = N4(−N1vd, N1vu, N2vL1, N2vL2, N2vL3, 0, N3vS,−N3vR) , (4)
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where the normalization constants Ni are given as

N0 =
1√

v2
d + v2

u + v2
L1 + v2

L2 + v2
L3

N1 = v2
L1 + v2

L2 + v2
L3

N2 = v2
d + v2

u

N3 = N1 + N2

N4 =
1√

N2
1 N2 + N2

2 N1 + N2
3 (v2

R + v2
S)

(5)

and can easily be checked to be orthogonal, i. e. they satisfy G0 · J = 0.

The neutrino masses and mixings arising from this model [19] have been shown to repro-

duce the current data on neutrino oscillations that indicate non-zero neutrino masses [5].

Since neutrino masses are so much smaller than all other fermion mass terms in the model,

once can find the effective neutrino mass matrix in a seesaw–type approximation. After

some algebraic manipulation, the effective neutrino mass matrix can be cast into a very

simple form

(meff

νν
)ij = aΛiΛj + b(ǫiΛj + ǫjΛi) + cǫiǫj , (6)

where one can define the effective bilinear R–parity violating parameters ǫi and Λi as

ǫi = hi
ν

vR√
2

(7)

and

Λi = ǫivd + µvLi
. (8)

Here the parameter µ is

µ = µ̂ + h0

vΦ√
2

, (9)

while the coefficients appearing in Eq. (6) are given in Ref. [19]. Eq. (6) resembles closely the

structure found for the explicit bilinear model at the one-loop level. However, the coefficients

are different, see [19].

Neutrino physics puts a number of constraints on the parameters Λi and ǫi. For the

current paper, however, exact details are unimportant, the most essential constraint for the

following discussion is that hi
ν ≪ 1 is required. (See later discussion of left-sneutrino mixing.

In the limit hi
ν = 0 left-sneutrinos do not mix at all with Higgses and singlets).

The requirement that vLi
≪ v can be used to find a simple approximation formula for

the majoron, given by

J ≃ (
−vdv

2
L

V v2
,
vuv

2
L

V v2
,
vL1

V
,
vL2

V
,
vL3

V
, 0,

vS

V
,−vR

V
) , (10)

where V 2 = v2
S + v2

R. Thus, the majoron is essentially made up of the ν̃c and S̃ fields. This

will be important later, when we discuss the decays of the Higgs bosons.
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III. HIGGS SPECTRUM

Let us first briefly discuss the spectrum of the scalar and pseudo-scalar sectors in the

model. For detailed definitions we refer the reader to Ref. [19]. Since these mass matri-

ces are too complicated for analytic diagonalization, we will solve the exact eigensystems

numerically. However, before doing that, we discuss certain limits, where some simplifying

approximations are made. This allows us to gain some insight into the nature of the spectra.

In the SBRP model there are 8 neutral CP-even states S0
i . In the neutral CP-odd sector

there are six massive states P 0
i (i = 1, . . . , 6), in addition to the majoron J , with mJ = 0,

and the Goldstone G0. We introduce the convention, to be discussed below:

(
S0

)T
= (Sh0 , SH0, SJ , SJ⊥

, SΦ, Sν̃i
) (11)

(
P 0

)T
=

(
PA0 , PJ⊥

, PΦ, Pν̃i
, J, G0

)
.

Note, that the ordering of these states is not by increasing mass, as we have defined P 0
i

(i = 1, . . . , 6) as the massive states.

First we note that all entries in the sub-matrices which mix the left-sneutrinos to the

doublet Higgses and the singlet states are proportional to hi
ν . In the region of parameters

where the model accounts for the observed neutrino masses we must have that ǫi = hi
νvR/
√

2

is necessarily a small number and therefore hi
ν ≪ 1. Thus, left sneutrinos mix very little

with the other (pseudo-)scalars, unless entries in the sneutrino sector are, by chance, highly

degenerate with the ones in the other sectors. The real (imaginary) parts of these nearly-

sneutrino states are denoted by Sν̃i
(Pν̃i

) in the definition given above. Barring fine-tuned

situations, we conclude that mixing between Higgses and left sneutrinos will, in general, be

small.

Consider now the pseudoscalar sector,

M
P

2

=




M
P2

HH
M

P2

HL̃
M

P2

HS

M
P2

HL̃

T
M

P2

L̃L̃
M

P2

L̃S

M
P

2

HS

T
M

P
2

L̃S

T
M

P
2

SS


 , (12)

where M
P2

HH
is a symmetric 2 × 2 matrix, M

P2

L̃L̃
and M

P2

SS
are symmetric 3 × 3 matrices,

while M
P2

HL̃
and M

P2

HS
are 2×3 matrices and finally MP 2

L̃S
is (a non-symmetric) 3×3 matrix.

In this notation L̃ denotes the sneutrinos and S the singlet fields.

Neglecting terms proportional to hi
ν , M

P2

HH
can be written as

M
P2

HH
=

[
Ωvu

vd
Ω

Ω Ω vd

vu

]
, (13)
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where 2

Ω = Bµ̂− δ2h0 +
λ

4
h0v

2
Φ +

1

2
hh0vRvS +

√
2

2
Ah0

h0vΦ +

√
2

2
h0MΦvΦ . (14)

Note the presence of h0-dependent terms in Eq. (14). If there were no mixing between the

doublet and singlet Higgses, Eq. (13) would yield the eigenvalues,

m2
1,2 =

(
0, Ω(

vu

vd

+
vd

vu

)
)

, (15)

with the massless state identified as the Goldstone boson, G0, and the other state as the

pseudo-scalar Higgs A0 of the MSSM, with

m2
A0 =

2Ω

sin 2β
. (16)

The state most closely resembling the MSSM A0, i.e. the state remaining in the spectrum

when singlets are decoupled is called PA0 in Eq. (11). The sub-matrix M
P

2

SS
, on the other

hand, in the limit hi
ν = 0, can be written as,

M
P2

SS
=




MP 2

SS11
MP 2

SS12
MP 2

SS13

MP 2

SS12
−ΓvR

vS
−Γ

MP 2

SS13
−Γ −Γ vS

vR


 , (17)

where,

MP 2

SS11
= δ2 (Cδ + MΦ)

√
2

vΦ

−
√

2

2
(v2

d + v2
u)

h0µ̂

vΦ

−
√

2

4
λ (3Aλ + MΦ) vΦ

− 2BMΦ
MΦ −

√
2

2
h (Ah + MΦ)

vRvS

vΦ

+

√
2

2
h0 (Ah0

+ MΦ)
vuvd

vΦ

+ 2δ2λ + λh0 vuvd − λh vRvS −
√

2

2
h MR

v2
S + v2

R

vΦ

, (18)

MP 2

SS12
= − 1√

2
h(Ah − M̂Φ)vR , (19)

MP 2

SS13
= − 1√

2
h(Ah − M̂Φ)vS . (20)

Here M̂Φ = MΦ + λvΦ/
√

2 and

Γ = BMR
MR − δ2h +

1

4
hλv2

Φ −
1

2
hh0vuvd +

√
2

2
h (Ah + MΦ) vΦ . (21)

2 We correct a misprint in Ref. [19].
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Eq. (17) has one zero eigenvalue, approximately identified with the majoron, J , and two

non-zero eigenvalues. If MP 2

SS12
, MP 2

SS13
≪ MP 2

SS11
+ Γ then the eigenvalues of Eq. (17) are

approximately given by

m2
1,2,3 =

(
0, − Γ(

vR

vS
+

vS

vR
)− 1

2

h2(Ah − M̂Φ)2v2
Rv2

S

MP 2

SS11
vRvS + Γ(v2

R + v2
S)

+ · · · ,

MP 2

SS11
+

1

2

h2(Ah − M̂Φ)2vRvS(v2
R + v2

S)

MP 2

SS11
vRvS + Γ(v2

R + v2
S)

+ · · ·
)

, (22)

where the dots stand for higher order terms. The eigenvalue proportional to Γ is mainly a

combination of S̃I , ν̃cI fields and we call it PJ⊥
in Eq. (11) above, because in the limit where

mPΦ
→∞ and vLi

→ 0 this massive state is orthogonal to the majoron. As we will discuss

below, it is this state which preferably decays invisibly. The third eigenvalue in Eq. (22) is

an approximation to the state called PΦ above. Due to mixing between doublet and singlet

states both Eq. (15) and Eq. (22), are only very crude estimates.

Consider the scalar sector of the model,

M
S2

=




M
S

2

HH
M

S
2

HL̃
M

S
2

HS

M
S

2

HL̃

T
M

S
2

L̃L̃
M

S
2

L̃S

M
S2

HS

T
M

S2

L̃S

T
M

S2

SS


 , (23)

where the blocks have the same structure as before. M
S

2

HH
contains two eigenvalues which,

in the limit of zero mixing, would be identified with the MSSM states h0 and H0. 3 These

states are the ones called Sh0 and SH0 in Eq. (11) above.

The sub-matrix M
S

2

SS
contains, in general, three non-zero eigenvalues. One can find an

approximate analytic expression for them in the limit that the state SΦ is much heavier than

the remaining two eigenstates (called SJ and SJ⊥
). Again in the limit of small mixing, the

eigenvalues of the latter are approximately given by

m2
1,2 =

(
2h2 v2

Rv2
S

(v2
R + v2

S)
+ · · · ,−Γ(

vR

vS

+
vS

vR

)− 2h2 v2
Rv2

S

(v2
R + v2

S)
+ · · ·

)
(24)

The first (second) of the eigenvalues in Eq. (24) is approximately the state SJ (SJ⊥
).

Fig. 1, to the left, shows an example of the four lowest lying eigenvalues in the CP-even

sector, as a function of Γ for a random but fixed choice of the remaining parameters. One

of the states, SJ⊥
, which is mainly singlet, is proportional to Γ, as indicated by Eq. (24).

There is another singlet state, corresponding to SJ of Eq. (24), and two mainly doublet

states, identified with Sh0 and SH0 . We note in passing that mS
H0

is proportional to Ω, as

in the MSSM. Mixing between singlet and doublet states will be important always if the

3 As in the MSSM, there is an upper limit for the mass of the Sh0 , see the discussion below.

8



eigenvalues are comparable, as for the example shown in the figure. Thus, all the discussion

above should be taken as qualitative only.

The right panel in Fig. 1 shows an example of the two lightest massive CP-odd eigenvalues

as a function of Γ for a fixed but random set of other parameters. That one eigenvalue is

proportional to Γ is obvious from Eq. (22). We note that Ω and Γ are the main parameters

which will determine associated production and influence the branching ratio into invisible

states, as we will discuss in the following sections. The model clearly exhibits decoupling,

100 120 140 160

√

Γ [GeV]

0
25
50
75

100
125
150
175

200

m
S0 1,

2,
3,

4
[G

eV
]

100 120 140 160

√

Γ [GeV]

100

125

150

175

200

225

m
P

0 1,
2

[G
eV

]

Figure 1: Typical CP-even (left) and CP-odd (right) Higgs masses as function of the parameter

Γ. In this example there are four light CP-even states and two light massive CP-odd states (plus

two massless states, G0 and J , not shown). Just as in the MSSM there is always one light doublet

state, coinciding with h0 in the limit of zero mixing. Other states can (but need not) be light,

depending on the parameters Ω and Γ, see text.

just as the MSSM. In the limit where Ω goes to infinity the masses of both states PA0 and

SH0 go to infinity, just as what happens in the MSSM when mA0 goes to infinity. The states

SJ⊥
and PJ⊥

are decoupled in the limit as Γ goes to infinity. If, in addition, we require

h≪ 1 also SJ decouples and the SM Higgs phenomenology is recovered, as in the MSSM.

IV. HIGGS BOSON PRODUCTION

Supersymmetric Higgs bosons can be produced at an e+e− collider through their couplings

to Z0, via the so–called Bjorken process (e+e− → Z0S0
i ), or via the associated production

mechanism (e+e− → S0
i P

0
j ). In our SBRP model there are 8 neutral CP-even states S0

i and

6 massive neutral CP-odd Higgs bosons P 0
i , in addition to the majoron J and the Goldstone

G0, see Eq. (11).

One must diagonalize the (pseudo-)scalar boson mass matrices in order to find the cou-

9



plings of the scalars to the Z0. After doing that we obtain the Lagrangian terms

L ⊃
8∑

i=1

(
√

2GF )1/2M2
ZZ0

µZ
0µ ηBi

S0
i +

8∑

i,j=1

(
√

2GF )1/2MZ ηAij

(
Z0µS0

i

←→
∂µ P 0

j

)
(25)

with each ηBi
given as a weighted combination of the five SU(2) ⊗ U(1) doublet scalars,

ηBi
=

vd

v
RS0

i1 +
vu

v
RS0

i2 +

3∑

j=1

vLj

v
RS0

ij+2 (26)

and the ηAij
given by

ηAij
= RS0

i1 RP 0

j1 − RS0

i2 RP 0

j2 +

3∑

k=1

RS0

ik+2R
P 0

jk+2 (27)

where the subscripts B and A refer, respectively, to the Bjorken process or associated pro-

duction mechanisms. From these Lagrangian terms we can easily derive the production cross

sections. These are simple generalizations of the MSSM results [22, 23] and for completeness

we give them in Appendix A.

In the MSSM, there are two sum rule rules, one concerning only the CP even sector

η2
B

h0
+ η2

B
H0

= 1 , (28)

and another relating the Bjorken and the associated production mechanisms,

η2
B

h0
+ η2

A
h0A0

= 1 , (29)

with ηB
h0

= sin(α− β) and ηA
h0A0

= ηB
H0

= cos(α− β), in an obvious notation.

It is very easy, and instructive, to use our expressions for ηA and ηB to recover the MSSM

result in the limit that we have only the Hd and Hu doublets. In fact, in this case

vd

v
= RP 0

22 ,
vu

v
= RP 0

21 , (30)

so we have

ηB
h0

= RP 0

22 RS0

11 +RP 0

21 RS0

12 , ηB
H0

= RP 0

22 RS0

21 +RP 0

21 RS0

22 , ηA
h0A0

= RP 0

21 RS0

11 −RP 0

22 RS0

12 (31)

and we get for the sum rule of Eq. (29)

η2
A

h0A0
+ η2

B
h0

=
(
RP 0

22 RS0

11 + RP 0

21 RS0

12

)2

+
(
RP 0

21 RS0

11 −RP 0

22 RS0

12

)2

(32)

=
(
RS0

11 RS0

11 + RS0

12 RS0

12

) (
RP 0

21 RP 0

21 + RP 0

22 RP 0

22

)
(33)

= 1 , (34)

10



where we have used the orthogonality of the rotation matrices

2∑

k=1

RS0

ik RS0

jk = δij ,

2∑

k=1

RP 0

ik RP 0

jk = δij , (i, j = 1, 2) . (35)

For the sum rule of the CP-even sector, Eq. (28), we get

η2
B

h0
+ η2

B
H0

= cos2 β
(
RS0

11 RS0

11 + RS0

21 RS0

21

)
+ sin2 β

(
RS0

12 RS0

12 + RS0

22 RS0

22

)
(36)

+2 sinβ cos β
(
RS0

11 RS0

12 + RS0

21 RS0

22

)
(37)

= 1 , (38)

using the result that in an orthogonal matrix also the vectors corresponding to the columns

are orthonormal, that is

2∑

k=1

RS0

ki RS0

kj = δij , (i, j = 1, 2) . (39)

How this differs in our case? The difference is that, in general,

2∑

k=1

RS0,P 0

ik RS0,P 0

jk 6= δij and
2∑

k=1

RS0,P 0

ki RS0,P 0

kj 6= δij , (40)

due to the fact that we now have more than two (pseudo-)scalars. As it was stated in the

last section and will be discussed in more detail when we consider the decays, to have a

sizeable invisible branching ratio we need the doublets to be close in mass to the singlet

states related to the majoron and orthogonal combinations. This means that, in the CP-

even sector, the first four states are (Sh0 , SH0, SJ⊥
, SJ), while in the CP-odd sector we should

have (PA0
, PJ⊥

, J, G0). If this situation happens then we can very easily find a generalization

of the sum rule of the CP-even sector, as

η2
BS

h0

+ η2
BS

H0

+ η2
BSJ

⊥

+ η2
BSJ

= 1 (41)

to a good approximation. This is displayed in Fig. 2 where we plot the sum η2
BS

H0

+ η2
BSJ⊥

+

η2
BSJ

against η2
BS

h0

. The significance of this sum rule should be clear: if the lightest Higgs

boson has a very small coupling to the Z0 and hence a small production cross section, there

should be another state nearby that has a large production cross section.

The other sum rule, relating the CP-even and CP-odd sectors, Eq. (29), is more difficult

to generalize. In fact the PA0
state will now mix with the PJ⊥

and the identification of

Eq. (30) will be no longer true. However qualitatively the sum rule still holds in the sense

that if the parameters are such that the production of the CP-odd states is reduced one

always gets a CP-even state produced.

11
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Figure 2: Sum rule in the CP-even sector, for the case explained in the text. The four states,

(Sh0 , SH0, SJ⊥
, SJ ). For this example all scalar masses are taken below 200 GeV.

The above discussion has concentrated on Higgs boson production at an e+e− collider.

We now briefly comment on the differences with regards to Higgs production at the LHC [24].

It has been suggested to search for an invisibly decaying Higgs at the LHC in WW boson

fusion [25], in asociated production with a Z0 boson [26], or in the tt̄ channel [27]. For the

production in WW fusion or in asociated production with a Z0 boson the above discussion

applies straightforwardly, since the relevant coupling in both cases is ηBi
(i.e. sin(β − α) in

the MSSM limit). For the tt̄ channel in the MSSM production cross section the factor cosα

has to be replaced by RS0

i2 for the SBRP model.

V. HIGGS BOSON DECAYS

In the following we will discuss the decays of light CP-even and CP-odd supersymmetric

Higgs bosons. Since the phenomenology of Higgs bosons within the MSSM is well-known [28,

29], we will concentrate on non-standard final states. Of these, the most important are the

majoron Higgs boson decay modes, which are characteristic of the SBRP model, without

an MSSM counterpart. We will limit ourselves to the discussion of light states, i.e. Higgs

bosons with masses below the 2W threshold. As discussed below, the decays of heavier

CP-odd states will be similar to the situation encountered in the (N)MSSM.

A. CP-even Higgs Boson Decays

In the MSSM light CP-even Higgs bosons decay dominantly to bb̄ final states. In our

calculation we take into account all fermion final states, including the leading QCD radiative

12



corrections from [30]. In the SBRP model new decay modes appear, such as S0
i → JJ and,

if kinematically allowed S0
i → P 0

j J and S0
i → P 0

j P 0
k . From the latter usually only S0

i → JJ

has a large branching ratio (see appendix B).

In Ref. [19] we have discussed the invisible decays of the lightest CP-even Higgs boson.

We now extend that discussion so as to include also the next-to-lightest CP-even state which

plays an important role, if the lightest CP-even state is mainly singlet.

It is well known that, in contrast to the Standard Model, in the MSSM (and in the

NMSSM) the mass of the lightest CP-even supersymmetric Higgs boson obeys an upper

bound that follows from the D-term origin of the quartic terms in the scalar potential,

contained in Eq. (3). This mass acquires a contribution from the top-stop quark ex-

change [31, 32, 33], a fact that modifies the numerical value of this upper bound [31, 32, 33].

Many other loops contribute, for a recent two-loop level calculation see, e.g. Ref. [34]. This

limit is slightly relaxed in the NMSSM as opposed to the MSSM [35].

How does this bound emerge in the SBRP model? Since the CP-even sector contains eight

scalars, we cannot diagonalize the corresponding mass matrices analytically. Therefore we

calculate the upper bound on the Higgs mass numerically, and including the most important

radiative corrections, using formulas from [32]. In the SBRP model it is possible that the

lightest CP-even Higgs is mainly a singlet. However, if this happens, there must exist a

light, mainly doublet Higgs, to which the NMSSM bounds apply. This is shown in Fig. 3,

where we plot (to the left) η2
B2

as function of the η2
B1

and (to the right) the upper limit on

the mass of the second lightest Higgs as function of η2
B2

. As is seen, if the lightest state

is mainly singlet, η2
B1
≃ 0, therefore η2

B2
≃ 1, then there is an upper bound on the second

lightest state mass. Vice versa the upper bound applies to the lightest state if it is mainly

doublet.

As shown previously [19], one can have large direct production cross section for the

lightest neutral CP-even Higgs boson as well as a large branching ratio to the invisible final

majoron states. This is demonstrated in the left panel of Fig. 4 for a random but fixed

choice of undisplayed parameters. We note that a very similar behaviour is also found for

the second lightest state, as seen from the right panel of Fig. 4. Thus if the lightest state is

mainly singlet there must be a state nearby which is mainly doublet and decays invisibly.

In summary, we have seen that in the SBRP model there is always at least one light state,

which is mainly doublet, and therefore can be produced at future colliders. Irrespectively of

whether this state is the lightest or second-lightest Higgs state, it can decay with very large

branching ratio to an invisible final state.
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Figure 3: In the left panel we show the parameter characterizing direct production of the second

lightest neutral CP-even Higgs boson, η2
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, as function of the corresponding one for the first lightest

neutral CP-even Higgs boson, η2
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. To the right: Upper limit on the mass of the second lightest

CP-even Higgs as a function of η2
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Figure 4: To the left (right): Ratio R1 (R2) as a function of the direct production parameter, η2
B1

(η2
B2

), for the first (second) lightest neutral CP-even Higgs boson.

B. CP-odd Higgs Boson Decays

Light CP-odd Higgs bosons in the MSSM decay according to P 0
i → f f̄ . The WW

channel becomes dominant as soon as kinematically allowed [28, 29], however we will not

include it as we are mainly interested in the possibility of invisible decays of the lowest-

lying pseudoscalar. The formulas for the CP-even and CP-odd Higgs boson MSSM decay

branching ratios, apart from the larger number of Higgs bosons, are totally analogous to

those of the MSSM [30], except for the prefactors which are determined by the diagonalizing

matrices of our model. The corresponding matrix elements replace the familiar sin(β − α)

and cos(β − α) factors.
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In the SBRP we must take into account in addition the decays P 0
i → JJJ and, if

kinematically allowed, also P 0
i → S0

j J , P 0
i → S0

j P
0
k , P 0

i → P 0
j JJ , P 0

i → P 0
j P 0

k J and

P 0
i → P 0

j P 0
k P 0

m. For the lightest Higgs boson we are interested only in P 0
i → JJJ and

P 0
i → S0

j J . The formulas for the CP-even and CP-odd Higgs boson non-MSSM decay

widths are collected in appendix B.

C. P 0
i → S0

j J

The decay width of the CP-odd Higgs boson to a CP-even Higgs boson and a majoron

is given in Eq. (B2). Using the approximation Eq. (10) we can find the coupling g′
ij for the

vertex S ′0
i P ′0

j J of the majoron with the unrotated neutral scalar S ′0
i and pseudoscalar P ′0

j to

leading order in the small parameter vL

v
as

g′
11 =

g2 + g′2

4

v2
dv

2
L

V v2
,

g′
12 =

(
g2 + g′2

4
− h2

0

)
vdvuv

2
L

V v2
,

g′
21 = −

(
g2 + g′2

4
− h2

0

)
vdvuv

2
L

V v2
,

g′
22 = −g2 + g′2

4

v2
uv

2
L

V v2
,

g′
i1 =

−µǫi−2

V
(i = 3, . . . , 5) ,

g′
i2 =

−ǫi−2

V

(
Ahν

+
vS

vR
M̂R

)
(i = 3, . . . , 5) ,

g′
61 =

v2
L

v2V

(√
2h0µvd −

1√
2

(
h0M̂Φ + Ah0

)
vu

)
,

g′
62 =

v2
L

v2V

(
−
√

2h0µvu +
1√
2

(
h0M̂Φ + Ah0

)
vd

)
,

g′
71 =

−hh0vuvR

2V
,

g′
72 =

−hh0vdvR

2V
,

g′
81 =

hh0vuvS

2V
,

g′
82 =

hh0vdvS

2V
. (42)

Note that the first four of the above are suppressed by the smallness of sneutrino vevs, needed

to reproduce the observed neutrino oscillation data. The coupling gS0

i P 0

j J then appears
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through mixing, and is given as

gS0

i P 0

j J = g′
71R

S0

i7 RP 0

j1 + g′
72R

S0

i7 RP 0

j2 + g′
81R

S0

i8 RP 0

j1 + g′
82R

S0

i8 RP 0

j2 . (43)

D. P 0
i → JJJ

The decay width of the CP-odd Higgs boson to three majorons is given in Eq. (B5). Using

again the approximate equation giving the profile of the majoron, Eq. (10), the coupling g′
i

for the vertex P ′0
i JJJ of the majorons with the unrotated neutral pseudoscalar P ′0

i , is given

as

g′
1 = − 3v2

L

v2V 3
h0hvuvRvS ,

g′
2 =

3v2
L

v2V 3
h0hvdvRvS ,

g′
3 ∼ g′

4 ∼ g′
5 ∼ O(

v3
L

v3
) ,

g′
6 ∼ O(

v3
Lǫ

v3V
) ,

g′
7 =

−3h2vSv2
R

V 3
,

g′
8 =

3h2v2
SvR

V 3
. (44)

Again, the first six of the above vanish in the limit vL → 0. Therefore the coupling gP 0

i JJJ

for the vertex of the majorons with the neutral pseudoscalar P 0
i mass eigenstate is

gP 0

i JJJ = g′
7R

P 0

i7 + g′
8R

P 0

i8 . (45)

E. Numerical results

We can see from Eq. (42) that if the CP-odd mass eigenstate is mainly a Higgs doublet

(i.e., its main components are P ′0
1 = H0I

d , P ′0
2 = H0I

u so that its production is not reduced)

then its decays to S0
j J and JJJ are suppressed as the corresponding couplings are very

small, suppressed by two powers in vL

v
. To find sizeable branching ratios for the decays of

the lightest massive pseudoscalar P 0
1 , mixing between doublet and singlet states is therefore

required.

As discussed in section III, in order to have sizeable mixing between doublet and singlet

CP-odd Higgs bosons, we must require that at least one of the singlet states is light, i.e.

the parameter Γ should be very roughly of order Γ ∼ Ω. Fig. 5 shows an example. Here,

we plot η2
A21

and BR(P 0
1 → inv) as function of

√
Γ for one fixed, but arbitrary set of other
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Figure 5: Production cross section (red/solid curve) and invisible final states decay branching ratio

(green/dashed curve) for the lightest CP-odd Higgs boson.

model parameters. For small values of
√

Γ the lightest massive CP-odd state is mainly

singlet, therefore BR(P 0
1 → inv) is close to 1. However, the production parameter η2

A21
is

small. Increasing
√

Γ increases the mass of the lightest CP-odd state. From a certain point

onwards, it is the doublet state which is lightest, compare to Fig. 1. This state can have a

sizeable production, but the branching ratio to invisible final states typically is small. Only

in the intermediate region of sizeable mixing between doublet and singlet states, i.e. in the

region of
√

Γ ∼ 100−115 GeV of Fig. 5 one can have both, sizeable production and sizeable

invisible decay.

In summary, the CP-odd Higgs bosons in the SBRP model usually behave very similar

to the situation discussed in the (N)MSSM. However, sizeable branching ratios to invisible

final states are possible when there are light CP-odd Higgs bosons from both, the doublet

and the singlet sectors.

VI. DISCUSSION

We have carefully analyzed the mass spectra, production and decay properties of the

lightest supersymmetric CP-even and CP-odd Higgs bosons in models with spontaneously

broken R-parity. We have compared the resulting mass spectra with what is predicted in

the Minimal Supersymmetric Standard Model, stressing the validity of the upper bound on

the lightest CP-even Higgs boson mass. We have seen how the presence of the additional

scalar singlet states affects the Higgs production cross sections, both in the Bjorken and

associated modes.

The main difference with respect to the MSSM case comes from the fact that the sponta-

neous breaking of lepton number necessarily implies the existence of the majoron, and this

opens new decay channels for supersymmetric Higgs bosons into “invisible” final states. We

have found that the invisible decays of CP-even Higgses can be dominant, despite the small
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values of the neutrino masses indicated by neutrino oscillation data. In contrast, although

the decays of the CP-odd bosons into invisible final states can also be sizeable, this situation

is not generic.

Therefore the existence of invisibly decaying Higgs bosons should be taken seriosly in

the planning of future accelerators, like the LHC and the ILC. These decays may signal the

weak-scale violation of lepton number in a wide class of theories. Within the supersymmetric

context they are a characteristic feature of the SBRP models. These can account for the

observed pattern of neutrino masses and mixings in a way which allows the neutrino mixing

angles to be cross checked at high energy accelerators like LHC/ILC. For example, in our

model there is a bb̄ plus missing momentum signal associated to the invisible decay of the

lightest CP-even Higgs boson produced in association with a pseudoscalar. Although this

is a standard topology, also present in the Standard Model and the MSSM, its kinematical

properties in our model differ, as the JJ add up to the CP-even Higgs boson mass and bb̄ to

the CP-odd Higgs boson mass. Further studies to elucidate the impact of these decay modes

for future colliders, should be conducted. While for the LHC we may encounter difficulties

associated to missing energy measurements and/or b-tagging, these potential limitations do

not affect in the same way the ILC.

Last, but not least, as already explained, we have restricted our analysis to Higgs bosons

below the WW threshold. Extension to relax this restriction is totally straightforward,

though somewhat less interesting. Due to the validity of the supersymmetric Higgs boson

mass upper limit we must have one light CP-even Higgs boson which, as we have shown, is

likely to have an important decay into invisible final states.
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Appendix A: PRODUCTION CROSS SECTIONS

In this section we give the formulas for the production cross section of both channels at

an e+e− machine.
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1. Bjorken process

The cross section for the Bjorken process is [22]

σ(e+e− → Z0S0
i ) = η2

Bi

G2
F M4

Z

96πs

(
v2

e + a2
e

)
β

β2 + 12M2
Z/s

(1−M2
Z/s)2 + (ΓZMZ/s)2

, (A1)

where

ve = −1 + 4 sin θ2
W , ae = −1, β =

λ(s, M2
Z , M2

S0

i
)

s
, (A2)

λ is the 2-body phase space function,

λ(a, b, c) =

√
(a + b− c)2 − 4ab (A3)

and the ηBi
are given in Eq. (26).

2. Associated production

The cross section for the associated production is [23]

σ(e+e− → S0
i P

0
j ) = η2

Aij

G2
F M4

Z

96πs

(
v2

e + a2
e

) β3

(1−M2
Z/s)2 + (ΓZMZ/s)2

(A4)

with

β =
λ(s, M2

P 0

j
, M2

S0

i
)

s
(A5)

and the ηAij
are given in Eq. (27).

Appendix B: NON-MSSM DECAYS

The most characteristic decays of this model which do not exist in the (N)MSSM are

those involving a majoron. In the following we collect the formulas for these decays. The

most important ones are:

Γ(S0
i → JJ) =

g2
S0

i
JJ

32πmS0

i

, (B1)

Γ(P 0
i → S0

j J) =
g2

S0

j P 0

i J

16πm3
P 0

i

(
m2

P 0

i
−m2

S0

j

)
. (B2)

For completeness we consider also:
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Γ(S0
i → P 0

j J) =
g2

S0

i P 0

j J

16πm3
S0

i

(
m2

S0

i
−m2

P 0

j

)
, (B3)

Γ(P 0
i → S0

j P
0
k ) =

g2
S0

j P 0

i P 0

k

16πm3
P 0

i

λ(m2
P 0

i
, m2

S0

j
, m2

P 0

k
) , (B4)

Γ(P 0
i → JJJ) =

mP 0

i
g2

P 0

i JJJ

3072π3
, (B5)

Γ(P 0
i → P 0

j JJ) =
g2

P 0

i P 0

j JJ

1024π3m3
P 0

i

(
m4

P 0

i
−m4

P 0

j

)
, (B6)

Γ(P 0
i → P 0

j P 0
k J) =

g2
P 0

i
P 0

j
P 0

k
J

512π3m3
P 0

i

λ(m2
P 0

i
, m2

P 0

j
, m2

P 0

k
) ×





1

2
, j = k

1 , j 6= k





×
m2

P 0

i

(
m2

P 0

i
− 2mP 0

j
mP 0

k

)
+ 2mP 0

j
mP 0

k

(
mP 0

j
+ mP 0

k

)2

−
(
mP 0

j
+ mP 0

k

)4

m2
P 0

i

−
(
mP 0

j
+ mP 0

k

)2
. (B7)

The decays P 0
i → P 0

j P 0
k P 0

l are possible, but closed kinematically for the light states of

interest, therefore we do not give here the explicit formulas for the widths.
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