
ar
X

iv
:0

71
2.

11
37

v2
  [

as
tr

o-
ph

] 
 3

 M
ar

 2
00

8
MPP-2007-178, IFIC/07-69

Mu–tau neutrino refraction and collective three-flavor transformations in supernovae

Andreu Esteban-Pretel,1 Sergio Pastor,1 Ricard Tomàs,1 Georg G. Raffelt,2 and Günter Sigl3, 4
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We study three-flavor collective neutrino transformations in the dense-neutrino region above the
neutrino sphere of a supernova core. We find that two-flavor conversions driven by the atmospheric
mass difference and the 13-mixing angle capture the full effect if one neglects the second-order
difference between the νµ and ντ refractive index. Including this “mu–tau matter term” provides
a resonance at a density of ρ ≈ 3 × 107 g cm−3 that typically causes significant modifications of
the overall νe and ν̄e survival probabilities. This effect is surprisingly sensitive to deviations from
maximal 23-mixing, being different for each octant.

PACS numbers: 14.60.Pq, 97.60.Bw

I. INTRODUCTION

Neutrinos of different flavor suffer different refraction
in matter [1]. The energy shift between νe and νµ or

ντ is ∆V =
√

2 GFYenB with GF the Fermi constant,
nB the baryon density, and Ye = ne/nB the electron
fraction. ∆V is caused by the charged-current νe-electron
interaction that is absent for νµ and ντ . For a matter

density ρ = 1 g cm−3 we have
√

2 GFnB = 7.6×10−14 eV,
yet this small energy shift is large enough to be of almost
universal importance for neutrino oscillation physics.

In normal matter, µ and τ leptons appear only as vir-
tual states in radiative corrections to neutral-current νµ

and ντ scattering, causing a shift ∆Vµτ =
√

2 GFY eff
τ nB

between νµ and ντ . It has the same effect on neutrino
dispersion as real τ leptons with an abundance [2]

Y eff
τ =

3
√

2GFm2
τ

(2π)2

[

ln

(

m2
W

m2
τ

)

− 1 +
Yn

3

]

= 2.7 × 10−5 ,

(1)
where ne = np was assumed. For the neutron abundance
we have used Yn = nn/nB = 0.5, but it provides only
a 2.5% correction so that its exact value is irrelevant.
A large nonstandard contribution to Y eff

τ can arise from
radiative corrections in supersymmetric models [3], but
we will here focus on the standard-model effect alone.

This “mu–tau matter effect” modifies oscillations if
∆Vµτ

>∼ ∆m2/2E. For propagation through the Earth

and for ∆m2
atm = 2–3×10−3 eV2, this occurs for neutrino

energies E >∼ 100 TeV. The oscillation length then far ex-
ceeds rEarth so that ∆Vµτ is irrelevant for the high-energy
neutrinos that are searched for by neutrino telescopes.

∗UMR 7164 (CNRS, Université Paris 7, CEA, Observatoire de
Paris)

Alternatively, the mu–tau matter effect can be im-
portant at the large densities encountered by neutri-
nos streaming off a supernova (SN) core [4]. For E =
20 MeV the condition ∆Vµτ = ∆m2

atm/2E implies ρ ≈
3 × 107 g cm−3. Numerical SN density profiles [5] re-
veal that this occurs far beyond the shock-wave radius
during the accretion phase, but retracts close to the neu-
trino sphere after the explosion has begun. To illustrate
this point we show in Fig. 1 the same matter density
profiles as in Ref. [5] at 1 ms post bounce (red line)
and at 1 s post bounce (blue line). As a green horizon-
tal band we indicate the condition ∆Vµτ = ∆m2

atm/2E
for a typical range of SN neutrino energies, whereas the
yellow and light-blue bands indicate the densities cor-
responding to the H-resonance (driven by ∆m2

atm) and
the L-resonance (driven by ∆m2

sol). The νµ, ντ , ν̄µ and
ν̄τ fluxes from a SN are virtually identical, leaving the
µτ -resonance moot, whereas the H- and L-resonances
cause well-understood consequences that are completely
described by the energy-dependent swapping probabili-
ties for νe and ν̄e with some combination νx of the µ and
τ flavor [6]. Therefore, the traditional view has been that
genuine three-flavor effects play no role for SN neutrino
oscillations unless mu and tau neutrinos are produced
with different fluxes [4].

In a recent series of papers [7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22] it was recognized,
however, that the traditional picture was not complete:
neutrino-neutrino interactions cause large collective fla-
vor transformations in the SN region out to a few 100 km
(gray shaded region in Fig. 1). With the exception
of Refs. [21, 22], only two-flavor conversions driven by
∆m2

atm and the small Θ13 have thus far been studied.

We here extend our previous numerical solutions [17]
to the case of three neutrino flavors. Our main results
can be summarized as follows: (i) A two-flavor treat-
ment indeed captures the full effect if one ignores ∆Vµτ

and if the ordinary MSW resonances occur outside of the

http://arXiv.org/abs/0712.1137v2
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FIG. 1: Density profiles in terms of the weak potential ∆V =√
2GFne at 1 ms and 1 s post bounce of the numerical SN

models described in Ref. [5] (solid lines). The dashed lines
represent the simplified matter profile of Eq. (4) for λ0 =
4 × 106 km−1 and λ0 = 5 × 109 km−1, used in our numerical
calculations in Figure 2. As horizontal bands we indicate
the conditions ∆Vµτ = ∆m2

atm/2E, ∆V = ∆m2
atm/2E, and

∆V = ∆m2
sol/2E for a typical range of SN neutrino energies.

The gray shaded range of radii corresponds to the region of
collective neutrino transformations. Within the radius rsyn

the collective oscillations are of the synchronized type.

collective neutrino region. (ii) Including ∆Vµτ strongly
modifies the νe or ν̄e survival probabilities, influencing
the neutrino signal from the next galactic SN. (iii) The
effect depends sensitively on a possible deviation from
maximal Θ23. The purpose of our paper is to provide a
first illustration of these findings that no doubt need to
be refined in future.

Our work is organized as follows. In Sec. II we present
the equations of motion which are solved for the three-
flavor neutrino fluxes in a simplified scenario for the SN
environment. In Sec. III we consider the limit of a van-
ishing µτ matter effect, while our results when it is sig-
nificant are described in Sec. IV. We conclude in Sec. V.

II. EQUATIONS OF MOTION

Mixed neutrinos are described by matrices of density
ρp and ρ̄p for each (anti)neutrino mode. The diagonal
entries are the usual occupation numbers whereas the off-
diagonal terms encode phase information. The equations
of motion (EOMs) are

i∂t̺p = [Hp, ̺p] , (2)

where the Hamiltonian is [23]

Hp = Ωp+V+
√

2GF

∫

d3
q

(2π)3
(̺q − ¯̺q) (1−vq·vp) , (3)

vp being the velocity. The matrix of vacuum oscillation
frequencies is Ωp = diag(m2

1, m
2
2, m

2
3)/2|p| in the mass

basis. The matter effect is represented, in the weak in-
teraction basis, by V =

√
2 GFnB diag(Ye, 0, Y eff

τ ). For
antineutrinos the only difference is Ωp → −Ωp.

In spherical symmetry the EOMs can be expressed as
a closed set of differential equations along the radial di-
rection [17, 20]. We solve them numerically as previously
described [17], now using 3 × 3 matrices instead of po-
larization vectors. The factor (1− vq · vp) in the Hamil-
tonian implies “multi-angle effects” for neutrinos moving
on different trajectories [8, 9, 11]. However, for realistic
SN conditions the modifications are small, allowing for a
single-angle approximation. We implement this approx-
imation by launching all neutrinos with 45◦ relative to
the radial direction [17].

As a further simplification we use a monochromatic
spectrum (E = 20 MeV), ignoring the “spectral splits”
caused by collective oscillation effects [11, 15, 16, 18, 20].
Oscillation effects require flavor-dependent flux differ-
ences. One expects Fνe

> Fν̄e
> Fνµ

= Fν̄µ
= Fντ

= Fν̄τ
.

The equal parts of the fluxes drop out of the EOMs, so
as initial condition we use Fνµ,ν̄µ,ντ ,ν̄τ

= 0 and Fνe
=

(1 + ǫ)Fν̄e
with ǫ = 0.25.

For the neutrino parameters we use ∆m2
12 = ∆m2

sol =

7.6 × 10−5 eV2, ∆m2
13 = ∆m2

atm = 2.4 × 10−3 eV2,
sin2 Θ12 = 0.32, sin2 Θ13 = 0.01, and a vanishing Dirac
phase δ = 0, all consistent with measurements [24,
25, 26]. We consider the entire allowed range 0.35 ≤
sin2 Θ23 ≤ 0.65 because our results depend sensitively on
Θ23.

We use a fixed matter profile of the form ρ ∝ r−3,
implying a radial variation of the weak potential of

∆V = Yeλ0

(

R

r

)3

, (4)

where R = 10 km is our nominal neutrino-sphere radius
and Ye = 0.5. In Fig. 1 we show this profile (dashed lines)
for two different values of λ0 = 4 × 106 km−1 and λ0 =
5×109 km−1. For the former case, the H-resonance is at
rH = 1.9×103 km, the L-resonance at rL = 8.3×103 km,
and the µτ -resonance at rµτ = 71 km. For the latter
they are at rH = 2.0 × 104 km, rL = 9.0 × 104 km, and
rµτ = 760 km.1

The strength of the neutrino-neutrino interaction can
be parametrized by

µ0 =
√

2GF(FR
ν̄e

− FR
ν̄x

) , (5)

1 We loosely refer to the radius where ∆m2
atm/2E = ∆Vµτ as the

µτ resonance, although this would be correct only for a small
vacuum mixing angle in the 23-subsystem.
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where the fluxes are taken at the neutrino-sphere ra-
dius R. As in our previous work [17] we shall assume
µ0 = 7 × 105 km−1. In the single-angle approxima-
tion where all neutrinos are launched with 45◦ relative
to the radial direction [17], the radial dependence of the
neutrino-neutrino interaction strength can be explicitly
written as

µ(r) = µ0

R4

r4

1

2 − R2/r2
. (6)

While the r−4 scaling of µ(r) for r ≫ R is generic, the
overall strength µ0 depends on the neutrino fluxes and
on their angular divergence, i.e., on the true radius of the
neutrino sphere. Our R = 10 km is not meant to rep-
resent the physical neutrino sphere, it is only a nominal
radius where we fix the inner boundary condition for our
calculation.

The collective neutrino oscillations are of the synchro-
nized type within the “synchronization radius.” For our
chosen µ0 and for the assumed excess νe flux of 25% we
find rsyn ≃ 100 km as indicated in Fig. 1. Collective fla-
vor transformations occur at r > rsyn. Therefore, the µτ
matter effect can be important only if it is sufficiently
large for r > rsyn.

Figure 1 illustrates that the region where the µτ -
resonance takes place depends on the time after bounce.
For realistic values of the matter density profile and
neutrino-neutrino interaction, one expects rµτ to lie far
beyond the collective region at early times. This can be
inferred from the relative position of rsyn and the inter-
section of the 1 ms profile and the green band. At later
times though the proto neutron star contracts and rµτ

moves to smaller radii. Eventually rµτ becomes smaller
than rsyn, at which point ∆Vµτ becomes irrelevant.

In order to mimic these different situations we will us
a simple power-law matter profile of the form in Eq. (4).
In other words, we will use a mu-tau matter potential of
the form

∆Vµτ = Y eff
τ λ0

(

R

r

)3

, (7)

with a fixed Y eff
τ given by Eq. (1) and a variable coef-

ficient λ0. Therefore early and late times can be repro-
duced by considering large and small values of λ0, re-
spectively, as can be seen in Fig. 1. In other words, we
will always assume that the ordinary MSW resonances
are far outside of the collective neutrino region, whereas
the µτ resonance can lie at smaller (vanishing µτ matter
effect) or larger (large µτ matter effect) radii than rsyn.

III. VANISHING MU-TAU MATTER EFFECT

As a first case we consider the traditional assumption
of a vanishing µτ matter effect, which we account for us-
ing a value of λ0 = 4 × 106. We assume an inverted
∆m2

atm and use a non-maximal value sin2 Θ23 = 0.4.

Our numerical calculations for this case are shown in the
top row of Fig. 2. The first two panels correspond to
the radial evolution of the fluxes of the weak interaction
eigenstates of neutrinos and antineutrinos, respectively,
whereas in the last two panels we show the evolution of
the propagation eigenstates. These are the eigenstates
of Ωp + V, i.e., of that part of the Hamiltonian Eq. (3)
that does not include the neutrino-neutrino interactions.
In the collective neutrino region, we observe the usual
pair conversion of the νe and ν̄e fluxes into the µ and τ
flavors. Had we chosen a maximal 23 mixing angle, the
appearance curves for these flavors would be identical.

For larger distances the evolution consists of ordinary
MSW transformations that are best pictured in the basis
of instantaneous propagation eigenstates in matter (last
two panels). Beyond the collective transformation region,
all neutrinos and antineutrinos stay fixed in their propa-
gation eigenstates. In the weak-interaction basis, on the
other hand, this implies fast oscillations because we have
a fixed energy, preventing kinematical decoherence be-
tween different energy modes. In the panels for neutrino
and antineutrino interaction states, for radii beyond the
dense-neutrino region we show as thick lines the average
evolution as well as the envelopes of the fast-oscillating
flavor fluxes.

Another way of describing this evolution is by the level
crossing schemes of Fig. 3. The upper panel represents
the case of vanishing ∆Vµτ , corresponding to Fig. 5d of
Ref. [6]. The central panel represents the case with large
∆Vµτ and a 23-mixing angle in the first octant and is
similar to Fig. 2 of Ref. [4]. In such plots one shows
the neutrino energy levels as a function of the matter
density. The continuation of this diagram to negative
densities gives us the energy levels of antineutrinos: the
neutrino energy at a negative density really means the
antineutrino energy at the corresponding positive den-
sity. For vanishing density (vacuum), we have the three
vacuum mass eigenstates that are identical for neutrinos
and antineutrinos. The upper (blue) line corresponds to
propagation eigenstate 2, the middle (green) line to 1,
and the bottom (red) line to 3, a scheme representing
the inverted hierarchy case. These lines represent the
propagation eigenstates that are adiabatically connected
for different densities.

While in vacuum the propagation eigenstates coincide
with the mass eigenstates, at large densities they cor-
respond to weak interaction eigenstates. For vanishing
∆Vµτ and at the low energies relevant to our problem,
the µ and τ flavor are not distinguishable so that any
convenient linear combination can be chosen as interac-
tion eigenstates. It is convenient to introduce the states
ν′

µ and ν′

τ that correspond to a vanishing 23-mixing angle,
i.e., they diagonalize the 23-subsystem. If the small 13-
mixing angle were to vanish, the 3-mass eigenstate would
coincide with ν′

τ . In the upper panel of Fig. 3 and using
the (νe, ν

′

µ, ν′

τ ) basis, the 2-state connects adiabatically
to νe and ν̄′

µ, whereas the 3-state connects adiabatically
to ν̄e and ν′

τ .
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FIG. 2: Radial evolution of the neutrino fluxes, normalized to the initial ν̄e flux, for a fixed neutrino energy (Eν = 20 MeV)
and an inverted ∆m2

atm. From left to right: neutrino weak eigenstates, antineutrino weak eigenstates, neutrino propagation
eigenstates and antineutrino propagation eigenstates. In the first two columns, after bipolar conversions we show the average
as thick lines and the envelopes of the fast-oscillating curves as thin lines. The top row shows the case of a vanishing µτ matter
effect, while the three bottom rows use a large µτ effect with different values for the 23 mixing angle as indicated.

At the neutrino sphere, the fluxes are prepared in
νe and ν̄e eigenstates, which in the case of inverted
mass hierarchy coincide with the propagation (or mat-
ter) eigenstates νm

2 and ν̄m
3 , respectively. In the absence

of neutrino-neutrino interactions, since the L-resonance
is always adiabatic, the νe’s leave the star as ν2. In the

case of ν̄e the evolution depends on sin2 Θ13 [6]. For
values larger than 10−3 they propagate also adiabati-
cally (MSW transformation) and escape as ν̄3, whereas
for values smaller than 10−5 the transition at the H-
resonance is strongly non-adiabatic: there is a jump of
matter eigenstates from ν̄m

3 to ν̄m
1 and the ν̄e’s leave the
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FIG. 3: Level crossing scheme of neutrino conversion for the
inverted hierarchy in a medium with a vanishing ∆Vµτ (up-
per panel) and a large ∆Vµτ with 23-mixing in the first octant
(central panel) or the second octant (lower panel). The arrows
indicate the transitions caused by collective flavor transforma-
tions.

star as ν̄1. As a consequence, the survival probability is
P (νe → νe) ≈ sin2 Θ12 and P (ν̄e → ν̄e) ≈ sin2 Θ13 or
cos2 Θ12 for large and small Θ13, respectively.

In the presence of neutrino-neutrino interactions, im-
portant collective effects take place in the inner SN layers,
where the neutrino density is high. We observe in the first

two panels of Fig. 2 that collective pair transformations
convert the νe and ν̄e fluxes to ν′

τ and ν̄′

τ as indicated by
the arrows in the upper panel of Fig. 3. The consequences
for the subsequent evolution are dramatic. In the case of
νe a fraction equal to ǫFν̄e

stays in νm
2 and evolves as in

the absence of neutrino-neutrino interactions, while the
rest of νe are transformed to νm

3 . As a consequence, the
final νe flux, normalized to the initial ν̄e one, is expected
to be approximately ǫ sin2 Θ12 ≃ 0.08, see thick line in
the upper left panel in Fig. 2. In the case of antineutri-
nos the effect of the collective pair conversion is to inter-
change the eigenstates in which ν̄e and ν̄′

τ arrive at the
H-resonance. Now ν̄e enters the resonance as ν̄m

1 instead
of ν̄m

3 . Therefore, for sin2 Θ13
>∼ 10−3 the resonance is

adiabatic and the ν̄e’s leave the star as ν̄1, leading to a
final normalized flux of approximately cos2 Θ12 ≃ 0.68,
see the thick line in the second panel in Fig. 2. Instead,
if sin2 Θ13

<∼ 10−5 again there is a jump of matter eigen-
states from ν̄m

1 to ν̄m
3 at the H-resonance. In this case

ν̄e leaves the star as ν̄3, leading to a normalized ν̄e flux
equal to sin2 Θ13.

The impact of collective effects is easier to understand
if we follow the previous literature [10, 12] and observe
that, in a two-flavor system, the impact of ordinary mat-
ter can be transformed away by going into a rotating
reference frame for the polarization vectors. Collective
conversions proceed in the same way as they would in vac-
uum, except that the effective mixing angle is reduced.
Therefore, assuming an inverted hierarchy (IH) for the
atmospheric mass splitting and a normal hierarchy (NH)
for the solar splitting, we should consider the level scheme
as in the upper left panel of Fig. 4. The mass eigenstates
now approximately coincide with the interaction eigen-
states because the 23-mixing angle was removed by going
to the primed states, and the mixing angles involving νe

are effectively made small by the presence of matter. Of
course, this level scheme does not adiabatically connect
to the true vacuum situation.

The initial state consists of νe and ν̄e and thus es-
sentially of ν1 and ν̄1. Collective conversions driven by
∆m2

atm then transform ν1ν̄1 pairs to ν3ν̄3 pairs in the fa-
miliar two-flavor way. If both hierarchies are normal, we
begin in the lowest-lying state and nothing happens. In
the hypothetical case where both hierarchies are inverted
(upper right panel in Fig. 4), we begin in the highest state
and ∆m2

atm drives us directly to the lowest state. Finally,
if the atmospheric hierarchy is normal and the solar one
is inverted (lower right panel in Fig. 4), collective trans-
formations driven by ∆m2

sol take us to the lowest state.

We have numerically solved the evolution of the three-
flavor system with a realistic SN matter profile and found
that the results confirm this simple picture. In a two-
flavor treatment, the much smaller ∆m2

sol leads to collec-
tive transformations at a much larger radius than ∆m2

atm.
In a three-flavor treatment, ∆m2

atm therefore acts first
and takes us directly to the lowest-lying state if the atmo-
spheric hierarchy is inverted. Otherwise only the hypo-
thetical case of the lower-right panel in Fig. 4 is an exam-
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FIG. 4: Vacuum level diagram for all hypothetical combina-
tions of atmospheric and solar mass hierarchies (normal or
inverted). The 12 and 13 mixing angles are assumed to be
very small, mimicking the effect of ordinary matter. The ef-
fect of collective conversions is indicated by an arrow.

ple where ∆m2
sol plays any role. We have numerically ver-

ified that normal ∆m2
atm combined with inverted ∆m2

sol

is the only case where ∆m2
sol drives collective transfor-

mations. Since ∆m2
sol is measured to be normal, the

previous two-flavor treatments based on ∆m2
atm and Θ13

fortuitously capture the full effect.
We conclude that in the limit of a vanishing µτ effect

the collective flavor transformations and the subsequent
MSW evolution factorize and that the collective effects
are correctly treated in a two-flavor picture. Of course,
this situation may change if the matter profile is so shal-
low that the ordinary MSW effects occur in the same
region as the collective phenomena [21].

IV. LARGE MU-TAU MATTER EFFECT

Next we calculate the flavor evolution for the same
model, now including a significant ∆Vµτ , i.e. we assume
a large λ0. In this case the flavor content of the neutrino
and antineutrino fluxes emerging from the SN surface
depend on the strength of ∆Vµτ as well as the choice
of Θ23, as can be seen in the corresponding panels of
Fig. 2. This dependence is best illustrated with the help
of the contour plot Fig. 5 where we show the νe and ν̄e

fluxes emerging from the SN, averaged over fast vacuum
oscillations.

If ∆Vµτ is so large that the mu-tau effect is strong in
the region of collective neutrino oscillations, there are two
stable limiting cases, depending on the 23 mixing angle.
If the mixing angle is sufficiently non-maximal and in
the first octant, the collective oscillations transform the
initially prepared νe and ν̄e fluxes to the propagation
eigenstates as indicated by the arrows in the middle panel
of Fig. 3, i.e., we observe pair transformations to ντ ν̄τ .
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FIG. 5: Contours in the space of sin2 Θ23 and λ0 for the νe

(top) and ν̄e (bottom) fluxes emerging from the SN surface
for both normal (right) and inverted (left) mass hierarchy. All
fluxes are normalized to the initial ν̄e flux. We show values
averaged over fast vacuum oscillations.

This behavior is understood if we assume that in the
µτ system we can once more go to a rotating frame and
now simply imagine that the 23 mixing angle is effectively
small by the impact of the µτ matter effect. In this case
ν3 ≈ ντ . Since collective quasi-vacuum oscillations take
us to the lowest-lying state, the ν3 state in the inverted
hierarchy, we are effectively taken to ντ ν̄τ pairs. Instead,
if the 23 mixing angle is in the second octant, νµ and ντ

switch roles, explaining that now ν3 ≈ νµ and ν̄3 ≈ ν̄µ.

These are only heuristic explanations. We expect that
they can be made precise in a true analytic three-flavor
treatment of collective neutrino oscillations along the
lines of Ref. [22].

For intermediate values of ∆Vµτ and for 23 mixing an-
gles near maximal, the final fluxes depend sensitively on
parameters. For intermediate values of ∆Vµτ , there are
also nontrivial effects for the normal hierarchy. The col-
lective effects do not place the ensemble into propaga-
tion eigenstates, preventing a simple interpretation. The
sensitive dependence for intermediate ∆Vµτ is also illus-
trated in Fig. 6 where we show the emerging average νe

and ν̄e fluxes as functions of λ0 for two values of Θ23, one
in the first and the other in the second octant. In Fig. 7
we show the same νe and ν̄e fluxes as functions of sin2 Θ23

for λ0 = 1.85× 109 km−1. One can notice how the fall of
ρ̄ee is not exactly centered at sin2 θ23 = 0.5 but slightly
shifted to smaller values. This is due to second-order
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FIG. 6: Fluxes of νe (top) and ν̄e (bottom), normalized to
the initial ν̄e flux, emerging from the SN as a function of λ0

for a 23 mixing angle in the first (red line) or second (blue
line) octant. These curves represent cuts through the inverted
hierarchy contour plots of Fig. 5 at the indicated values of
sin2 Θ23.

corrections to the µτ resonance condition.
This dependence on the Θ23 octant leads to a clear

imprint on the final survival probability. Let us first con-
sider the first octant. In the case of νe a fraction equal
to ǫFν̄e

stays in νm
2 . However the presence of the µτ -

resonance in the neutrino channel makes the rest of the
νe to be transformed to νm

1 . Their subsequent evolution
would depend on the adiabaticity of the µτ -resonance,
but it has been shown to be always adiabatic [4]. As a
consequence, the final νe flux is expected to be approxi-
mately cos2 Θ12 + ǫ sin2 Θ12 ≃ 0.76, see thick line in the
left panel of the second row in Fig. 2. In the case of an-
tineutrinos the situation is completely analogous to the
case of vanishing ∆Vµτ so that P (ν̄e → ν̄e) ≈ cos2 Θ12 or

sin2 Θ13, depending on the value of Θ13.
If Θ23 belongs to the second octant, then the µτ -

resonance lies in the antineutrino channel. The crucial
point is that now all ν̄e are transformed to ν̄µ = ν̄m

2 be-
fore reaching the µτ -resonance, see the lower panel in
Fig. 3. Taking into account that ν̄m

2 does not encounter
the H-resonance, the survival probability will be always
P (ν̄e → ν̄e) ≈ sin2 Θ12, independently of the value of
Θ13. On the other hand neutrinos do not feel the µτ -
resonance and therefore their propagation is the same as
in the vanishing ∆Vµτ case.
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FIG. 7: Fluxes of νe (top) and ν̄e (bottom), normalized to
the initial ν̄e flux, emerging from the SN as a function of
sin2 Θ23 for λ0 = 1.85 × 109 km−1. These curves represent
cuts through the inverted hierarchy contour plots of Fig. 5 at
the indicated value of λ0.

TABLE I: Summary of the approximate values of the ν̄e sur-
vival probability for an inverted hierarchy, including or not
collective effects. Here a small (large) mixing angle Θ13 stands
for sin2 Θ13

<
∼ 10−5 (sin2 Θ13

>
∼ 10−3), while a small (large)

∆Vµτ represents rµτ being smaller (larger) than rsyn.

Collective
∆Vµτ Θ23 Θ13

ν̄e P (ν̄e → ν̄e)
effects leaves as

no any any small ν̄1 cos2 Θ12

no any any large ν̄3 sin2 Θ13

yes small any small ν̄3 sin2 Θ13

yes small any large ν̄1 cos2 Θ12

yes large < π/4 small ν̄3 sin2 Θ13

yes large < π/4 large ν̄1 cos2 Θ12

yes large > π/4 any ν̄2 sin2 Θ12

We present in Table I a summary of the cases discussed
so far. One can see the importance of the presence of
collective neutrino effects, as well as the dependence on
the strength of the mu-tau matter effect.

Another interesting feature concerns the position of
rsyn in the presence of a large µτ matter effect. As can
be seen comparing the first two rows of Fig. 2, the ra-
dius where collective neutrino transformations begin is
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slightly larger (rsyn ≃ 115 km) when we include a sig-
nificant ∆Vµτ . We have checked that, while for a small
∆Vµτ the position of rsyn is independent of Θ23, for a
large ∆Vµτ the onset of bipolar transformations is de-
layed for nonzero values of Θ23. This effect is largest for
maximal mixing (Θ23 = π/4) and symmetric relative to
Θ23 = π/4. A full understanding of this variation pre-
sumably requires an analytic three-flavor treatment in
the spirit of Ref. [22].

V. CONCLUSIONS

At the relatively low energies relevant for SN neutri-
nos, charged mu and tau leptons cannot be produced so
that mu- and tau-flavored neutrinos are not distinguish-
able in the SN or in detectors. (In the inner core of a
SN the temperatures may be high enough to produce a
significant thermal muon density, but this would not af-
fect the emission from the neutrino sphere.) The impact
of the small second-order difference between the νµ and
ντ refractive index does not produce observable effects
as long as one only considers the traditional MSW flavor
conversion [4].

The picture changes if one includes the unavoidable
effect of collective neutrino transformations in the re-
gion above the neutrino sphere. If the matter density
is large enough that ∆Vµτ is comparable to or larger
than ∆m2

atm/2E, the survival probability of νe and ν̄e

can be completely modified and depends sensitively on
the mixing angle Θ23. In future one should also include
non-monochromatic energy spectra, leading to spectral
split phenomena that could be more complicated than
the previously studied two-flavor cases. One should also
explore the impact of realistic angular distributions and
of a non-zero Dirac phase in the neutrino mixing matrix.

Lower-mass progenitors may collapse with a O-Ne-Mg
core and, on the computer, explode easily because there
is very little mass in the envelope [27]. Even at core
bounce and immediately afterward, the density profile is

so shallow that the ordinary H- and L-resonances may
occur within the collective neutrino region [21]. In this
case the effects discussed here are irrelevant because the
mu-tau matter effect is negligible. Probably our effects
are also negligible during the cooling phase of an iron-
core SN. However, flavor oscillation effects are probably
largest during the accretion phase of an iron-core SN
where the flavor dependence of the spectra and fluxes
is more pronounced than during the cooling phase [28].

When it is important, the mu-tau matter effect adds
one more layer of complication to the already vexed prob-
lem of collective SN neutrino oscillations. It was previ-
ously recognized that “ordinary” collective oscillations
are almost completely insensitive to the smallness of Θ13

as long as it is not exactly zero. Here we have found
the opposite for the large mixing angle Θ23 that is of-
ten assumed to be maximal. Even small deviations from
maximal 23-mixing can imprint themselves in the collec-
tive oscillation effect. Both results are counter-intuitive
and opposite to ordinary flavor oscillations.
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