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Abstract

A search is performed for collimated muon pairs displaced from the primary vertex produced in the
decay of long-lived neutral particles in proton-proton collisions at

√
s = 7 TeV centre-of-mass energy,

with the ATLAS detector at the LHC. In a 1.9 fb−1 event sample collected during 2011, the observed
data are consistent with the Standard Model background expectations. Limits on the product of the
production cross section and the branching ratio of a Higgs boson decaying to hidden-sector neutral
long-lived particles are derived as a function of the particles’ mean lifetime.
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Search for displaced muonic lepton jets from light Higgs boson decay in proton-proton
collisions at

√
s = 7 TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

A search is performed for collimated muon pairs displaced from the primary vertex produced in the decay of long-lived neutral
particles in proton-proton collisions at

√
s = 7 TeV centre-of-mass energy, with the ATLAS detector at the LHC. In a 1.9 fb−1

event sample collected during 2011, the observed data are consistent with the Standard Model background expectations. Limits on
the product of the production cross section and the branching ratio of a Higgs boson decaying to hidden-sector neutral long-lived
particles are derived as a function of the particles’ mean lifetime.

1. Introduction

A search is presented for long-lived neutral particles decay-
ing to final states containing collimated muon pairs in proton-
proton collisions at

√
s = 7 TeV centre-of-mass energy. The

event sample, collected during 2011 at the LHC with the
ATLAS detector, corresponds to an integrated luminosity of
1.9 fb−1. The model considered in this analysis consists of
a Higgs boson decaying to a new hidden sector of particles
which finally produce two sets of collimated muon pairs, but
the search described is equally valid for other, distinct models
such as heavier Higgs boson doublets, singlet scalars or a Z′

that decay to a hidden sector and eventually produce collimated
muon pairs.
Recently, evidence for the production of a boson with a mass of
about 126 GeV has been published by ATLAS [1] and CMS [2].
The observation is compatible with the expected production and
decay of the Standard Model (SM) Higgs boson [3–5] at this
mass. Testing the SM Higgs hypothesis is currently of utmost
importance. To this end two effects may be considered: (i) addi-
tional resonances which arise in an extended Higgs sector found
in many extensions of the SM, or (ii) rare Higgs boson decays
which may deviate from those predicted by the SM. In this Let-
ter we search for a scalar that decays to a light hidden sector,
focusing on the 100 GeV to 140 GeV mass range. In doing
so, we cover both of the above aspects, deriving constraints on
additional Higgs-like bosons, as well as placing bounds on the
branching ratio of the discovered 126 GeV resonance into a hid-
den sector of the kind described below.
The phenomenology of light hidden sectors has been studied
extensively over the past few years [6–10]. Possible characteris-
tic topological signatures of such extensions of the SM are “lep-
ton jets”. A lepton jet is a cluster of highly collimated particles:
electrons, muons and possibly pions [7, 11–13]. These arise if
light unstable particles with masses in the MeV to GeV range
(for example dark photons, γd) reside in the hidden sector and
decay predominantly to SM particles. At the LHC, hidden-
sector particles may be produced with large boosts, causing
the visible decay products to form jet-like structures. Hidden-

sector particles such as γd may be long-lived, resulting in de-
cay lengths comparable to, or larger than, the detector dimen-
sions. The production of lepton jets can occur through various
channels. For instance, in supersymmetric models, the light-
est visible superpartner may decay into the hidden sector. Al-
ternatively, a scalar particle that couples to the visible sector
may also couple to the hidden sector through Yukawa couplings
or the scalar potential. This analysis is focused on the case
where the Higgs boson decays to the hidden sector [14, 15].
The SM Higgs boson has a narrow width into SM final states if
mH < 2mW . Consequently, any new (non-SM) coupling to ad-
ditional states, which reside in a hidden sector, may contribute
significantly to the Higgs boson decay branching ratios. Even
with new couplings, the total Higgs boson width is typically
small, well below the order of one GeV. If a SM-like Higgs bo-
son is confirmed, it will remain important to constrain possible
rare decays, e.g. into lepton jets.
Neutral particles with large decay lengths and collimated final
states represent, from an experimental point of view, a chal-
lenge both for the trigger and for the reconstruction capabilities
of the detector. Collimated particles in the final state can be
hard to disentangle due to the finite granularity of the detectors;
moreover, in the absence of inner tracking detector informa-
tion and a primary vertex constraint, it is difficult to reconstruct
charged-particle tracks from decay vertices far from the inter-
action point (IP). The ATLAS detector [16] is equipped with
a muon spectrometer (MS) with high-granularity tracking de-
tectors that allow charged-particle tracks to be reconstructed in
a standalone configuration using only the muon detector infor-
mation (MS-only). This is a crucial feature for detecting muons
not originating from the primary interaction vertex.
The search presented in this Letter focuses on neutral particles
decaying to the simplest type of muon jets (MJs), containing
only two muons; prompt MJ searches have been performed both
at the Tevatron [17, 18] and at the LHC [19]. Other searches for
displaced decays of a light Higgs boson to heavy fermion pairs
have also been performed at the LHC [20].
The benchmark model used for this analysis is a simplified sce-
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nario where the Higgs boson decays to a pair of neutral hidden
fermions ( fd2) each of which decays to one long-lived γd and
one stable neutral hidden fermion ( fd1) that escapes the detec-
tor unnoticed, resulting in two lepton jets from the γd decays
in the final state (see Fig. 1). The mass of the γd (0.4 GeV) is
chosen to provide a sizeable branching ratio to muons [14].

H

fd2

fd2

fd1

fd1

γd

γd

µ−

µ−

µ+

µ+

Figure 1: Schematic picture of the Higgs boson decay chain, H→2( fd2 →

fd1γd). The Higgs boson decays to two hidden fermions ( fd2). Each hidden
fermion decays to a γd and to a stable hidden fermion ( fd1), resulting in two
muon jets from the γd decays in the final state.

2. The ATLAS Detector
ATLAS is a multi-purpose detector [16] at the LHC, consist-

ing of an inner tracking system (ID) embedded in a supercon-
ducting solenoid, which provides a 2 T magnetic field parallel
to the beam direction, electromagnetic and hadronic calorime-
ters and a muon spectrometer using three air-core toroidal mag-
net systems1. The trigger system has three levels [21] called
Level-1 (L1), Level-2 (L2) and Event Filter (EF). L1 is a
hardware-based system using information from the calorime-
ter and muon spectrometer, and defines one or more Regions
of Interest (ROIs), geometrical regions of the detector, identi-
fied by (η, φ) coordinates, containing interesting physics ob-
jects. L2 and the EF (globally called the High Level Trigger,
HLT) are software-based systems and can access information
from all sub-detectors. The ID, consisting of silicon pixel and
micro-strip detectors and a straw-tube tracker, provides pre-
cision tracking of charged particles for | η | ≤ 2.5. The elec-
tromagnetic and hadronic calorimeter system covers | η | ≤ 4.9
and, at η = 0, has a total depth of 9.7 interaction lengths (22 ra-
diation lengths in the electromagnetic part). The MS provides
trigger information (| η | ≤ 2.4) and momentum measurements
(| η | ≤ 2.7) for charged particles entering the spectrometer. It
consists of one barrel and two endcap parts, each with 16 sec-
tors in φ, equipped with precision tracking chambers and fast
detectors for triggering. Monitored drift tubes are used for pre-
cision tracking in the region | η | ≤ 2.0 and cathode strip cham-
bers are used for 2.0 ≤ | η | ≤ 2.7. The MS detectors are ar-
ranged in three stations of increasing distance from the IP: in-
ner, middle and outer. The air core toroidal magnetic field al-

1 ATLAS uses a right-handed coordinate system with its origin at the nom-
inal interaction point (IP) in the centre of the detector and the z-axis coinciding
with the beam pipe axis. The x-axis points from the IP to the centre of the LHC
ring, and the y-axis points upward. Cylindrical coordinates (r,φ) are used in
the transverse plane, φ being the azimuthal angle around the beam pipe. The
pseudorapidity is defined in terms of the polar angle θ as η = −ln tan(θ/2).

lows an accurate charged particle reconstruction independent of
the ID information. The three planes of trigger chambers (re-
sistive plate chambers in the barrel and the thin gap chambers
in the endcaps) are located in middle and outer (only in the bar-
rel) stations. The L1 muon trigger requires hits in the middle
stations to create a low tranverse momentum (pT) muon ROI or
hits in both the middle and outer stations for a high pT ROI.
The muon ROIs have a spatial extent of 0.2×0.2 (∆η × ∆φ) in
the barrel and of 0.1×0.1 in the endcap. L1 ROI information
seeds, at HLT level, the reconstruction of muon momenta using
the precision chamber information. In this way sharp trigger
thresholds up to 40 GeV can be obtained.

3. Signal and background simulation
The set of parameters used to generate the signal Monte

Carlo samples is listed in Table 1. The Higgs boson is
generated through the gluon-gluon fusion production mech-
anism which is the dominant process for a low mass Higgs
boson. The gluon-gluon fusion Higgs boson production cross
section in pp collisions at

√
s = 7 TeV, estimated at the

next-to-next-to-leading order (NNLO) [22], is σSM = 24.0 pb
for mH = 100 GeV and σSM = 12.1 pb for mH = 140 GeV.
The PYTHIA generator [23] is used, linked together with
MadGraph4.4.2 [24] and BRIDGE [25], for gluon-gluon fusion
production of the Higgs boson and the subsequent decay to
hidden-sector particles.
As discussed in the introduction, the signal is chosen to enable
a study of rare, non-SM, Higgs boson decays in the (possibly
extended) Higgs sector. To do so we choose two points which
envelope a mass range covering the 126 GeV resonance. The
lower mass point, mH = 100 GeV, is chosen to be compat-
ible with the decay-mode-independent search by OPAL at
LEP [26]. The higher mass point, mH = 140 GeV, is chosen
well below the WW threshold, where a sizeable branching ratio
into a hidden sector may be naturally achieved. The masses of
fd2 and fd1 are chosen to be light relative to the Higgs boson
mass, and far from the kinematic threshold at m fd1 +mγd = m fd2 .
For the chosen dark photon mass (0.4 GeV), the γd decay
branching ratios are expected to be [14]: 45% e+e−, 45% µ+µ−,
10% π+π−. Thus 20% of the Higgs H→ γd γd + X decays are
expected to have the required four-muon final state.
The mean lifetime τ of the γd (expressed throughout this Letter
as τ times the speed of light c) is a free parameter of the model.
In the generated samples cτ is chosen so that a large fraction of
the decays occur inside the sensitive ATLAS detector volume,
i.e. up to 7 m in radius and 13 m along the z-axis, where
the trigger chambers of the middle stations are located. The
detection efficiency can then be estimated for a range of γd

mean lifetime through re-weighting of the generated samples.

Higgs mass m fd2 m fd1 γd mass cτ
[ GeV] [ GeV] [ GeV] [ GeV] [mm]

100 5.0 2.0 0.4 47
140 5.0 2.0 0.4 36

Table 1: Parameters used for the Monte Carlo simulation. The last column is
the γd mean lifetime τ multiplied by the speed of light c, expressed in mm.
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Potential backgrounds include all the processes which lead
to real prompt muons in the final state such as the SM pro-
cesses W+jets, Z+jets, tt̄, WW, WZ, and ZZ. However, the main
contribution to the background is expected from processes giv-
ing a high production rate of secondary muons which do not
point to the primary vertex, such as decays in flight of K/π and
heavy flavour decays in multi-jet processes, or muons due to
cosmic rays. The prompt lepton background samples are gen-
erated using PYTHIA (W+jets, and Z+jets) and MC@NLO [27] (tt̄,
WW, WZ, and ZZ). The generated Monte Carlo events are
processed through the full ATLAS simulation chain based on
GEANT4 [28, 29]. Additional pp interactions in the same and
nearby bunch crossings (pile-up) are included in the simula-
tion. All Monte Carlo samples are re-weighted to reproduce the
observed distribution of the number of interactions per bunch
crossing in the data. For the multi-jet background evaluation a
data-driven method is used. The cosmic-ray background is also
evaluated from data.

4. The kinematics of the signal

The main kinematic characteristics of the signal sample are:

• The γd pair are emitted approximately back-to-back in φ,
with an angular spread of the distribution due to the emis-
sion of the fd1.

• The average pT of the γd in the laboratory frame is about
20 GeV for mH = 100 GeV and 30 GeV for mH = 140
GeV; due to the small mass of the γd, large boost factors
in the decay length should be expected.

• Fig. 2 shows the distribution of ∆R =
√

(∆η)2 + (∆φ)2 be-
tween the two muons from the γd decay. The ∆R is com-
puted at the decay vertex of the γd from the vector mo-
menta of the two muons. Due to the small mass of the γd

the ∆R is almost always below 0.1.

Since the two fd1 are, like the two γd, emitted back-to-back in
φ, the observed missing transverse momentum Emiss

T , computed
at the event-generator level, is small and cannot be used as a
discriminating variable against the background.
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Figure 2: ∆R distribution between the two muons from the γd decay for the
signal Monte Carlo samples with mH = 100 GeV and mH = 140 GeV.

5. Data samples and trigger selection

The dataset used for this analysis was collected at a centre-of-
mass energy of 7 TeV during the first part of 2011, where a low
level of pile-up events in the same bunch-crossing was present
(an average of ≈ 6 interactions per crossing). Only periods in
which all ATLAS subdetectors were operational are used. The
total integrated luminosity used is 1.94 ± 0.07 fb−1 [30, 31].
All events are required to have at least one reconstructed ver-
tex along the beam line with at least three associated tracks,
each with pT ≥ 0.4 GeV. The primary interaction vertex is de-
fined to be the vertex whose constituent tracks have the largest
Σp2

T. This analysis deals with displaced γd decays with final
states containing only muons. Signal events are therefore char-
acterized by a four-muon final state with the four muons com-
ing from two displaced decay vertices. Due to the relatively
low pT of the muons and to the displaced decay vertex, a low-
pT multi-muon trigger with muons reconstructed only in the
MS is needed. In order to have an acceptably low trigger rate
at a low pT threshold, a multiplicity of at least three muons is
required. Candidate events are collected using an unprescaled
HLT trigger with three reconstructed muons of pT ≥ 6 GeV,
seeded by a L1-accept with three different muon ROIs. These
muons are reconstructed only in the MS, since muons originat-
ing from a neutral particle decaying outside the pixel detector
will not have a matching track in the ID tracking system. The
trigger efficiency for the Monte Carlo signal samples, defined
as the fraction of events passing the trigger requirement with
respect to the events satisfying the analysis selection criteria
(described in Section 6) is 0.32±0.01stat for mH = 100 GeV
and 0.31±0.01stat for mH = 140 GeV.
The main reason for the relatively low trigger efficiency is the
small opening ∆R between the two muons of the γd decay
(∆R ≤ 0.1) shown in Fig. 2. These values of ∆R are often
smaller than the L1 trigger granularity; in this case the L1 pro-
duces only one ROI. The trigger only fires if at least one of the
γd produces two distinct L1 ROIs. The single γd ROI efficiency,
ε2ROI (ε1ROI), defined as the fraction of γd passing the offline
selection that give two (one) trigger ROIs is 0.296 ± 0.004stat
(0.626 ± 0.004stat) for mH = 100 GeV and 0.269 ± 0.003stat
(0.653 ± 0.003stat) for mH = 140 GeV. Fig. 3 shows the ε2ROI
as a function of the dark photon η and of the ∆R of the two
muons from the γd decay. The increased trigger granularity in
the endcap and the efficiency decrease at small values of ∆R are
clearly visible.
The systematic uncertainty on the trigger efficiency is estimated
with a sample of J/ψ → µ+µ− from collision data and a cor-
responding sample of Monte Carlo events, using the tag-and-
probe (TP) method. A cut on ∆R ≤ 0.1 between the two muons
is used to reproduce the small track-to-track spatial separation
in the MS of the signal. The tag is a (MS+ID) combined muon,
defined as a MS-reconstructed muon that is associated with a
trigger object and combined with a matching “good ID track”.
Good ID tracks must have at least one hit in the pixel detec-
tor, at least six hits in the silicon micro-strip detectors and at
least six hits in the straw-tube tracker. The probe is a good ID
track which, when combined with the tag track, gives an invari-
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ant mass inside a 100 MeV window around the J/ψ mass. A
muon ROI that matches the probe in η and φ, and is different
from the ROI associated with the tag, is searched for. The num-
ber of probes with a matched ROI divided by the number of
probes without a matched ROI gives the εTP

2ROI/ε
TP
1ROI ratio. Val-

ues of εTP
2ROI/ε

TP
1ROI = 0.42±0.05stat for the J/ψ → µ+µ− data

and εTP
2ROI/ε

TP
1ROI = 0.39±0.05stat for the corresponding Monte

Carlo sample are obtained. The relative statistical uncertainty
on the difference between these two estimates is 17% and this
is taken conservatively to be the systematic uncertainty on the
trigger efficiency.
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Figure 3: ε2ROI as a function (a) of the η of the γd and (b) of the ∆R of the muon
pair for the Monte Carlo samples with Higgs boson masses of 100 GeV and 140
GeV. The errors are statistical only.

6. Muon Jets reconstruction and event selection
MJs from displaced γd decays are characterized by a pair of

muons in a narrow cone, produced away from the primary ver-
tex of the event. Consequently tracks reconstructed in the MS
with a good quality track fit [32] are used. MJs are identified us-
ing a simple clustering algorithm that associates all the muons
in cones of ∆R = 0.2, starting with the muon with highest pT.
The size of the cone takes into account the multiple scattering of
the muons in the calorimeters. All the muons found in the cone
are associated with a MJ. After this procedure, if any muons are
unassociated with a MJ the search is repeated for this remain-
der, starting again with the highest pT muon. This continues
until all possible MJs are formed. The MJ direction and mo-
mentum are obtained from the vector sum over all muons in the
MJ. Only MJs with two reconstructed muons are accepted and
only events with two MJs are kept for the subsequent analysis.

The possible contribution to the background of SM processes
which lead to real prompt muon pairs in the final state is evalu-
ated using simulated samples. After the trigger and the require-
ment of having two MJs in the event, their contributions have
been found to be negligible. The only significant background
sources are expected to be from processes giving a high produc-
tion rate of secondary muons which do not point to the primary
vertex, such as decays in flight of K/π and heavy flavour de-
cays in multi-jet production, or cosmic-ray muons not pointing
to the primary vertex.
In order to separate the signal from the background, a num-
ber of discriminating variables have been studied. The multi-jet
background can be significantly reduced by using calorimeter
isolation requirements around the MJ direction. The calorimet-
ric isolation variable Eisol

T is defined as the difference between
the transverse calorimetric energy ET in a cone of ∆R = 0.4
around the highest pT muon of the MJ and the ET in a cone of
∆R = 0.2; a cut Eisol

T ≤ 5 GeV keeps almost all the signal. The
isolation modelling is validated for real isolated muons with a
sample of muons coming from Z → µµ decays. To further im-
prove the signal-to-background ratio, two additional discrimi-
nating variables are used: ∆φ between the two MJs and ΣpID

T
for the MJ, defined as the scalar sum of the transverse momen-
tum of the tracks, measured in the ID, inside a cone ∆R = 0.4
around the direction of the MJ. The muon tracks of the MJ in
the ID, if any, are not removed from the isolation sum, so that
prompt muons, which give a reconstructed track in both the ID
and MS, will contribute to the ΣpID

T . As a consequence a cut on
ΣpID

T of a few GeV will remove prompt MJs or MJs with very
short decay length.

For the background coming from cosmic-ray muons (mainly
pairs of almost parallel cosmic-ray muons crossing the detector)
a cut on the impact parameters of the muon tracks with respect
to the primary interaction vertex is used.
The final set of selection criteria used is the following:

• Topology cut: events are required to have exactly two MJs,
NMJ = 2.

• MJ isolation: require MJ isolation with Eisol
T ≤ 5 GeV for

both MJs in the event.

• Require |∆φ| ≥ 2 between the two MJs.

• Require opposite charges for the two muons in a MJ
(QMJ = 0).

• Require a cut on the transverse and longitudinal impact pa-
rameters of the muons with respect to the primary vertex:
|d0| < 200 mm and |z0| < 270 mm.

• Require ΣpID
T < 3 GeV for both MJs.

The distributions of the relevant variables at the different steps
of the cut flow are shown in Fig. 4. The results are summarized
in Table 2. No events survive the selection in the data sample
whereas the expected signals from Monte Carlo simulation, as-
suming 100% branching ratio for H→ γd γd+X and the parame-
ters given in Table 1, are 75 or 48 events for Higgs boson masses
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Figure 4: Control plots for the cut variables on Monte Carlo (mH = 140 GeV) and on data. (a) Distribution of the calorimetric isolation around the MJ direction
Eisol

T after the requirement of two MJs in the event. (b) Distribution of ∆φ between the two MJs after the requirement of the isolation cut. (c) Distribution of ΣpID
T

of the MJ after the requirement of the impact parameters cut. The points show the data and the histogram is the signal Monte Carlo normalized to 1.9 fb−1. The
uncertainties are statistical only.

of 100 GeV and 140 GeV respectively. The method used to es-
timate the cosmic-ray and multi-jet background yields, quoted
in Table 2, is discussed in Section 7.

The resulting single γd reconstruction efficiency for the mean
lifetimes given in Table 1 is shown in Fig. 5 as a function of η,
the ∆R separation of the two muons from the γd decay and the
decay length in the transverse plane, Lxy, of the γd. The effi-
ciency is defined as the number of γd passing the offline selec-
tion divided by the number of γd in the spectrometer acceptance
(| η | ≤ 2.4) with both muons having pT ≥ 6 GeV. The low re-
construction efficiency at very short Lxy is a consequence of the
ΣpID

T cut.
The systematic uncertainty on the reconstruction efficiency

is evaluated using a tag-and-probe method by comparing the
reconstruction efficiency εTP

rec for J/ψ → µ+µ− samples from
collision data and J/ψ → µ+µ− Monte Carlo simulation. The
tag-and-probe definitions and the cut on ∆R ≤ 0.1 between the
two muons are the same as in Section 5. To measure the re-
construction efficiency the ID probe track is associated with a
MS-only muon track, different from the one associated with the
tag. The result is shown in Fig. 6.
The relative difference between the result obtained from the
J/ψ → µ+µ− data and the J/ψ → µ+µ− Monte Carlo sam-
ple in the same range of ∆R ≤ 0.1, as for the signal, is taken as
the systematic uncertainty on the reconstruction efficiency and
amounts to 13%.

7. Multi-jet and cosmic-ray background evaluation

To estimate the multi-jet background contamination in the
signal region we use a data-driven ABCD method slightly mod-
ified to cope with the problem of the very low number of events
in the control regions. The ABCD method assumes that two
variables can be identified, which are relatively uncorrelated,
and which can each be used to separate signal and background.
It is assumed that the multi-jet background distribution can be
factorized in the MJ Eisol

T – |∆φ| plane. The region A is de-
fined by Eisol

T ≤ 5 GeV and |∆φ| < 2; the region B, defined by
Eisol

T ≤ 5 GeV and |∆φ| ≥ 2, is the signal region. The regions
C and D are the anti-isolated regions (Eisol

T > 5 GeV) and they
are defined by |∆φ| < 2 and |∆φ| ≥ 2, respectively. Neglect-
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Figure 5: γd reconstruction efficiency εrec as a function (a) of η, (b) of ∆R and
(c) of the transverse decay length of the γd for mH = 100 GeV and mH = 140
GeV and for the mean lifetimes given in Table 1. The reconstruction efficiency
is defined as the number of γd passing the offline selection divided by the num-
ber of γd in the spectrometer acceptance (| η | ≤ 2.4) with both muons having
pT ≥ 6 GeV. The uncertainties are statistical only.
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cut cosmic-rays multi-jet total background mH = 100 GeV mH = 140 GeV data

NMJ = 2 3.0 ± 2.1 N/A N/A 135±11+29
−21 90±9+17

−13 871

Eisol
T ≤ 5 GeV 3.0 ± 2.1 N/A N/A 132±11+28

−21 88±9+17
−13 219

|∆φ| ≥ 2 1.5 ± 1.5 153 ± 18 ± 9 155 ± 18 ± 9 123±11+26
−19 81±9+15

−12 104

QMJ = 0 1.5 ± 1.5 57 ±15±22 59 ± 15 ± 22 121±11+26
−19 79±8+15

−12 80

|d0 |, |z0 | 0+1.64
−0 111±39±63 111±39±63 105±10+22

−16 66±8+12
−10 70

ΣpID
T < 3 GeV 0+1.64

−0 0.06±0.02+0.66
−0.06 0.06+1.64+0.66

−0.02−0.06 75±9+16
−12 48±7+9

−7 0

Table 2: Cut flow for the signal selection on signal Monte Carlo, the corresponding cosmic-ray background, the multi-jet background estimation from the ABCD
method (described in Section 7) and the data; the yields are normalized to an integrated luminosity of 1.9 fb−1. The first uncertainties are statistical and the second
systematic.
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Figure 6: Tag-and-probe reconstruction efficiency εTP
rec as a function of the ∆R

between the two muons, evaluated on a sample of J/ψ → µ+µ− from collision
data and a corresponding sample of Monte Carlo events. The εTP

rec for the signal
Monte Carlo, evaluated with a similar tag-and-probe method, is also shown.
The uncertainties are statistical only.

ing the signal contamination in regions A, C and D (Eisol
T > 5

GeV or |∆φ| < 2) the number of multi-jet background events
in the signal region can be evaluated as NB = ND × NA/NC .
Due to the very low number of events in the control regions the
values of NA, NC and ND as a function of the cut on the final
discriminant variable ΣpID

T are extracted by modelling the ΣpID
T

distributions with bifurcated Gaussian templates, with param-
eters fitted from the data in the corresponding regions, and by
integrating the fitted function in the range 0 < ΣpID

T < 3 GeV.
The low statistics in the four regions at each step of the cut
flow give rise to large fluctuations in the multi-jet background
estimate. The extracted yields are NA = (7.1 ± 1.5stat) · 10−3,
NC = (1.81±1.0stat) ·10−2 and ND = (1.51±0.07stat) ·10−1 and
the estimated number of multi-jet background events in the sig-
nal region is NB = 0.06 ± 0.02stat. Possible sources of system-
atic uncertainty related to the background estimation method
are also evaluated. The functional form is changed and the pro-
cedure to estimate the number of multi-jet background events
in the signal region is repeated. The difference in NB is taken
as the systematic uncertainty in the modelling of the multi-jet
background shape and it amounts to +0.66

−0.06. The effect of possible
signal leakage in the background regions is also considered and
is found to be negligible.
The background induced by muons from cosmic-ray showers
is evaluated using events collected by the trigger active when
there are no collisions (empty bunch crossings). The number

of triggered events is rescaled by the collision to empty bunch
crossing ratio and for the active time (since the trigger in the
empty bunch crossing was not active in all the runs). No events
survived the requirements on the impact parameters with re-
spect to the primary vertex (|d0| < 200 mm and |z0| < 270 mm),
resulting in a cosmic-ray contamination estimate of 0+1.64

−0 . The
final yields for the different background sources are summa-
rized in Table 2.

8. Systematic uncertainties
The following effects are considered as possible sources of

systematic uncertainty:

• Luminosity
The overall normalisation uncertainty of the integrated lu-
minosity is 3.7% [30, 31].

• Muon momentum resolution
The systematic uncertainty on the muon momentum reso-
lution for MS-only muons has been evaluated by smearing
and shifting the momenta of the muons by scale factors
derived from Z → µµ data-Monte Carlo comparison, and
by observing the effect of this shift on the signal efficiency.
The overall effect of the muon momentum resolution un-
certainty is negligible.

• Trigger
The systematic uncertainty on the single γd trigger effi-
ciency, evaluated using a tag-and-probe method is 17%
(see Section 5).

• Reconstruction efficiency
The systematic uncertainty on the reconstruction effi-
ciency, evaluated using a tag-and-probe method for the
single γd reconstruction efficiency, is 13% (see Section 6).

• Effect of pile-up
The systematic uncertainty on the signal efficiency related
to the effect of pile-up is evaluated by comparing the num-
ber of signal events after imposing all the selection criteria
on the signal Monte Carlo sample increasing the average
number of interactions per crossing from ≈ 6 to ≈ 16. This
systematic uncertainty is negligible.
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• Effect of ΣpID
T

cut
Since the ΣpID

T cut could affect the minimum cτ value that
can be excluded, the effect of this cut on the signal Monte
Carlo has been studied. A variation of 10% on the ΣpID

T cut
results in a relative variation of <1% on the signal, which
can therefore be neglected.

• Background evaluation
The systematic uncertainties that can affect the back-
ground estimation are related to the data-driven method
used. The functional model used to fit the ΣpID

T distri-
bution is varied to evaluate the systematic uncertainty in
the modelling of its shape, which also includes the effect
of the ΣpID

T cut on the background estimation. This sys-
tematic uncertainty amounts to +0.66

−0.06 events. The effect of
signal leakage is also negligible.

9. Results and interpretation
The efficiency of the selection criteria described above is

evaluated for the simulated signal samples (see Table 1) as
a function of the mean lifetime of the γd. Using pseudo-
experiments with cτ ranging from 0 to 700 mm the number
of γd that decay in each region of the detector is weighted by
the corresponding total efficiency for that region. In this way
the number of expected signal events is predicted as a func-
tion of the γd mean lifetime. These numbers, together with the
expected number of background events (multi-jet and cosmic
rays) and taking into account the zero data events surviving the
selection criteria in 1.9 fb−1, are used as input to obtain limits
at the 95% confidence level (CL). The CLs method [33] is used
to set 95% CL upper limits on the cross section times branching
ratio (σ×BR ) for the process H→ γd γd + X. Here the branch-
ing ratio of γd → µ µ is set to 45% with the γd mass set to 0.4
GeV, as previously discussed. The σ×BR is given as a function
of the γd mean lifetime, expressed as cτ for mH = 100 GeV
and mH = 140 GeV. These limits are shown on Fig. 7. Table 3
shows the ranges in which the γd cτ is excluded at the 95% CL
for H→ γd γd + X branching ratios of 100% and 10%.

Higgs boson mass excluded cτ [mm] excluded cτ [mm]
[ GeV] BR(100%) BR(10%)

100 1 ≤ cτ ≤ 670 5 ≤ cτ ≤ 159

140 1 ≤ cτ ≤ 430 7 ≤ cτ ≤ 82

Table 3: Ranges in which γd cτ is excluded at 95% CL for mH = 100 GeV and
mH = 140 GeV, assuming 100% and 10% branching ratio of H→ γd γd + X.

10. Conclusions
The ATLAS detector at the LHC was used to search for a

light Higgs boson decaying into a pair of hidden fermions ( fd2),
each of which decays to a γd and to a stable hidden fermion
( fd1), resulting in two muon jets from the γd decay in the final
state. In a 1.9 fb−1 sample of

√
s = 7 TeV proton-proton col-

lisions no events consistent with this Higgs boson decay mode
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Figure 7: The 95% upper limits on the σ×BR for the process H→ γd γd + X as
a function of the dark photon cτ for the benchmark sample with (a) mH = 100
GeV and with (b) mH = 140 GeV. The expected limit is shown as the dashed
curve and the solid curve shows the observed limit. The horizontal lines corre-
spond to the Higgs boson SM cross sections at the two mass values.

are observed. The observed data are consistent with the Stan-
dard Model background expectations.
Limits are set on the σ×BR to H→ γd γd + X as a function of
the long-lived particle mean lifetime for mH = 100 GeV and
140 GeV with the chosen γd mass that gives a decay branching
ratio of 45% for γd → µ µ. Assuming the SM production rate
for a 140 GeV Higgs boson, its branching ratio to two hidden-
sector photons is found to be below 10%, at 95% CL, for hid-
den photon cτ in the range 7 mm ≤ cτ ≤ 82 mm. Bounds on
the σ×BR of a 126 GeV Higgs boson may be conservatively
extracted using the corresponding 140 GeV exclusion curve.
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J. Barreiro Guimarães da Costa56, P. Barrillon114,
R. Bartoldus142, A.E. Barton70, V. Bartsch148, A. Basye164,
R.L. Bates52, L. Batkova143a, J.R. Batley27, A. Battaglia16,
M. Battistin29, F. Bauer135, H.S. Bawa142,e, S. Beale97,
T. Beau77, P.H. Beauchemin160, R. Beccherle49a, P. Bechtle20,
H.P. Beck16, A.K. Becker174, S. Becker97, M. Beckingham137,
K.H. Becks174, A.J. Beddall18c, A. Beddall18c, S. Bedikian175,
V.A. Bednyakov63, C.P. Bee82, L.J. Beemster104, M. Begel24,

S. Behar Harpaz151, P.K. Behera61, M. Beimforde98,
C. Belanger-Champagne84, P.J. Bell48, W.H. Bell48,
G. Bella152, L. Bellagamba19a, F. Bellina29, M. Bellomo29,
A. Belloni56, O. Beloborodova106, f , K. Belotskiy95,
O. Beltramello29, O. Benary152, D. Benchekroun134a,
K. Bendtz145a,145b, N. Benekos164, Y. Benhammou152,
E. Benhar Noccioli48, J.A. Benitez Garcia158b,
D.P. Benjamin44, M. Benoit114, J.R. Bensinger22,
K. Benslama129, S. Bentvelsen104, D. Berge29,
E. Bergeaas Kuutmann41, N. Berger4, F. Berghaus168,
E. Berglund104, J. Beringer14, P. Bernat76, R. Bernhard47,
C. Bernius24, T. Berry75, C. Bertella82, A. Bertin19a,19b,
F. Bertolucci121a,121b, M.I. Besana88a,88b, G.J. Besjes103,
N. Besson135, S. Bethke98, W. Bhimji45, R.M. Bianchi29,
M. Bianco71a,71b, O. Biebel97, S.P. Bieniek76, K. Bierwagen53,
J. Biesiada14, M. Biglietti133a, H. Bilokon46, M. Bindi19a,19b,
S. Binet114, A. Bingul18c, C. Bini131a,131b, C. Biscarat177,
B. Bittner98, K.M. Black21, R.E. Blair5, J.-B. Blanchard135,
G. Blanchot29, T. Blazek143a, C. Blocker22, J. Blocki38,
A. Blondel48, W. Blum80, U. Blumenschein53,
G.J. Bobbink104, V.B. Bobrovnikov106, S.S. Bocchetta78,
A. Bocci44, C.R. Boddy117, M. Boehler47, J. Boek174,
N. Boelaert35, J.A. Bogaerts29, A. Bogdanchikov106,
A. Bogouch89,∗, C. Bohm145a, J. Bohm124, V. Boisvert75,
T. Bold37, V. Boldea25a, N.M. Bolnet135, M. Bomben77,
M. Bona74, M. Boonekamp135, C.N. Booth138, S. Bordoni77,
C. Borer16, A. Borisov127, G. Borissov70, I. Borjanovic12a,
M. Borri81, S. Borroni86, V. Bortolotto133a,133b, K. Bos104,
D. Boscherini19a, M. Bosman11, H. Boterenbrood104,
J. Bouchami92, J. Boudreau122, E.V. Bouhova-Thacker70,
D. Boumediene33, C. Bourdarios114, N. Bousson82,
A. Boveia30, J. Boyd29, I.R. Boyko63, I. Bozovic-Jelisavcic12b,
J. Bracinik17, P. Branchini133a, G.W. Brandenburg56,
A. Brandt7, G. Brandt117, O. Brandt53, U. Bratzler155,
B. Brau83, J.E. Brau113, H.M. Braun174,∗, S.F. Brazzale163a,163c,
B. Brelier157, J. Bremer29, K. Brendlinger119, R. Brenner165,
S. Bressler171, D. Britton52, F.M. Brochu27, I. Brock20,
R. Brock87, F. Broggi88a, C. Bromberg87, J. Bronner98,
G. Brooijmans34, T. Brooks75, W.K. Brooks31b, G. Brown81,
H. Brown7, P.A. Bruckman de Renstrom38, D. Bruncko143b,
R. Bruneliere47, S. Brunet59, A. Bruni19a, G. Bruni19a,
M. Bruschi19a, T. Buanes13, Q. Buat54, F. Bucci48,
J. Buchanan117, P. Buchholz140, R.M. Buckingham117,
A.G. Buckley45, S.I. Buda25a, I.A. Budagov63, B. Budick107,
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J. Goncalves Pinto Firmino Da Costa41, L. Gonella20,
S. Gonzalez172, S. González de la Hoz166,
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F. Rühr6, A. Ruiz-Martinez62, L. Rumyantsev63,
Z. Rurikova47, N.A. Rusakovich63, J.P. Rutherfoord6,
C. Ruwiedel14,∗, P. Ruzicka124, Y.F. Ryabov120, M. Rybar125,
G. Rybkin114, N.C. Ryder117, A.F. Saavedra149, I. Sadeh152,
H.F-W. Sadrozinski136, R. Sadykov63, F. Safai Tehrani131a,
H. Sakamoto154, G. Salamanna74, A. Salamon132a,
M. Saleem110, D. Salek29, D. Salihagic98, A. Salnikov142,
J. Salt166, B.M. Salvachua Ferrando5, D. Salvatore36a,36b,
F. Salvatore148, A. Salvucci103, A. Salzburger29,
D. Sampsonidis153, B.H. Samset116, A. Sanchez101a,101b,
V. Sanchez Martinez166, H. Sandaker13, H.G. Sander80,
M.P. Sanders97, M. Sandhoff174, T. Sandoval27, C. Sandoval161,
R. Sandstroem98, D.P.C. Sankey128, A. Sansoni46,
C. Santamarina Rios84, C. Santoni33, R. Santonico132a,132b,
H. Santos123a, J.G. Saraiva123a, T. Sarangi172,
E. Sarkisyan-Grinbaum7, F. Sarri121a,121b, G. Sartisohn174,
O. Sasaki64, Y. Sasaki154, N. Sasao66, I. Satsounkevitch89,
G. Sauvage4,∗, E. Sauvan4, J.B. Sauvan114, P. Savard157,d,
V. Savinov122, D.O. Savu29, L. Sawyer24,m, D.H. Saxon52,
J. Saxon119, C. Sbarra19a, A. Sbrizzi19a,19b,

D.A. Scannicchio162, M. Scarcella149, J. Schaarschmidt114,
P. Schacht98, D. Schaefer119, U. Schäfer80, S. Schaepe20,
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Switzerland
ab Also at Departamento de Fisica, Universidade de Minho,
Braga, Portugal
ac Also at Department of Physics and Astronomy, University
of South Carolina, Columbia SC, United States of America
ad Also at Institute for Particle and Nuclear Physics, Wigner
Research Centre for Physics, Budapest, Hungary
ae Also at California Institute of Technology, Pasadena CA,
United States of America
a f Also at Institute of Physics, Jagiellonian University,
Krakow, Poland
ag Also at LAL, Université Paris-Sud and CNRS/IN2P3,
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