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Abstract

We present a search for a light (mass < 2 GeV) boson predicted by Hidden Valley supersymmetric
models that decays into a final state consisting of collimated muons or electrons, denoted “lepton-jets”.
The analysis uses 5 fb−1 of

√
s = 7 TeV proton–proton collision data recorded by the ATLAS detector

at the Large Hadron Collider to search for the following signatures: single lepton-jets with at least four
muons; pairs of lepton-jets, each with two or more muons; and pairs of lepton-jets with two or more
electrons. This study finds no statistically significant deviation from the Standard Model prediction and
places 95% confidence-level exclusion limits on the production cross section times branching ratio of
light bosons for several parameter sets of a Hidden Valley model.
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Abstract

We present a search for a light (mass < 2 GeV) boson predicted by Hidden Valley supersymmetric models that decays
into a final state consisting of collimated muons or electrons, denoted “lepton-jets”. The analysis uses 5 fb−1 of
√

s = 7 TeV proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider to search
for the following signatures: single lepton-jets with at least four muons; pairs of lepton-jets, each with two or more
muons; and pairs of lepton-jets with two or more electrons. This study finds no statistically significant deviation from
the Standard Model prediction and places 95% confidence-level exclusion limits on the production cross section times
branching ratio of light bosons for several parameter sets of a Hidden Valley model.

1. Introduction

A light boson at the GeV scale, in a model where a
Hidden Valley sector is weakly coupled to the Standard
Model (SM) sector [1–3], has been proposed to explain
several recently observed anomalies in cosmic-ray and
dark matter direct-detection experiments. These obser-
vations include an unexpected excess of cosmic elec-
trons and/or positrons [4–7] and signals from certain
dark matter direct-detection experiments [8–10]. The
proposed boson could be created at particle accelera-
tors and produce distinctive final states of tightly colli-
mated “lepton-jets” consisting of close by electrons or
muons [11–15]. Such lepton-jet decays are also a gener-
ically interesting signature that may be produced by rare
decays of, for instance, Z or Higgs bosons [16]. Upper
limits on lepton-jet production have already been set by
previous analyses of collider data [17, 18].

In Hidden Valley models, the universe consists of SM
and supersymmetric (SUSY) particles, together with an
additional spectrum of dark matter particles charged un-
der a hidden gauge group (called the dark sector). Cer-
tain particles called messengers are charged under both
the dark sector and the SM and SUSY gauge symme-
tries, permitting decay chains through the normal and
dark sectors. For example, the lightest supersymmetric
particle, which cannot decay to SM particles due to R-
parity conservation, can decay into less-massive dark-
sector states ending with the lightest particle in the dark
sector, a dark photon denoted γD. This dark photon can
decay into light SM fermions by kinetic mixing [19]

of the dark gauge sector and SM gauge symmetries.
These models aim to explain the excess of cosmic-ray
positrons, in the absence of any observed proton ex-
cess, with a dark boson γD that has a mass below the
proton–antiproton kinematic threshold of ∼2 GeV. Such
low-mass dark photons can decay to electrons, muons,
and pions, whereas decays to protons are kinematically
forbidden. Due to the boost of the γD, the light SM de-
cay products are highly collimated, providing a striking
signature for new physics.

The data is interpreted in a model where a pair of
squarks is produced and each of the squarks cascade de-
cays into dark-sector particles, including one or more
dark-photons. The dark-photons decay into pairs of lep-
tons, forming lepton-jets. Additionally, dark-sector par-
ticles may radiate multiple dark photons, increasing the
lepton multiplicities and number of the lepton-jets [16].
The amount of radiation is determined by the dark sec-
tor gauge coupling parameter αd. Setting αd = 0.0 re-
sults in a simple lepton-jet with two hard leptons. Larger
values of αd may produce lepton-jets with four, six,
eight, or more prompt leptons from the decay of over-
lapping dark photons, albeit with reduced boost. The
transverse momentum (pT) of the leptons increases with
dark photon mass, but decreases with αd. This paper
considers values of αd of 0.0, 0.1, and 0.3, and dark
photon masses (mγD ) of 150, 300, and 500 MeV. For
mγD = 150 MeV, the dark photon is below the muon–
antimuon threshold and can only decay to electrons.
With mγD ≥ 300 MeV, the dark photon decays to elec-
tron and muon pairs. Additionally, for mγD = 500 MeV,
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20% of the decays produce pion pairs. These nine signal
operating points cover a wide range of phase space from
low-multiplicity lepton-jets containing leptons of only
one flavour, to high-multiplicity lepton-jets containing
a mix of electrons and muons.

The data samples used in this analysis were col-
lected with the ATLAS detector during the 2011 run
of the Large Hadron Collider at centre-of-mass energy
√

s = 7 TeV and correspond to 4.5 fb−1 of integrated lu-
minosity for the muon analyses and 4.8 fb−1 for the elec-
tron analysis [20, 21], after their respective data quality
requirements have been applied. This paper considers
lepton-jets in three signatures: single muon-jets with
four or more muons, pairs of muon-jets each with two
or more muons, and pairs of electron-jets each with two
or more electrons. The selection is designed to enhance
the signal relative to the SM backgrounds, the largest of
which is multi-jet production. In multi-jet production
the background arises from either real leptons from the
decay of SM particles, from hadrons that are misidenti-
fied as leptons, or in the case of electrons, from photon
conversions. All other SM background sources are ex-
pected to be negligible after the final selection cuts are
applied. The multi-jet background is reduced through a
variety of selection cuts, and the remaining background
is estimated with two different data-driven techniques.

No requirements are made on the remaining activity
in the event beyond the one or two lepton-jets in order
to avoid introducing a strong model dependence in the
analysis. For example, no cuts are made on the presence
of other particles or jets, the event track multiplicity, or
the presence of missing transverse energy.

2. The ATLAS detector

ATLAS is a general purpose detector [22] consist-
ing of an inner tracking detector (ID) embedded in a
2 T solenoid, electromagnetic and hadronic calorime-
ters and a muon spectrometer (MS) employing toroidal
magnets. The ID provides precision tracking of charged
particles for |η| < 2.5 using silicon pixel and microstrip
detectors and a straw-tube transition radiation tracker
(TRT) that relies on transition radiation to distinguish
electrons from pions in the range |η| < 2.0. Liquid-
argon (LAr) electromagnetic sampling calorimeters,
with excellent energy and position resolution, cover the
range |η| < 3.2 with a typical granularity of ∆η × ∆φ of
0.025 × 0.025. A scintillator-tile calorimeter, which is
divided into a large barrel and two smaller extended-
barrel cylinders, one on each side of the central bar-
rel, provides hadronic calorimetry in the range |η| <
1.7. In the end-caps (|η| > 1.5), LAr is also used

for the hadronic calorimeters, matching the outer |η|
limit of end-cap electromagnetic calorimeters. The LAr
forward calorimeters provide both electromagnetic and
hadronic energy measurements, and extend the cover-
age to |η| = 4.9. The calorimeter system has a minimum
depth of 9.7 interaction lengths at η = 0. The MS covers
|η| < 2.7 and provides triggering and precision tracking
for muons.1

A three-level trigger system is used to select events.
The Level 1 (L1) trigger is implemented in hardware
and uses information from the calorimeters and muon
sub-detectors to reduce the event rate to a design value
of at most 75 kHz. This is followed by two software-
based trigger levels, Level 2 (L2) and Event Filter (EF),
which together reduce the event rate to 300 Hz on av-
erage. The L1 trigger generates a list of Regions of In-
terest (RoI) η–φ coordinates with associated thresholds.
The muon RoI have a spatial extent of 0.2 in ∆η and ∆φ
in the MS barrel, and 0.1 in the MS endcap. The electro-
magnetic calorimeter RoI have a spatial extent of 0.2 in
∆η and ∆φ. At L2, most reconstruction uses simplified
algorithms running on data localized to an RoI which
was reported by L1. At the EF level, the trigger system
has access to the full event for processing.

3. Event reconstruction and selection

The analysis used only data from stable running peri-
ods, and required events to have a primary collision ver-
tex containing at least three tracks with pT > 400 MeV
in order to remove cosmic rays.

3.1. Electron-jet channel
Events containing electron-jets were selected using

single-electron triggers with an online pT threshold of
20 or 22 GeV, the latter being used after there was a sub-
stantial increase in the instantaneous luminosity during
2011. To ensure proper modelling of the trigger accep-
tance, events were required to contain at least one recon-
structed electron with pT > 35 GeV, above which the
trigger efficiency is constant. The reconstructed electron
was required to match an electron reconstructed above
the pT threshold in the trigger system with a separation
in R (∆R ≡

√
(∆φ)2 + (∆η)2) less than 0.2.

1ATLAS uses a right-handed coordinate system with its origin at
the nominal interaction point (IP) in the centre of the detector and the
z-axis along the beam pipe. The x-axis points from the IP to the centre
of the LHC ring, and the y axis points upward. Cylindrical coordinates
(r, φ) are used in the transverse plane, φ being the azimuthal angle
around the beam pipe. The pseudorapidity is defined in terms of the
polar angle θ as η = − ln tan(θ/2).
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The electron-jet candidates were built from elec-
tromagnetic clusters with minimum transverse energy
ET > 10 GeV inside the calorimeter fiducial region
(|η| < 2.47, excluding the barrel/end-cap transition re-
gion 1.37 < |η| < 1.52 where there is substantial dead
material that is difficult to model accurately). At least
two tracks from the primary vertex (transverse impact
parameter |d0| < 1 mm) having pT > 10 GeV were re-
quired to have ∆R < 0.1 of the cluster position in the
second sampling layer of the calorimeter. Additional
requirements were made on the number of hits along
the track in the silicon pixel and silicon microstrip de-
tectors to suppress backgrounds from photon conver-
sions. The analysis required two lepton-jet candidates
in each event, with one cluster matching the electron re-
constructed in the trigger system. The invariant mass of
the two highest-pT tracks associated with each electron-
jet had to be less than 2 GeV.

The background for the electron-jets analysis comes
primarily from multi-jet events, and to a lesser extent
from photon+jet events. Five variables were used to re-
duce the remaining background for electron-jet candi-
dates. The electron cluster energy concentration shown
in Fig. 1(a), Rη2, must exceed 0.92. Rη2 is defined as
the ratio of total energy in 3 × 7 cells to the total en-
ergy in 7 × 7 cells in η–φ in the second sampling layer
of the electromagnetic calorimeter. The electron cluster
lateral shower width in the calorimeter, wη2, shown in
Fig. 1(b), must be less than 0.0115, where

wη2 =

√∑
i Ei × ηi

2∑
i Ei

−

(∑
i Ei × ηi∑

i Ei

)2

. (1)

Here Ei and ηi represent the energy and pseudorapidity
of the ith cell in a 3 × 5 η − φ window in the second
sampling layer of the electromagnetic calorimeter. The
ratio of the number of high-threshold hits [22], indica-
tive of transition radiation, to the total number of hits
from the TRT associated with each track, fHT, was re-
quired to be greater than 0.05 to remove pions. The fHT
distribution per track is shown in Fig. 1(c). The sharp
peak at zero arises from tracks matched to an electron
candidate outside of the TRT acceptance. A scaled iso-
lation variable is defined as the transverse energy within
0.1 < ∆R < 0.4 around the cluster divided by cluster
ET; events were required to have scaled isolation below
30% as shown in Fig. 1(d). Finally, a requirement that
the fraction of the lepton-jet energy found in the elec-
tromagnetic calorimeter, fEM must be larger than 0.98,
was used to reject activity from hadrons, as shown in
Fig. 1(e).

3.2. Muon-jet channels

Single muon-jet events were selected from events sat-
isfying a trigger with a single muon having more than
18 GeV in pT. Candidates for double muon-jets were
taken with either a single-muon trigger with a pT thresh-
old of 18 GeV or a three-muon trigger with a pT thresh-
old of 6 GeV. The muon triggers were complemen-
tary, as the three-muon trigger has reduced efficiency
for high-pT muons from a single lepton-jet which may
be too close together to produce more than one RoI.

Muon candidates must have been reconstructed in
both the ID and the MS and have |η| < 2.5. Addi-
tional requirements were made on the number of asso-
ciated hits in the silicon pixel and microstrip detectors,
as well as on the number of track segments in the MS.
The muons were required to come from the primary ver-
tex by imposing a |d0| < 1 mm cut on the tracks. The
muon-jets were reconstructed in an iterative procedure
using all candidate muons, by seeding the jet candi-
date with the highest-pT muon, and adding all muons
within ∆R = 0.1. Additional jets were formed using
the remaining muons, again seeding the muon-jet with
the remaining highest-pT muon. For the double muon-
jet analysis, two muons with pT > 11 GeV were re-
quired per jet with the additional requirement that the
leading muon pT be greater than 23 GeV for the sin-
gle muon trigger events. For the single muon-jet analy-
sis, four muons were required per jet with pT > 19, 16,
14 GeV, respectively, for the three highest-pT muons,
and pT > 4 GeV for all additional muons.

Within a muon-jet, the two muons closest in pT were
required to have an invariant mass less than 2 GeV. A
scaled isolation variable was formed by summing the
ET of all calorimeter cells within ∆R = 0.3 of any of
the muon-jet’s component muons while excluding cells
found within ∆R = 0.05 of the muons, and dividing by
the muon-jet pT. The scaled isolation was required to be
less than 0.3 (0.15) per muon-jet for the double (single)
muon-jet analyses, to suppress muons from hadronic
jets.

As noted earlier, a signature of the dark matter sig-
nal is a muon-jet composed of two or more muon tracks
confined to a narrow cone. One source of collimated
muons arises from the decay of low-mass states, since
the opening angle is in inverse proportion to the Lorentz
boost. The background from boosted low-mass states
with an invariant mass less than 3.5 GeV is displayed
in Fig. 2 showing the opening angle ∆R vs invariant
mass for all dimuon pairs. This plot was produced using
the same muon selection used for the muon-jet analy-
sis, excluding the ∆R requirement. The invariant mass
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Figure 1: Distributions of the five discriminating variables used after selection of events which have passed the trigger
and contain two or more electron-jet candidates, shown separately for the multi-jet, Z → ee and γ + jets backgrounds
as well as for the signal sample with αd = 0.0 and mγD = 150 MeV. The signal MC normalization is arbitrary. The
dashed black vertical line shows the cut values at (a) cluster energy concentration Rη2 ≥ 0.92, (b) electron cluster
lateral shower width wη2 ≤ 0.0115, (c) fraction of high threshold TRT hits fHT ≥ 0.05, (d) calorimeter isolation ≤ 0.3,
and (e) fraction of energy in the EM calorimeter fEM ≥ 0.98. The hadronic jet and γ + jets distributions are shown
here from PythiaMC for illustrative purposes.

of muon pairs falls off smoothly, interrupted by easily
observable narrow peaks produced by low-mass reso-
nances such as φ (∼1 GeV), and ω and ρ (∼0.7 GeV).
For smaller opening angles, ∆R . 0.03, the low-mass
resonances barely stand out from the rest of the back-
ground. It was not practical to exclude the ω/ρ and φ
peak regions from the analysis. However, the J/ψ was
removed for the electron-jet and muon-jet search by a 2
GeV mass cut. A second smoothly falling distribution is
also visible in this figure from events with an additional
three or more muons, one of which has a high enough
pT to fire the trigger, producing an additional combina-
torial background.

4. Signal and background estimation

Both MC and data-driven methods were used for
background and efficiency estimations. Various SM
processes can mimic the signal due to misreconstructed
objects, such as jets misidentified as electrons, or
chance overlap of leptons. We have considered MC
hadronic multi-jet events, γ + jets events, W → `ν+ jets,
Z → `+`−+ jets, tt̄ and diboson (WW, WZ, ZZ) events
at
√

s = 7 TeV. Pythia6 [23] was used for all sam-
ples except tt̄, WW, WZ, ZZ for which MC@NLO [24]
was used. The contribution from WZ and ZZ back-
grounds, when one of the bosons is off-shell, was mod-
eled with Sherpa [25]. Of all the backgrounds consid-
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Figure 2: The opening angle ∆R vs invariant mass for
all muon pairs in the 4.5 fb−1 data sample. The over-
laid red points show the profile of the ∆R distribution
for each dimuon mass bin. The position of each point
is the mean value of the vertical slice and its width is
the RMS. The secondary distribution running along the
top of the distribution arises from events with more than
two muons, where a third muon triggers at a higher pT,
allowing for combinations of dimuon pairs with a larger
opening angle.

ered, only the hadronic multi-jet and γ + jets events
contribute significantly to the final background expec-
tation. In addition, signal MC simulation was generated
using MadGraph [26] with the CTEQ6L1 set of parton
distribution functions [27], and a custom-made Mathe-
matica [28] package to model the dark-sector cascade
decay described in Refs. [11, 16], followed by Pythia6
for hadronization. All MC samples include the effect
of multiple pp interactions per bunch crossing and are
assigned an event weight such that the distribution of
the number of pp interactions matches that in data. The
mean momentum of the dark photons depends strongly
on αd and therefore the acceptance of the lepton-jets
also depends on this parameter. At αd = 0.0 the mean
momentum of the dark photon is 73, 76, and 82 GeV
for mγD = 150, 300, and 500 MeV, respectively, with
no cuts applied. For αd = 0.1, the mean dark photon
momentum decreases to 30.4, 35.9, and 41.6 GeV. At
αd = 0.3 the mean values are 21.1, 25.7, and 30.9 GeV.
All MC events were processed with the Geant4 based
ATLAS detector simulation [29, 30] and then analyzed

with the standard ATLAS reconstruction software.
Due to the very small acceptance for hadronic jets

passing our signal criteria, O(10−3) to O(10−4) for jets
with 50 < pT < 400 GeV, there were too few MC
events to accurately estimate background yields. The
background MC samples were used to help establish the
event selection criteria, based on characteristics of the
background. All the samples were required to satisfy the
trigger conditions, with efficiencies ranging from 40%
to 75% for the lepton-jet models considered.

4.1. Background estimation with the ABCD-likelihood
method

In the lepton pT and dilepton invariant mass ranges
relevant to this study, the level of the background is
best estimated using a data-driven method, rather than
by MC simulation where the number of events is low
and the backgrounds may be poorly modeled. This pa-
per uses an ABCD-likelihood method to determine the
lepton-jet backgrounds which was cross-checked with
a tag-and-probe fake-rate estimate. The traditional im-
plementation of the ABCD method consists of using
two uncorrelated or loosely correlated variables from
the event selection to define four regions labeled A, B,
C and D, as illustrated in Fig. 3. The background in the
signal region is estimated by taking the ratio of events
in the adjacent regions. This method breaks down in
the presence of significant signal contamination in the
side-band regions, or when there are too few events.
The ABCD-likelihood method addresses both of these
issues. A likelihood function, formed from the product
of Poisson probability functions describing the signal
and background expectations, is fit to all four of the re-
gions simultaneously.

The likelihood takes the form:

L(nA, nB, nC, nD|µ, θµ) =
∏

i=A,B,C,D

e−µiµni
i

ni!
(2)

where nA, nB, nC, and nD are the numbers of events
observed in each of the four regions, and µA, µB, µC,
and µD are linear combinations of signal (µ) and multi-
jet background (µU) expectations. In region A, the ex-
pected number of events µA = µU + µ. In region B,
µB = µUτB + µb, where τB is the ratio of background
events expected in region B to that in region A and b
gives the signal contamination in region B. Similarly,
the expected number of events in region C is expressed
as µC = µUτC +µc. In region D, µD = µUτBτC +µd, such
that the multi-jet background contribution is determined
using the product of the ratios. The signal contamina-
tion coefficients are taken from MC simulation for each
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signal sample, while µU and the τi values are allowed to
float in a simultaneous fit to the four data regions.

For the electron-jet analysis, the ABCD-likelihood
method used boundaries at Rη2 = 0.92 and fEM = 0.98
on the second highest-ET lepton-jet to define these four
regions. In photon+jet events, the photon will typi-
cally deposit more energy in the EM calorimeter than
the hadronic jet. Using the subleading cluster to esti-
mate the background thus accounts for both the pho-
ton+jet and multi-jet backgrounds. The double (single)
muon-jet analysis used the scaled isolation variable and
the pT cut on the fourth (third) muon in the event, asso-
ciated with a muon-jet. The two-dimensional distribu-
tions with the A, B, C and D regions are shown in Fig. 3.
In the absence of signal, the numbers of events predicted
in region A for the single muon-jet channel, the double
muon-jet channel, and the double electron-jet channel
are 3.0±1.0, 0.5±0.3, and 15.2±2.7, respectively. The
quoted errors are statistical only.

4.2. Background estimation using jet probabilities
Both the electron-jet and muon-jet analyses used a

tag-and-probe method to cross-check the amount of
background in the signal region using back-to-back
hadronic jet pairs with pT > 30 GeV and |∆φ| > 2 but
with different selection criteria.

For the electron-jet analysis, the tag was chosen by
matching a jet with fEM < 0.9 to a trigger jet. Using
the highest-ET electromagnetic cluster within ∆R = 0.4
of the probe jet as a seed for the electron-jet, the fake
rate was extracted from the probe jets that satisfied the
electron-jet criteria, as well as the probability for such
electron-jets to pass the electron trigger. Jet triggers
with different pT thresholds were used to determine the
rates over the full range of probe-jet pT values. These
probabilities were then used to calculate event weights
for the inclusive multi-jet MC sample to estimate the
number of events which would pass the electron trigger
and electron-jet selection requirements. This method
predicted 14.55+0.23

−0.04 background events after all analy-
sis cuts were applied to the data. The quoted error is
statistical only.

The double muon-jet analysis used two criteria to se-
lect either light-quark or b-quark jets by requiring that
either the tag jets contain no muons and no b-tag, or the
tag jets have a b-tag. The probe jets were then used to
determine the probability that a hadronic jet could sat-
isfy the muon selection criteria and the probability that
it could satisfy the muon-jet selection criteria, as a func-
tion of the probe-jet pT. The ratio of these two proba-
bilities was used in events containing three muons (of
which at least two formed a muon-jet and the third was

embedded in a hadronic jet) to estimate the background
from multi-jet production, accounting for the flavour of
the hadronic jet. This method predicted 2.2± 0.9 events
from multi-jet production. The quoted error is statistical
only.

The fake rates for muon-jets and electron-jets were
found to be consistent with those obtained from the
ABCD-likelihood method, which were discussed in
Section 4.1 and are summarized in Table 1. This cross-
check thus validates the background estimates.

5. Results and interpretation

Table 1 shows the number of events passing all anal-
ysis cuts compared to the background expectation from
the ABCD-likelihood method. A slight excess is ob-
served in both the single and the double muon-jet sig-
nal regions corresponding to p-values (the probabil-
ity the background process would produce at least this
many events) of 0.06 and 0.04, respectively. The ac-
ceptance times trigger, reconstruction, and selection ef-
ficiency for the various signal points are listed in Ta-
ble 2. It ranges from about 0.4% to 10% depending on
the model parameter αd, the mass of the dark-photon,
and the analysis channel. The estimate of the back-
ground from the ABCD-likelihood method has a large
statistical error, which reduces the expected sensitiv-
ity of the analysis. The systematic uncertainty on the
ABCD-likelihood method due to correlation between
the variables, 3% (4%) for the single (double) muon-
jets channel, is small by comparison.

Table 3 lists the systematic uncertainties on the sig-
nal yields. The possible mismodelling of track recon-
struction at very small opening angles (“Offline ∆R Ef-
ficiency” in Table 3) introduces a ∼10% systematic er-
ror on the signal acceptance. The size of the systematic
uncertainty on the acceptance was estimated by measur-
ing the tracking efficiency using a tag-and-probe method
with J/ψ data and MC. For ∆R > 0.05 the data and MC
agree to within ∼4%. However, a systematic variation
of ∼10% is observed in the efficiency for the smaller
∆R region, which is probably due to a slightly softer
pT distribution in the MC than in the data. Systematic
errors are also assigned to the determination of the lu-
minosity, the modelling of the trigger acceptance, the
modelling of the lepton reconstruction efficiency, and
the modelling of each of the analysis cuts.

The 95% confidence-level upper limits on the number
of expected events from new phenomena producing col-
limated pairs of prompt leptons were calculated using
the CLs method [31] with a log-likelihood ratio (LLR)
test statistic. Ensembles of pseudo-experiments were
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Figure 3: Variables used for ABCD-likelihood method from data (top) and MC signal (bottom) using αd = 0.1 and
mγD = 300 MeV for the electron channel and αd = 0.0 and mγD = 300 MeV for the two muon channels. The dashed
black lines show the cuts used to define the four regions. Shown are (left) Electron-jet: Rη2 vs EM fraction; (centre)
double muon-jet: scaled isolation vs pT of the fourth muon; (right) single muon-jet: scaled isolation vs pT of the third
muon.

Electron LJ 1 Muon LJ 2 Muon LJ
Data 15 7 3
All background 15.2±2.7 3.0 ± 1.0 0.5 ± 0.3

Table 1: The number of events in the signal region
(A) observed in data and expected from background
sources estimated with the ABCD-likelihood method.
The quoted error is statistical only.

generated for the signal-only hypothesis and the sig-
nal+background hypothesis, varying the LLR accord-
ing to the statistical and systematic uncertainties. The
upper limits were determined by performing a scan of
p-values corresponding to LLR values larger than the
one observed in data. For broad applicability, the limits
are expressed in terms of the signal cross section times

branching ratio to the final state under consideration, us-
ing the expected signal acceptance for each of the pair-
ings of dark photon masses and dark sector gauge cou-
pling parameter values in Table 4.

The observed limits in the electron-jets channel are
in good agreement with the expected limits, and are
the first inclusive study of prompt electron-jets at the
LHC. The limits in the muon-jet channels are slightly
higher than expected as a result of the slight excesses,
but are within 2σ of the SM expectation for both chan-
nels. The limits on the production of prompt lepton-jets
in the muon-jet channel improve upon previous results
by an order of magnitude.
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Electron LJ [%] 1 Muon LJ [%] 2 Muon LJ [%]
Luminosity 3.9 3.9 3.9

Trigger Efficiency 1.5 2.0 3.6
Offline ∆R Efficiency 13.0 10.7 10.7

Lepton Momentum Scale 0.6 1.0 1.0
Isolation 5.2 < 0.1 < 0.1

Rη2 and wη2 Efficiency 8.0 NA NA
fHT Efficiency 1.0 NA NA
fEM Efficiency 3.0 NA NA

Muon Momentum Resolution NA < 1.0 < 1.0

Table 3: Contributions to the systematic uncertainty on the signal yields for the three different lepton-jet (LJ) channels
given as percentages. A “NA” means this source does not apply.

Signal Parameters Electron LJ 1 Muon LJ 2 Muon LJ
αd mγD [MeV] A×ε [%] A×ε [%] A×ε [%]
0.0 150 3.01 ± 0.30
0.0 300 2.7 ± 0.5 4.3 ± 0.9 9.2 ± 0.9
0.0 500 1.8 ± 0.5 1.7 ± 1.3 8.5 ± 1.1

0.10 150 2.69 ± 0.23
0.10 300 1.04 ± 0.19 3.7 ± 0.5 7.10 ± 0.39
0.10 500 1.17 ± 0.23 5.0 ± 0.8 8.1 ± 0.6
0.30 150 2.49 ± 0.22
0.30 300 0.80 ± 0.13 2.16 ± 0.29 7.47 ± 0.42
0.30 500 0.37 ± 0.10 3.16 ± 0.46 6.23 ± 0.43

Table 2: The acceptance times trigger, reconstruction,
and selection efficiency (A×ε) expected in the signal re-
gion (A) from various signal hypotheses for the three
different lepton-jet (LJ) channels. Note that the mγD =

150 MeV dark photon cannot decay to muons.

6. Conclusions

A search for collimated pairs of muons or electrons,
lepton-jets, has been performed using nearly 5 fb−1

of pp collisions at
√

s = 7 TeV recorded with the
ATLAS detector at the LHC. Such final states have
been proposed as a possible explanation of recently ob-
served anomalies in cosmic-ray and dark matter direct-
detection experiments. No significant excess of data
compared to the SM expectation was observed in any
of the three channels, and 95% confidence-level upper
limits have been computed on the cross section times
branching ratio for several parameter values of a Hid-
den Valley model. The limits range from 0.017 to 1.2
pb.
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B. Trocmé55, C. Troncon89a, M. Trottier-McDonald142,
P. True88, M. Trzebinski39, A. Trzupek39,

17



C. Tsarouchas30, J.C-L. Tseng118, M. Tsiakiris105,
P.V. Tsiareshka90, D. Tsionou5,a j, G. Tsipolitis10,
S. Tsiskaridze12, V. Tsiskaridze48, E.G. Tskhadadze51a,
I.I. Tsukerman95, V. Tsulaia15, J.-W. Tsung21,
S. Tsuno65, D. Tsybychev148, A. Tua139,
A. Tudorache26a, V. Tudorache26a, J.M. Tuggle31,
M. Turala39, D. Turecek126, I. Turk Cakir4e,
R. Turra89a,89b, P.M. Tuts35, A. Tykhonov74,
M. Tylmad146a,146b, M. Tyndel129, G. Tzanakos9,
K. Uchida21, I. Ueda155, R. Ueno29, M. Ughetto83,
M. Ugland14, M. Uhlenbrock21, F. Ukegawa160,
G. Unal30, A. Undrus25, G. Unel163, Y. Unno65,
D. Urbaniec35, P. Urquijo21, G. Usai8, L. Vacavant83,
V. Vacek126, B. Vachon85, S. Vahsen15,
S. Valentinetti20a,20b, A. Valero167, L. Valery34,
S. Valkar127, E. Valladolid Gallego167, S. Vallecorsa152,
J.A. Valls Ferrer167, R. Van Berg120,
P.C. Van Der Deijl105, R. van der Geer105,
H. van der Graaf105, R. Van Der Leeuw105,
E. van der Poel105, D. van der Ster30, N. van Eldik30,
P. van Gemmeren6, J. Van Nieuwkoop142,
I. van Vulpen105, M. Vanadia99, W. Vandelli30,
A. Vaniachine6, P. Vankov42, F. Vannucci78, R. Vari132a,
E.W. Varnes7, T. Varol84, D. Varouchas15,
A. Vartapetian8, K.E. Varvell150,
V.I. Vassilakopoulos56, F. Vazeille34,
T. Vazquez Schroeder54, G. Vegni89a,89b, J.J. Veillet115,
F. Veloso124a, R. Veness30, S. Veneziano132a,
A. Ventura72a,72b, D. Ventura84, M. Venturi48,
N. Venturi158, V. Vercesi119a, M. Verducci138,
W. Verkerke105, J.C. Vermeulen105, A. Vest44,
M.C. Vetterli142, f , I. Vichou165, T. Vickey145b,ak,
O.E. Vickey Boeriu145b, G.H.A. Viehhauser118,
S. Viel168, M. Villa20a,20b, M. Villaplana Perez167,
E. Vilucchi47, M.G. Vincter29, E. Vinek30,
V.B. Vinogradov64, M. Virchaux136,∗, J. Virzi15,
O. Vitells172, M. Viti42, I. Vivarelli48, F. Vives Vaque3,
S. Vlachos10, D. Vladoiu98, M. Vlasak126, A. Vogel21,
P. Vokac126, G. Volpi47, M. Volpi86, G. Volpini89a,
H. von der Schmitt99, H. von Radziewski48,
E. von Toerne21, V. Vorobel127, V. Vorwerk12,
M. Vos167, R. Voss30, J.H. Vossebeld73, N. Vranjes136,
M. Vranjes Milosavljevic105, V. Vrba125,
M. Vreeswijk105, T. Vu Anh48, R. Vuillermet30,
I. Vukotic31, W. Wagner175, P. Wagner21, H. Wahlen175,
S. Wahrmund44, J. Wakabayashi101, S. Walch87,
J. Walder71, R. Walker98, W. Walkowiak141, R. Wall176,
P. Waller73, B. Walsh176, C. Wang45, H. Wang173,
H. Wang40, J. Wang151, J. Wang33a, R. Wang103,
S.M. Wang151, T. Wang21, A. Warburton85,
C.P. Ward28, D.R. Wardrope77, M. Warsinsky48,
A. Washbrook46, C. Wasicki42, I. Watanabe66,

P.M. Watkins18, A.T. Watson18, I.J. Watson150,
M.F. Watson18, G. Watts138, S. Watts82, A.T. Waugh150,
B.M. Waugh77, M.S. Weber17, J.S. Webster31,
A.R. Weidberg118, P. Weigell99, J. Weingarten54,
C. Weiser48, P.S. Wells30, T. Wenaus25, D. Wendland16,
Z. Weng151,v, T. Wengler30, S. Wenig30, N. Wermes21,
M. Werner48, P. Werner30, M. Werth163, M. Wessels58a,
J. Wetter161, C. Weydert55, K. Whalen29, A. White8,
M.J. White86, S. White122a,122b, S.R. Whitehead118,
D. Whiteson163, D. Whittington60, D. Wicke175,
F.J. Wickens129, W. Wiedenmann173, M. Wielers129,
P. Wienemann21, C. Wiglesworth75,
L.A.M. Wiik-Fuchs21, P.A. Wijeratne77, A. Wildauer99,
M.A. Wildt42,s, I. Wilhelm127, H.G. Wilkens30,
J.Z. Will98, E. Williams35, H.H. Williams120,
S. Williams28, W. Willis35, S. Willocq84, J.A. Wilson18,
M.G. Wilson143, A. Wilson87, I. Wingerter-Seez5,
S. Winkelmann48, F. Winklmeier30, M. Wittgen143,
S.J. Wollstadt81, M.W. Wolter39, H. Wolters124a,i,
W.C. Wong41, G. Wooden87, B.K. Wosiek39,
J. Wotschack30, M.J. Woudstra82, K.W. Wozniak39,
K. Wraight53, M. Wright53, B. Wrona73, S.L. Wu173,
X. Wu49, Y. Wu33b,al, E. Wulf35, B.M. Wynne46,
S. Xella36, M. Xiao136, S. Xie48, C. Xu33b,z, D. Xu33a,
L. Xu33b, B. Yabsley150, S. Yacoob145a,am,
M. Yamada65, H. Yamaguchi155, A. Yamamoto65,
K. Yamamoto63, S. Yamamoto155, T. Yamamura155,
T. Yamanaka155, K. Yamauchi101, T. Yamazaki155,
Y. Yamazaki66, Z. Yan22, H. Yang33e, H. Yang173,
U.K. Yang82, Y. Yang109, Z. Yang146a,146b, S. Yanush91,
L. Yao33a, Y. Yasu65, E. Yatsenko42, J. Ye40, S. Ye25,
A.L. Yen57, M. Yilmaz4c, R. Yoosoofmiya123,
K. Yorita171, R. Yoshida6, K. Yoshihara155,
C. Young143, C.J. Young118, S. Youssef22, D. Yu25,
D.R. Yu15, J. Yu8, J. Yu112, L. Yuan66, A. Yurkewicz106,
B. Zabinski39, R. Zaidan62, A.M. Zaitsev128,
L. Zanello132a,132b, D. Zanzi99, A. Zaytsev25,
C. Zeitnitz175, M. Zeman126, A. Zemla39, O. Zenin128,
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(Commissariat à l’Energie Atomique et aux Energies
Alternatives), Gif-sur-Yvette, France
aa Also at Section de Physique, Université de Genève,
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