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Abstract

This letter presents the results of a search for a heavy particle decaying into an e±µ∓, e±τ∓,
or µ±τ∓ final state in pp collisions at

√
s = 7 TeV. The data were recorded with the ATLAS

detector at the LHC during 2011 and correspond to an integrated luminosity of 4.6 fb−1.
No significant excess above the Standard Model expectation is observed, and exclusions at
95% confidence level are placed on the cross section times branching ratio for the production
of an R-parity-violating supersymmetric tau sneutrino. These results considerably extend
constraints from Tevatron experiments.

1. Introduction

Neutrino oscillations show that lepton-
flavour quantum numbers are not conserved
in Nature. On the other hand, lepton-
flavour violation (LFV) has not been ob-
served in the charged lepton sector, where
neutrino-induced LFV is predicted to be ex-
tremely small in the Standard Model (SM).
The study of possible LFV processes involv-
ing charged leptons is an important topic
in the search for physics beyond the SM.
One possible signature is the production of
a particle that decays to a pair of different
flavour, opposite-sign leptons e±µ∓ (eµ),
e±τ∓ (eτ), or µ±τ∓ (µτ) (referred to generi-
cally as ℓℓ′). Since leptons with large trans-
verse momenta are identified cleanly, effi-
ciently, and with good resolution, the AT-
LAS detector is well suited to a search for
this signature. Many new physics models al-
low LFV in charged lepton interactions. For
example, in R-parity-violating (RPV) mod-
els of supersymmetry (SUSY) [1], a sneu-

trino can have LFV decays to ℓℓ′. Models
with additional gauge symmetry can accom-
modate an ℓℓ′ signature through LFV de-
cays of an extra gauge boson Z ′ [2]. This
signature is also produced in the SM frame-
work, for example, tt̄, WW , or Z/γ∗ →
τ−τ+ production where the final-state par-
ticles decay to leptons of different flavour.
These processes typically have small cross
sections, and the ℓℓ′ invariant mass (mℓℓ′)
lies predominantly below the range favoured
for new physics signals.

This letter reports on a search for a heavy
particle decaying into the eµ, eτhad, or µτhad
final state, where τhad is a τ lepton that de-
cays hadronically. The search uses 4.6 fb−1

of 7 TeV pp collision data taken with the
ATLAS detector during 2011. The results
are interpreted in terms of the production
via dd̄ annhiliation and subsequent decay of
a tau sneutrino ν̃τ in RPV SUSY (dd̄ →
ν̃τ → ℓℓ′). Both the CDF and D0 Collab-
orations at the Tevatron collider have re-
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ported searches for the RPV production and
decay of a ν̃τ in the eµ channel [3]. The
CDF Collaboration also set limits in the eτ
and µτ channels [3]. This letter supersedes
previous ATLAS searches for a high-mass
resonance decaying to eµ based on 1 fb−1

of 2011 data [4] and extends the search to
eτhad and µτhad final states.
Precision low-energy searches, such as µ

to e conversion on nuclei, rare muon decays,
and rare tau decays, place limits on RPV
couplings [5]. These limits often depend on
masses of supersymmetric particles that oc-
cur in loop diagrams and often need to as-
sume the dominance of certain couplings or
pairs of couplings to extract limits.

2. ATLAS detector

The ATLAS experiment at the LHC em-
ploys a multipurpose particle physics detec-
tor [6] with a forward-backward symmetric
cylindrical geometry and near 4π coverage
in solid angle.1 The inner tracking detector
covers the pseudorapidity region |η| < 2.5
and consists of a silicon pixel detector, a
silicon microstrip detector, and a transition
radiation tracker. The inner tracking detec-
tor is surrounded by a thin superconducting
solenoid that provides a 2 T magnetic field
and by a finely-segmented calorimeter with
nearly full solid-angle coverage. The latter
covers the pseudorapidity range |η| < 4.9

1ATLAS uses a right-handed coordinate system
with its origin at the nominal interaction point
(IP) in the centre of the detector and the z-axis
along the beam pipe. The x-axis points from the
IP to the centre of the LHC ring, and the y-axis
points upward. Cylindrical coordinates (r, φ) are
used in the transverse (x,y) plane, φ being the az-
imuthal angle around the beam pipe. The pseudo-
rapidity is defined in terms of the polar angle θ as
η = − ln tan(θ/2).

and provides three-dimensional reconstruc-
tion of particle showers. The electromag-
netic compartment uses lead absorbers with
liquid-argon as the active material. This is
followed by a hadronic compartment, which
uses scintillating tiles with iron absorbers
in the central region and liquid-argon sam-
pling with copper or tungsten absorbers
for |η| > 1.7. The muon spectrom-
eter surrounds the calorimeters and con-
sists of three large superconducting toroids
(each with eight coils), a system of precision
tracking chambers (|η| < 2.7), and detectors
for triggering.

3. Data and event selection

The data used in this analysis were
recorded in 2011 at a centre-of-mass energy
of 7 TeV. Only data with stable run con-
ditions and operational tracking, calorime-
try, and muon subdetectors are used. This
results in a data sample with an integrated
luminosity of 4.6 fb−1 with an estimated un-
certainty of 3.9% [7]. Events are required
to satisfy a single-electron trigger for the eµ
and eτhad searches and a single-muon trig-
ger for the µτhad search. The nominal trans-
verse momentum (pT) threshold for the elec-
tron trigger was 20 or 22 GeV, depending
on the instantaneous luminosity, and was
18 GeV for the muon trigger.
An electron candidate is required to have

pT > 25 GeV and to lie in the pseu-
dorapidity region |η| < 2.47, excluding
the transition region (1.37 < |η| < 1.52)
between the barrel and endcap calorime-
ters. The pT of the electron is calculated
from the calorimeter energy and the direc-
tion of the inner detector track. A set
of electron identification criteria based on
the calorimeter shower shape, track qual-
ity, transition radiation, and track match-
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ing with the calorimeter energy deposition,
referred to as ‘tight’ [8], is applied. Two
lepton isolation criteria are used to reduce
backgrounds from hadronic jets. The calori-
metric isolation criterion requires that the
transverse energy deposited within a cone
of radius ∆R =

√

(∆η)2 +∆(φ)2 = 0.3
around the electron cluster, excluding the
core energy deposited by the electron, is
less than 0.14 times the pT of the candidate.
The tracking isolation criterion requires the
sum of the transverse momenta of tracks
with pT > 1 GeV within a cone of radius
∆R < 0.3 around the electron track, ex-
cluding the electron track, is less than 0.13
times the pT of the candidate.
A muon candidate must have recon-

structed tracks in both the inner detector
and the muon spectrometer. The muon
track parameters are a statistical combi-
nation of those for the inner detector and
muon spectrometer tracks. The inner de-
tector track is required to have a pattern of
hits consistent with a quality track. Fur-
thermore, the muon candidate must have
pT > 25 GeV and be isolated, using similar
criteria as for electrons: 0.14 times pT for
calorimetric isolation and 0.15 times pT for
tracking isolation.
Jets are reconstructed using the anti-kt

jet clustering algorithm [9] with a radius pa-
rameter of 0.4. Only jets with pT > 20 GeV
and |η| < 2.5 are considered. Leptons are
retained only if they are separated from all
jets by ∆R > 0.4.
Tau leptons are reconstructed through

their hadronic decays. The tau reconstruc-
tion is seeded by anti-kt jets [9] with cone
size ∆R = 0.4 and jet pT > 10 GeV. Cor-
rections depending on pT and η are ap-
plied to the tau energy. A boosted deci-
sion tree discriminator [10] efficiently selects
taus while rejecting backgrounds. The vari-

ables used in the discriminator are ∆R be-
tween the tracks and the tau candidate, the
impact parameter significance of the tracks,
the fraction of the pT of the tau candidate
carried by the tracks, the number of tracks
in an isolation annulus of 0.2 < ∆R < 0.4,
the width of the energy deposition in the
calorimeter, energy isolation for cones of
∆R = 0.1 and ∆R = 0.4, and the invariant
mass associated with the energy deposition.
For this analysis, ‘medium’ selection criteria
as described in reference [10] are used. This
selection is about 60% efficient at retaining
taus that decay hadronically, as measured
in Z → ττ decays, while accepting 1 of 20
to 1 of 50 ordinary hadronic jets misidenti-
fied as tau candidates. The reconstruction
efficiency for hadronic tau decays with three
tracks drops significantly at large transverse
momentum as the tracks become more col-
limated. This analysis therefore uses only
tau candidates with one track, which com-
prise 85% of tau decays. Tau candidates
must have ET > 20 GeV and pseudorapid-
ity in the range 0.03 < |η| < 2.5. The
lower limit excludes a region where there
is reduced coverage from the inner detector
and calorimeters, which greatly increases
misidentification of electrons as hadronic
tau decays. To retain only taus that de-
cay hadronically (τhad), candidates consis-
tent with being an electron or a muon are
rejected.

The missing transverse energy (Emiss
T ) is

calculated from the vector sum of the trans-
verse momenta of all high-pT objects (elec-
trons, muons, photons, taus, and jets) and
all calorimeter energy clusters with |η| < 4.5
not associated with those objects [11].
Events are required to have exactly two

lepton candidates with opposite sign and
different flavour, that is, eµ, eτhad, or µτhad.
In addition, each event must have at least
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one primary vertex with at least four tracks
with pT > 400 MeV. The two leptons are
chosen to be back-to-back in φ by requiring
that the azimuthal angle between them sat-
isfies ∆φℓℓ′ > 2.7. Finally, for the eτhad and
µτhad events, the pT of the electron or muon
is required to be greater than the ET of the
tau.

For eτhad and µτhad signal events, the
presence of only one tau and the require-
ment of large momentum relative to the
tau mass implies that the neutrino from
the tau decay should point in nearly the
same direction as the tau momentum and
that there are no other significant sources
of Emiss

T . The transverse components of the
neutrino momentum are set equal to the
components of the Emiss

T vector and the po-
lar angle of the neutrino momentum is set
equal to the polar angle of the tau candi-
date’s momentum. The momentum of the
tau candidate is corrected for the momen-
tum of the neutrino in the calculation of the
eτhad and µτhad invariant mass. This signif-
icantly reduces the width of the invariant
mass distribution for eτhad and µτhad pairs
and improves the search sensitivity, while
making no significant changes to the back-
ground shapes. For dilepton masses from
400 GeV to 2000 GeV, the mass resolutions
range from 2.5% to 7.5%, 2.2% to 4.3%, and
6.3% to 9.0% for the eµ, eτhad, and µτhad
decay modes, respectively. The mass reso-
lutions are dominated by the resolution of
the transverse momenta of the leptons. At
high pT, the transverse momentum resolu-
tion is best for electrons, whose pT measure-
ment is based primarily on energy deposited
in the electromagnetic calorimeter. It is
next best for taus, whose pT measurement
is based on electromagnetic and hadronic
calorimeter energy depositions. It is the
worst for muons, whose pT measurement is

from tracking. The ET of the tau used in
the selection requirements above is not cor-
rected for the neutrino momentum.

4. Backgrounds

The SM processes that can produce an
ℓℓ′ signature are divided into two cate-
gories: backgrounds that produce direct
lepton pairs (referred to as direct-lepton
backgrounds) and jet backgrounds where
one or both of the candidate leptons is from
a misidentified jet. Data events with an ℓℓ′

invariant mass below 200 GeV constitute
a control region to verify the background
estimates, and events with masses above
200 GeV comprise the signal search region.
The dominant direct-lepton backgrounds

are tt̄, Z/γ∗ → ℓℓ, diboson (WW , ZZ,
and WZ), and single top quark (Wt).
Since these processes are well understood
and modelled, their contributions are esti-
mated using Monte Carlo samples gener-
ated at

√
s = 7 TeV and processed with

the full ATLAS geant4 [12] simulation
and reconstruction. The event generators
used are pythia 6.421 [13] (W and Z/γ∗),
powheg 1.0 [14] (tt̄), madgraph 4 [15]
(W/Z + γ), mc@nlo 3.4 [16] (single top
quark) and herwig 6.510 [17] (WW , WZ
and ZZ). The parton distribution func-
tions are CTEQ6L1 [18] for W and Z pro-
duction and CT10 [19] for tt̄, single-top
quark, and diboson production. The Monte
Carlo samples are normalized to cross sec-
tions with higher-order corrections applied.
The cross section is calculated to next-to-
next-to-leading order for W and Z/γ∗ [20],
next-to-leading order plus next-to-next-to-
leading log for tt̄ [21], and next-to-leading
order for WW , WZ and ZZ [22]. Single-
top quark and W/Z + γ cross sections are
calculated with mc@nlo and madgraph,
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respectively. The effects of QED radiation
are generated with photos [23]. Hadronic
tau decays are simulated with tauola [24].
Studies of leptons in Z/γ∗, W , and J/ψ
events [25] have shown that the lepton re-
construction and identification efficiencies,
energy scale, and energy resolution need
small adjustment in the Monte Carlo sim-
ulation to describe the data properly. The
appropriate corrections are applied to the
Monte Carlo samples to improve the mod-
elling of the backgrounds. The effect of ad-
ditional pp interactions per bunch crossing
as a function of the instantaneous luminos-
ity is modelled by overlaying simulated min-
imum bias events with the same distribution
in number of events per bunch crossing as
observed in the data.

The processes W/Z + γ, W/Z+jets, and
multijet production give rise to backgrounds
from jets misidentified as leptons, electrons
from photon conversions, and leptons from
hadron decays (including b- and c-hadron
decays). The dominant component of these
backgrounds is from events with one prompt
lepton and one jet misidentified as a lep-
ton, with an additional contribution from
events with two misidentified jets. These
backgrounds are estimated using data. The
background component initiated by prompt
photons is estimated from Monte Carlo
samples.
The jet backgrounds, including semilep-

tonic decays in bottom and charm jets, are
greatly reduced by the lepton isolation and
high-pT requirements but are still signifi-
cant. The dominant jet background is due
to W+jets production, whose contribution
is estimated using data from a subsample
selected with the same criteria as signal
events but with the additional requirement
Emiss

T > 30 GeV. This subsample is enriched
in W+jets events, whose contribution is

about 60%, while the multijet background is
reduced to about 3% and the direct-lepton
background to about 37%. The potential ef-
fect of the multijet contribution is included
in the systematic uncertainty. The contri-
bution from direct-lepton backgrounds in
the subsample is determined from Monte
Carlo simulation and is subtracted to give
the number of W+jets events. This num-
ber is extrapolated to the number in the full
data sample without the Emiss

T criterion us-
ing the W+jets Monte Carlo samples. The
shapes of the W+jets background in vari-
ous kinematic variables, including mℓℓ′, are
taken from W+jets Monte Carlo samples.

Studies of event samples dominated by
multijet events show that the probability
that a jet is misidentified as a lepton is inde-
pendent of its charge [26], with a 10% un-
certainty. A same-sign sample is selected
using the same criteria as for the signal sam-
ple but with the sign requirement reversed.
The multijet background in the opposite-
sign sample is taken to be equal to its con-
tribution in the same-sign sample. Direct-
lepton backgrounds produce more opposite-
sign than same-sign events, so the same-
sign sample is enriched in multijet back-
ground. Contributions to the same-sign
sample by the direct-lepton backgrounds
are determined from Monte Carlo simula-
tion. The W+jets contamination of the
same-sign sample is determined by selecting
only same-sign events with Emiss

T > 30 GeV
and then extrapolating to the full same-sign
sample using Monte Carlo simulation. The
direct-lepton background and W+jets con-
tributions are subtracted from the observed
same-sign sample to give the expected dis-
tribution and normalisation of the multijet
background in the opposite-sign sample.

Table 1 shows the number of events se-
lected in data and the estimated back-
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ground contributions with their uncertain-
ties. The largest backgrounds in the signal
region (mℓℓ′ > 200 GeV) areW+jets events,
arising primarily from the leptonic decay of
theW and the misidentification of a jet as a
lepton, and tt̄ events, arising primarily from
semileptonic decays of both the t and t̄. For
the eτhad mode, there is a significant contri-
bution from multijet events where two jets
are misidentified as leptons. There is also a
significant contribution to the eµmode from
WW diboson production where one W de-
cays to an electron and the other to a muon.
Blank entries indicate an insignificant con-
tribution to the background. The dominant
sources of systematic uncertainty for the
background predictions arise from the sta-
tistical uncertainty on theW+jets and mul-
tijet background determinations from data,
a 10% uncertainty on extrapolation from
the subsample to the full sample in the cal-
culation of the W+jets backgrounds, theo-
retical uncertainties on the cross sections of
the direct-lepton background processes (5%
to 10%), and the integrated luminosity un-
certainty (3.9%). Other systematic uncer-
tainties from the lepton trigger (1%), the
product of reconstruction and identification
efficiencies (1%, 2%, and 5% for e, µ, and
τ , respectively), and the energy/momentum
scale and resolution (1%, 1%, and 3% for e,
µ, and τ , respectively) are small and have
been included. There are small correlations
between the background estimates (for ex-
ample, from the luminosity), which are in-
cluded when setting limits.

The expected number of events in the
control region agrees well with the observed
number of events for all three signatures
(eµ, eτhad, and µτhad).

5. Signal simulation

The production of an RPV ν̃τ followed by
a lepton-flavour-violating decay into eµ, eτ ,
or µτ is considered in the interpretation of
the data. The ν̃τ may be produced by ei-
ther dd̄ or ss̄ but not uū annihilation. This
search is performed assuming exclusively dd̄
production, since ss̄ production is expected
to be a factor of 10 to 60 lower than dd̄ pro-
duction for the same couplings for sneutrino
masses from 500 GeV to 2000 GeV.

In RPV SUSY, the LFV terms of the
effective Lagrangian are given by L =
1
2
λijkLiLjek + λ′ijkLiQjdk, where L and Q

are the lepton and quark SU(2) supermulti-
plets, e and d are the lepton and down-like
quark singlet supermultiplets, and i, j, k =
1, 2, 3 refer to fermion generation number.
The theory requires λijk = −λjik. The λ′

terms include coupling of downlike quark-
antiquark pairs to sneutrinos, and the λ
terms include couplings of the sneutrino to
distinct charged leptons. For the interpre-
tation of this measurement, the sneutrino is
produced by dd̄ annihilation to ν̃τ with cou-
pling λ′311 and decays to ℓℓ′ with couplings
λ132, λ133, and λ233 for eµ, eτ , and µτ , re-
spectively.

The signal cross sections are calculated
to next-to-leading order [1] using CTEQ6L1
parton distribution functions [18] and de-
pend on the ν̃τ mass (mν̃τ ), λ

′

311 and λi3k,
where i 6= k are the final-state lepton gen-
erations. The sneutrino is assumed to be
a narrow resonance, and the measurement
here is sensitive to the production coupling
λ′311 and the branching ratio ν̃τ → ℓℓ′.
Monte Carlo events with ν̃τ decaying into
eµ, eτ , and µτ are generated with herwig

6.520 [17, 27] with sneutrino masses rang-
ing from 500 GeV to 2000 GeV.

From precision low-energy experi-
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Table 1: Estimated SM backgrounds and observed event yield for each signal category for the background
(mℓℓ′ < 200 GeV) and signal (mℓℓ′ > 200 GeV) regions.

mℓℓ′ < 200 GeV mℓℓ′ > 200 GeV
Process Neµ Neτhad Nµτhad Neµ Neτhad Nµτhad

Z/γ∗ → ττ 1880± 150 4300± 600 5300± 600 8± 1 24± 3 28± 4
Z/γ∗ → ee 1050± 80 44± 3
Z/γ∗ → µµ 3030± 290 29± 3

tt̄ 760± 110 96± 18 94± 14 251± 30 90± 15 70± 13
Diboson 260± 27 57± 8 60± 7 71± 8 26± 3 24± 3

Single top quark 87± 8 11± 2 9± 1 39± 4 10± 2 8± 1
W+jets 420± 260 3500± 700 3200± 600 90± 40 370± 80 470± 110
multijet 37± 13 2200± 700 730± 230 6± 2 150± 50 24± 18
Total

background 3440± 300 11200± 900 12400± 800 460± 60 720± 80 650± 90
Data 3345 11212 12285 498 795 699

ments [5], the best limit on λ′311 is
0.012 × (md̃/100 GeV) = 0.12 for the
current lower limit on md̃. The limit on
λi3k is 0.05 × (mẽk/100 GeV), where ẽk is
the kth generation slepton. Couplings of
λ′311 = 0.11, λi3k = 0.07 and λ′311 = 0.10,
λi3k = 0.05 are used as benchmarks in this
letter. These are consistent with current
limits and benchmarks used in previous
searches [3, 4]. For these couplings, the
expected width of the sneutrino is approx-
imately 0.1% of its mass. For the range
of couplings considered in this letter, the
width is always less than 5% of the mass. If
the couplings are significantly larger than
our benchmarks, the use of perturbation
theory is not valid.

6. Results

The ℓℓ′ invariant mass distributions in the
signal region are presented in figure 1 for
data, SM background contributions, and a
ν̃τ with mν̃τ = 500 GeV and with couplings
λ′311 = 0.11 and λi3k = 0.07.

The invariant mass spectra are examined
for the presence of an RPV sneutrino. No
significant excess above the SM expectation
is observed, and limits are placed on the
production cross section times branching ra-
tio. For each sneutrino mass, the search re-
gion is defined to be within ±3 standard
deviations of the sneutrino mass, except for
mν̃τ above 800 GeV, where all events with
mℓℓ′ > 800 GeV are used. The probabil-
ity of observing a number of events as a
function of the cross section times branch-
ing ratio, efficiency, luminosity, and back-
ground expectation is constructed from a
Poisson distribution. The systematic un-
certainties are included by convolution with
Gaussian distributions. The expected and
observed 95% confidence level (CL) upper
limits on σ(pp → ν̃τ ) × BR(ν̃τ → ℓℓ′)
are calculated as a function of mν̃τ using
a Bayesian method [28] with a flat prior
for the signal cross section times branch-
ing ratio and integrating over the nuisance
parameters. Figure 2 shows the expected
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Figure 1: Observed and predicted ℓℓ′ invariant
mass distributions for eµ (top), eτhad (middle), and
µτhad (bottom). Signal simulations are shown for
mν̃τ = 500 GeV (λ′

311
= 0.11, λi3k = 0.07). The

region with mℓℓ′ < 200 GeV is used to verify the
background estimation. The lower plot for each de-
cay mode shows the ratio of the data to the SM
backgrounds. The red hatching represents the un-
certainty on the total background in all plots.

and observed limits as a function of mν̃τ ,
together with the ±1 and ±2 standard de-
viation uncertainty bands. The expected
exclusion limits are determined using sim-
ulated pseudo-experiments containing only
SM processes by evaluating the 95% CL
upper limits for each pseudo-experiment at
each value of mν̃τ , including systematic un-
certainties. The expected limit is calcu-
lated as the median of the distribution of
limits. The ensemble of limits is also used
to find the 1σ and 2σ envelopes of the ex-
pected limits as a function of mν̃τ . For a
sneutrino mass of 500 (2000) GeV, the ob-
served limits on the production cross sec-
tion times branching ratio are 3.2 (1.4) fb,
42 (17) fb, and 40 (18) fb for the eµ, eτ ,
and µτ modes, respectively. The eτ and
µτ limits are weaker because (1) the 1-track
tau hadronic branching ratio is about 50%,
(2) the tau reconstruction efficiency is lower
due to criteria needed to reduce jet back-
grounds, and (3) the jet backgrounds are
significantly larger than for the eµ mode.

In order to extract mass and coupling lim-
its, it is assumed that only dd̄ and ℓℓ′ couple
to the sneutrino. The theoretical cross sec-
tions times branching ratios for λ′311 = 0.11,
λi3k = 0.07 and λ′311 = 0.10, λi3k = 0.05 are
also shown in figure 2. The branching ratio
for each ℓℓ′ mode depends on the couplings
and is 21% for λ′311 = 0.11, λi3k = 0.07 and
14% for λ′311 = 0.10, λi3k = 0.05. The
uncertainties on the theoretical cross sec-
tions are evaluated by varying the factorisa-
tion and renormalisation scales (set equal to
each other) from mν̃τ /2 to 2mν̃τ and vary-
ing the parton distribution functions. These
uncertainties are indicated as bands in fig-
ure 2 and are small (only slightly larger than
the width of the central line). For couplings
λ′311 = 0.10, λi3k = 0.05, the lower limits on
the ν̃τ mass are 1610 GeV, 1110 GeV, and
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1100 GeV for eµ, eτ , and µτ , respectively.
These lower limits are a factor of two to
three higher than the best limits from the
Tevatron for the same couplings [3].
The limits on the cross section times

branching ratio are converted to limits on
the couplings under the assumption that
there are no other significant couplings that
contribute to the decay of the ν̃τ . In
this case, the dependence of the cross sec-
tion times branching ratio on the couplings
is |λ′311|2|λi3k|2/(Nc|λ′311|2 + 2|λi3k|2), where
the |λ′311|2 in the numerator is from the pro-
duction and the rest is from the branching
ratio. The factor Nc = 3 is from color, and
the 2 in the denominator comes from ac-
cepting both charge states, that is, ℓ+ℓ′−

and ℓ−ℓ′+. Figure 3 shows contours of the
limit on λ′311 as a function of the sneutrino
mass for various values of λi3k. For each
curve, the area above the curve is excluded.
The previous limit from ATLAS for the eµ
mode, based on 1 fb−1 of 7 TeV data [4], is
also shown.

7. Summary

A search has been performed for a heavy
particle decaying to eµ, eτhad, or µτhad final
states using 4.6 fb−1 of pp collision data at√
s = 7 TeV recorded by the ATLAS detec-

tor at the LHC. The data are found to be
consistent with SM predictions. Limits are
placed on the cross section times branching
ratio for an RPV SUSY sneutrino. These
results considerably extend previous con-
straints from ATLAS [4] and the Tevatron
experiments [3].
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A. Manfredini99, L. Manhaes de Andrade Filho24b, J.A. Manjarres Ramos136, A. Mann98,
P.M. Manning137, A. Manousakis-Katsikakis9, B. Mansoulie136, R. Mantifel85, A. Mapelli30,
L. Mapelli30, L. March167, J.F. Marchand29, F. Marchese133a,133b, G. Marchiori78,
M. Marcisovsky125, C.P. Marino169, F. Marroquim24a, Z. Marshall30, L.F. Marti17,
S. Marti-Garcia167, B. Martin30, B. Martin88, J.P. Martin93, T.A. Martin18, V.J. Martin46,

18



B. Martin dit Latour49, S. Martin-Haugh149, H. Martinez136, M. Martinez12,
V. Martinez Outschoorn57, A.C. Martyniuk169, M. Marx82, F. Marzano132a, A. Marzin111,
L. Masetti81, T. Mashimo155, R. Mashinistov94, J. Masik82, A.L. Maslennikov107,
I. Massa20a,20b, G. Massaro105, N. Massol5, P. Mastrandrea148, A. Mastroberardino37a,37b,
T. Masubuchi155, H. Matsunaga155, T. Matsushita66, C. Mattravers118,d, J. Maurer83,
S.J. Maxfield73, D.A. Maximov107,h, R. Mazini151, M. Mazur21, L. Mazzaferro133a,133b,
M. Mazzanti89a, J. Mc Donald85, S.P. Mc Kee87, A. McCarn165, R.L. McCarthy148,
T.G. McCarthy29, N.A. McCubbin129, K.W. McFarlane56,∗, J.A. Mcfayden139,
G. Mchedlidze51b, T. Mclaughlan18, S.J. McMahon129, R.A. McPherson169 ,l, A. Meade84,
J. Mechnich105, M. Mechtel175, M. Medinnis42, S. Meehan31, R. Meera-Lebbai111,
T. Meguro116, S. Mehlhase36, A. Mehta73, K. Meier58a, B. Meirose79, C. Melachrinos31,
B.R. Mellado Garcia173, F. Meloni89a,89b, L. Mendoza Navas162, Z. Meng151,x,
A. Mengarelli20a,20b, S. Menke99, E. Meoni161, K.M. Mercurio57, P. Mermod49,
L. Merola102a,102b, C. Meroni89a, F.S. Merritt31, H. Merritt109, A. Messina30,y, J. Metcalfe25,
A.S. Mete163, C. Meyer81, C. Meyer31, J-P. Meyer136, J. Meyer174, J. Meyer54, S. Michal30,
L. Micu26a, R.P. Middleton129, S. Migas73, L. Mijović136, G. Mikenberg172,
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E. Perez Codina159a, M.T. Pérez Garćıa-Estañ167, V. Perez Reale35, L. Perini89a,89b,
H. Pernegger30, R. Perrino72a, P. Perrodo5, V.D. Peshekhonov64, K. Peters30,
B.A. Petersen30, J. Petersen30, T.C. Petersen36, E. Petit5, A. Petridis154, C. Petridou154,
E. Petrolo132a, F. Petrucci134a,134b, D. Petschull42, M. Petteni142, R. Pezoa32b, A. Phan86,
P.W. Phillips129, G. Piacquadio30, A. Picazio49, E. Piccaro75, M. Piccinini20a,20b,
S.M. Piec42, R. Piegaia27, D.T. Pignotti109, J.E. Pilcher31, A.D. Pilkington82, J. Pina124a,c,
M. Pinamonti164a,164c, A. Pinder118, J.L. Pinfold3, A. Pingel36, B. Pinto124a, C. Pizio89a,89b,
M.-A. Pleier25, E. Plotnikova64, A. Poblaguev25, S. Poddar58a, F. Podlyski34, L. Poggioli115,
D. Pohl21, M. Pohl49, G. Polesello119a, A. Policicchio37a,37b, R. Polifka158, A. Polini20a,
J. Poll75, V. Polychronakos25, D. Pomeroy23, K. Pommès30, L. Pontecorvo132a, B.G. Pope88,
G.A. Popeneciu26a, D.S. Popovic13a, A. Poppleton30, X. Portell Bueso30, G.E. Pospelov99,
S. Pospisil126, I.N. Potrap99, C.J. Potter149, C.T. Potter114, G. Poulard30, J. Poveda60,
V. Pozdnyakov64, R. Prabhu77, P. Pralavorio83, A. Pranko15, S. Prasad30, R. Pravahan25,
S. Prell63, K. Pretzl17, D. Price60, J. Price73, L.E. Price6, D. Prieur123, M. Primavera72a,
K. Prokofiev108, F. Prokoshin32b, S. Protopopescu25, J. Proudfoot6, X. Prudent44,
M. Przybycien38, H. Przysiezniak5, S. Psoroulas21, E. Ptacek114, E. Pueschel84,
D. Puldon148, J. Purdham87, M. Purohit25,ad, P. Puzo115, Y. Pylypchenko62, J. Qian87,
A. Quadt54, D.R. Quarrie15, W.B. Quayle173, M. Raas104, V. Radeka25, V. Radescu42,
P. Radloff114, F. Ragusa89a,89b, G. Rahal178, A.M. Rahimi109, D. Rahm25, S. Rajagopalan25,
M. Rammensee48, M. Rammes141, A.S. Randle-Conde40, K. Randrianarivony29, K. Rao163,
F. Rauscher98, T.C. Rave48, M. Raymond30, A.L. Read117, D.M. Rebuzzi119a,119b,
A. Redelbach174, G. Redlinger25, R. Reece120, K. Reeves41, A. Reinsch114, I. Reisinger43,
C. Rembser30, Z.L. Ren151, A. Renaud115, M. Rescigno132a, S. Resconi89a, B. Resende136,
P. Reznicek98, R. Rezvani158, R. Richter99, E. Richter-Was5,ag, M. Ridel78,

20



M. Rijssenbeek148, A. Rimoldi119a,119b, L. Rinaldi20a, R.R. Rios40, E. Ritsch61, I. Riu12,
G. Rivoltella89a,89b, F. Rizatdinova112, E. Rizvi75, S.H. Robertson85,l,
A. Robichaud-Veronneau118, D. Robinson28, J.E.M. Robinson82, A. Robson53,
J.G. Rocha de Lima106, C. Roda122a,122b, D. Roda Dos Santos30, A. Roe54, S. Roe30,
O. Røhne117, S. Rolli161, A. Romaniouk96, M. Romano20a,20b, G. Romeo27,
E. Romero Adam167, N. Rompotis138, L. Roos78, E. Ros167, S. Rosati132a, K. Rosbach49,
A. Rose149, M. Rose76, G.A. Rosenbaum158, P.L. Rosendahl14, O. Rosenthal141,
L. Rosselet49, V. Rossetti12, E. Rossi132a,132b, L.P. Rossi50a, M. Rotaru26a, I. Roth172,
J. Rothberg138, D. Rousseau115, C.R. Royon136, A. Rozanov83, Y. Rozen152, X. Ruan33a,ah,
F. Rubbo12, I. Rubinskiy42, N. Ruckstuhl105, V.I. Rud97, C. Rudolph44, F. Rühr7,
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5 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States
of America
7 Department of Physics, University of Arizona, Tucson AZ, United States of America
8 Department of Physics, The University of Texas at Arlington, Arlington TX, United
States of America
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de F́ısica d’Altes Energies and Departament de F́ısica de la Universitat
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Particules (IN2P3), Villeurbanne, France
a Also at Department of Physics, King’s College London, London, United Kingdom
b Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa,
Portugal
c Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
d Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United

30



Kingdom
e Also at Department of Physics, University of Johannesburg, Johannesburg, South Africa
f Also at TRIUMF, Vancouver BC, Canada
g Also at Department of Physics, California State University, Fresno CA, United States of
America
h Also at Novosibirsk State University, Novosibirsk, Russia
i Also at Department of Physics, University of Coimbra, Coimbra, Portugal
j Also at Department of Physics, UASLP, San Luis Potosi, Mexico
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