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1. Introduction

Theories of gauge-mediated supersymmetry breaking
(GMSB) presume a hidden sector in which supersymmetry
is broken and the symmetry breaking is communicated to
the visible sectors through Standard Model gauge boson
interactions [1–6]. Such theories are attractive because the
hypothesis of an intermediate hidden sector suppresses the
magnitude of flavour-changing neutral currents. The light-
est supersymmetric particle (LSP) in GMSB is the ultra-
light gravitino (G̃), which under certain circumstances is
a viable dark matter candidate [7]. The next-to-lightest
supersymmetric particle (NLSP) may be the lightest neu-
tralino χ̃0

1, often assumed to be a bino-like particle. The
bino is the supersymmetric partner of the U(1) gauge field,
coupling to the photon and Z boson with strengths that
are determined by the weak mixing angle. This results in
the χ̃0

1 decaying predominantly to a photon and the LSP.
The classical signature of GMSB is, therefore, events with
two isolated energetic photons and large missing trans-
verse momentum (Emiss

T ). Searches for such a signature at
the LHC and the Tevatron established strong experimen-
tal constraints on GMSB models [8, 9]. Recent extensions
of the original GMSB idea, known as general gauge media-
tion (GGM) [10], evade these limits by allowing decoupled
mass scales for strongly-interacting supersymmetric part-
ners of the Standard Model particles.

In the GGM models considered in this Letter, the neu-
tralino has higgsino or neutral wino (supersymmetric part-
ners of the Higgs and neutral W bosons) components in-

stead of being predominantly bino-like, and therefore, in
addition to its conventional decay to a gravitino and a pho-
ton, it may decay to a gravitino and a Higgs boson or to
a gravitino and a Z boson. This GGM signature could be
identified as an excess of events with pairs of neutralinos
decaying to these bosons, in all combinations, associated
with high Emiss

T [11]. In particular, for a light Higgs boson
(mh < 130GeV), which decays predominantly to bb̄, one
final-state signature is the combination of an isolated high
transverse momentum (pT) photon, jets originating from
bottom quarks, and high Emiss

T . Such a signature arises
when one neutralino decays to a gravitino and a photon
and the other to a gravitino and a Higgs boson. This
decay mode is therefore significant when both branching
fractions are large, namely when the bino mass term M1

approximately equals the higgsino mass parameter −µ [1].

This Letter describes the search for events with a
“γ+b+Emiss

T topology”, consisting of an isolated high-
pT photon, large Emiss

T , and at least one jet that con-
tains a b-hadron (“b-tagged jet”), in the full dataset of√
s = 7TeV pp collisions recorded in 2011 with the AT-

LAS detector at the LHC, corresponding to a total in-
tegrated luminosity of 4.7 fb−1. This signature is com-
plementary to searches for diphoton production accom-
panied by Emiss

T [12, 13], searches for b-jet production
plus Emiss

T [14, 15], searches for lepton production plus
Emiss

T [16], and searches for Z bosons accompanied by pho-
tons and Emiss

T [17]. The γ+b+Emiss
T topology has not been

studied in any previous search and therefore the present
analysis can also be considered as a model-independent
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search for new phenomena in this final state.

2. ATLAS detector

The ATLAS experiment [18] is a multi-purpose parti-
cle physics detector with a forward-backward symmetric
cylindrical geometry and nearly 4π coverage in solid an-
gle1. The collision point is surrounded by inner tracking
devices followed by a superconducting solenoid providing
a 2 T magnetic field, a calorimeter system, and a muon
spectrometer. The inner tracker provides precision track-
ing of charged particles for pseudorapidities |η| < 2.5. It
consists of pixel and silicon microstrip detectors inside the
transition radiation tracker. The calorimeter system has
liquid argon (LAr) or scintillator tiles as the active media.
In the pseudorapidity region |η| < 3.2, high-granularity
LAr electromagnetic (EM) sampling calorimeters are used.
An iron/scintillator tile calorimeter provides hadronic cov-
erage for |η| < 1.7. The end-cap and forward regions,
spanning 1.5 < |η| < 4.9, are instrumented with LAr
calorimeters for both EM and hadronic measurements.
The muon spectrometer consists of three large supercon-
ducting toroids with 24 coils, a system of trigger chambers,
and precision tracking chambers, which provide trigger-
ing and tracking capabilities in the ranges |η| < 2.4 and
|η| < 2.7, respectively.

3. Simulated samples

Standard Model processes that constitute the back-
ground to this search are simulated using several dif-
ferent generator programs. Events with single- or
pair-production of top quarks are simulated using the
MC@NLO [19] generator with the CT10 [20] parton dis-
tribution functions (PDFs), where the generator is inter-
faced to the HERWIG [21] and JIMMY [22] programs to
include effects of fragmentation and hadronization and the
underlying event. The POWHEG generator [23–25] is also
used for studies of systematic uncertainties in these events.
The tt̄γ background is simulated with the WHIZARD [26]
generator, which incorporates a full calculation of the
seven-particle final states ℓνℓqq̄

′bb̄γ and ℓν̄ℓℓ̄
′νℓ′bb̄γ (with

ℓ/ℓ′ = e, µ, τ) at leading order (LO). These events are gen-
erated with the CTEQ6L1 [27] PDFs and hadronized with
HERWIG; additional photon(s) that may be radiated in
the fragmentation process are generated by PHOTOS [28].
Multijet background (“QCD multijet”) events are simu-
lated using the PYTHIA [29] generator. Diboson back-
ground events (W+W−, W±Z, and ZZ) are simulated

1ATLAS uses a right-handed coordinate system with its origin
at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the
IP to the centre of the LHC ring, and the y-axis points upward.
Cylindrical coordinates (r, φ) are used in the transverse plane, φ

being the azimuthal angle around the beam pipe. The pseudorapidity
is defined in terms of the polar angle θ as η = − ln tan(θ/2).

using HERWIG. Events with vector bosons accompanied
by bb̄ or light jets are simulated using ALPGEN [30] and
HERWIG [21].

The production of signal events is simulated in two sepa-
rate two-dimensional benchmark grids of points defined by
specific GGMmodel parameters. The first grid has various
gluino and neutralino masses (mg̃,mχ̃0

1

), while the second

grid has varying squark and neutralino masses (mq̃,mχ̃0

1

).
The fundamental parameters M1 and µ together deter-
mine the lightest neutralino mass and are adjusted in
such a way that the following branching ratios of the
χ̃0
1 are approximately constant: BR(χ̃0

1 → h+ G̃) ≈ 56%,
BR(χ̃0

1 → γ + G̃) ≈ 33%, and BR(χ̃0
1 → Z + G̃) ≈ 11%.

These numbers vary by ±2% throughout the grids. The
value of µ is chosen to be negative in order to make
the branching ratio of the χ̃0

1 to the lightest Higgs bo-
son greater than that to the Z boson. Masses of the
sleptons and coloured supersymmetric particles not used
to make the grid are set to 2.5 TeV, and the lightest
Higgs boson is in the decoupled regime with mA = 2TeV
and mh = 115GeV, which results in a branching ratio
BR(h → bb̄) = 74%. Other parameters are the wino mass
M2 = 2.5TeV, the ratio of Higgs doublet vacuum expec-
tation values tanβ = 1.5, and the neutralino decay length
cτ < 0.25mm. The small effect of a different choice of
Higgs boson mass, mh = 125GeV, is discussed in Sec. 9.
More generally, different choices of these parameters can
modify slightly the relevant branching ratios but do not
affect significantly the overall sensitivity reach for mod-
els of gauge mediation. The full mass spectrum and de-
cay widths are calculated using SUSPECT, SDECAY, and
HDECAY with the SUSY-HIT interface [31]. Events are
generated with Herwig++ [32].

The signal production rate is dominated at high neu-
tralino masses by strong production of gluinos and
squarks, but at low neutralino masses the direct pro-
duction of charginos and neutralinos is greatly enhanced.
Signal cross sections are calculated to next-to-leading
order in the strong coupling constant (NLO) using
PROSPINO2 [33]2. The nominal cross section and its
uncertainty are taken from an envelope of cross-section
predictions using different PDF sets and factorization and
renormalization scales, as described in Ref. [38]. The PDF
sets used for those calculations are CTEQ6.6M [39] and
MSTW2008NLO [40].

Monte Carlo simulated event samples are generated with
multiple pp interactions (pile-up) and are re-weighted by
matching the distribution of the number of interactions per
bunch crossing to that observed in the data. The samples
are passed through the GEANT4 [41, 42] simulation of
the ATLAS detector and the same reconstruction software
used for the data.

2The addition of the resummation of soft gluon emission at next-
to-leading-logarithmic accuracy (NLL) [33–37] is performed in the
case of strong SUSY pair-production.
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4. Event reconstruction

Jets are reconstructed from calibrated clustered energy
deposits in the calorimeter using the anti-kt jet cluster-
ing algorithm [43] with radius parameter R = 0.4. Clus-
ters of calorimeter cells are seeded by cells with energy
significantly above the measured noise. Jet energies are
corrected for the effects of calorimeter non-compensation
and inhomogeneities using pT- and η-dependent calibra-
tion factors based on Monte Carlo simulations validated
with extensive test-beam and collision-data studies [44].
Reconstructed jets with pT > 20GeV and |η| < 2.8 are
used in this analysis.
A multivariate b-tagging algorithm that exploits both

impact parameter and secondary vertex information is
used to identify jets with |η| < 2.5 containing a b-
hadron [45]. The working point used in this analysis has
a 60% efficiency on a sample of b-jets from simulated tt̄
events, with typical misidentification rates of 12% for c-
jets and less than 0.2% for light-quark/gluon jets with
pT > 20GeV and |η| < 2.5.
A photon candidate must have transverse momentum

pT > 20GeV and must fulfil a set of “tight” identifica-
tion requirements [46]. Moreover, the cluster associated
with the photon should have |η| < 2.37 and should not
be in the transition region between the barrel and end-cap
calorimeters (1.37 < |η| < 1.52). An isolation criterion
is applied in order to suppress the background from pho-
tons originating inside jets: the total calorimeter energy
deposit, not including the photon candidate, inside a cone
of ∆R =

√

(∆η)2 + (∆φ)2 = 0.2 around the photon direc-
tion is required to be less than 5 GeV. Photon candidates
identified from conversions are included, but, in order to
suppress the background from primary electrons misidenti-
fied as photons, the tracks of converted photon candidates
are required to have no hits in the pixel detector.
Electron candidates are clustered energy deposits in the

electromagnetic calorimeter matched to a track in the in-
ner detector. They are required to have pT > 20GeV and
|η| < 2.47, and must satisfy the “medium” electron shower
shape and track selection criteria described in Ref. [47]. As
for photons, electron candidates in the calorimeter transi-
tion region are vetoed.
Muon candidates with |η| < 2.4, reconstructed by com-

bining tracks in the inner detector and tracks in the muon
spectrometer, are required to have pT > 10GeV and also
to pass muon quality requirements [48].
The measurement of the missing transverse momentum,

including its magnitude Emiss
T , is based on the vector sum

of the reconstructed transverse momenta in the event. Ob-
jects included in the sum are muons and electrons with
pT > 10GeV, photons with pT > 20GeV, jets with
pT > 20GeV, and calibrated calorimeter clusters that are
not associated with any object with |η| < 4.9, as described
in Ref. [49].
Any jet candidate lying within a distance ∆R < 0.2

from an electron or photon is discarded. Also, in order to

ensure that selected leptons and photons are not purely
the result of hadronic activity, electrons and photons with
distances 0.2 < ∆R < 0.4 from a jet are rejected, as are
muons within ∆R < 0.4 of a jet. The difference in re-
quirements reflects the fact that only photons and elec-
trons can potentially be reconstructed as jets. Since one
of the main backgrounds in this analysis is due to electrons
misidentified as photons, a preliminary suppression of the
background is achieved by labelling an object an electron
whenever an electron/photon ambiguity exists and by dis-
carding the photon candidate if it lies within ∆R < 0.2 of
any electron.

5. Event selection

The data sample is collected with a trigger requiring
at least one photon passing “loose” identification require-
ments [46] with pT > 80GeV; this trigger is fully efficient
for the selection described below. The following selection
criteria were optimized to maximize the sensitivity to the
GGM scenarios considered, especially gluino/squark pro-
duction: a candidate event should contain a photon with
pT > 125GeV, at least two jets with pT > 20GeV, at
least one of which is b-tagged, and Emiss

T > 150GeV. The
transverse mass of the photon and the missing transverse
momentum mT(γ,E

miss
T ) =

√

2Emiss
T pγT(1 − cosφ), where

φ is the azimuthal angle between the missing transverse
momentum and the photon, is required to be greater than
100GeV. This criterion removes events in which electrons
or decay products of τ leptons, originating from W decay,
are misidentified as photons. The minimum azimuthal an-
gle between the Emiss

T direction and each of the two leading
jets must be greater than 0.4. This condition suppresses
multijet events in which the measured Emiss

T is due mostly
to jet mismeasurement effects. Events with an identified
electron or muon satisfying the criteria given in Section 4
are vetoed. This veto suppresses dileptonic and semilep-
tonic tt̄ events with a prompt photon or with a jet misiden-
tified as a photon, and dileptonic events with an electron
or a τ lepton misidentified as a photon. Finally, events
with a second photon with pT > 50GeV are rejected. The
main selection requirements are summarized in Table 1.

1 photon (pT > 125GeV) mT(γ,E
miss
T ) > 100GeV

≥ 2 jets (pT > 20GeV) ∆φ (Emiss
T , jet) > 0.4

≥ 1 b-tagged jet veto e/µ
Emiss

T > 150GeV veto second photon

Table 1: Summary of event selection requirements.

6. Background estimation

Events from tt̄ production with aW boson decaying into
leptons in the final state (leptonic tt̄ background) contain a
pair of b-jets and genuine Emiss

T . These events may survive
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the signal selection procedure if an isolated high-pT photon
candidate is also present. Such a photon may be the re-
sult of the misidentification of an electron produced in the
leptonic W decay, a genuine prompt photon, or a τ decay
product or jet misidentified as a photon. All processes that
give rise to final states W (→ ℓν) +X , including leptonic
tt̄, diboson, and single top backgrounds, are estimated us-
ing data-driven methods. Another large background esti-
mated with data-driven methods is from multijet events.
Finally, the small contribution from Z(→ νν̄)+jets back-
ground is estimated using Monte Carlo simulation.
A control sample (CS) is defined by selecting events ac-

cording to the criteria described in Section 5 but replacing
the photon selection by requiring the presence of an elec-
tron. Once the probability of an electron being misiden-
tified as a photon (the “e → γ misidentification rate”)
is known, the number of events in the signal region with
misidentified electrons can be deduced from this CS. The
e → γ misidentification rate for different η regions is mea-
sured by selecting events with a photon and an electron in
which the γe invariant mass is less than 20GeV from the
nominal Z boson mass of 91.2GeV. The electron is re-
quired to pass the “tight” identification criteria [46], and
the photon is required to pass the quality requirements of
the signal region. The number of γe events is then di-
vided by the number of e+e− pairs with one tight and one
medium electron, and the ratio is taken to be the misiden-
tification rate. The average misidentification rate for pho-
tons with pT > 100GeV is 1.8%. When this technique
is applied to the data, 1.1± 0.1 (stat.) background events
with electrons misidentified as photons are predicted in
the signal region.
The prompt photon background cannot be separated

from the backgrounds in which a jet or τ lepton is misiden-
tified as a photon. Therefore, a single CS is used to es-
timate these backgrounds. The “lepton control region” is
defined by requiring the presence of a lepton, in addition
to the photon, and relaxing the Emiss

T cut to 80 < Emiss
T <

150GeV while keeping all the other selection criteria of
Section 5. The lepton requirement strongly suppresses
the multijet contamination, making it possible to use a
lower Emiss

T threshold in order to increase the number of
selected events and hence reduce the uncertainty on the
background estimate. The lower Emiss

T threshold is chosen
to be 80GeV to ensure that the tt̄ background remains the
dominant contribution in the lepton control region. The
results of the method for the signal region and the lepton
control region are shown in Table 2. In order to prevent
double counting, the background with electrons misiden-
tified as photons is subtracted, leaving 10.1 events in the
CS. Multiplying the 10.1 events observed in the CS by
the simulation-based scale factor of 2.8/8.4 = 0.33 gives a
prediction of 3.4±1.7 (stat.) prompt photon and misiden-
tified jet/τ background events in the signal region. The
uncertainty is dominated by the limited number of events
in the CS data.
An important issue in evaluating the scale factor with

simulated events is that the MC@NLO generator does not
produce tt̄γ final states with a matrix element calculation;
rather, it produces the tt̄ hard process, and supplemental
photon radiation is generated by HERWIG and PHOTOS.
The WHIZARD generator is better suited for tt̄γ studies
with high-pT photons, since the photon is generated from
a matrix element calculation. To avoid double counting in
the two samples, events in the MC@NLO simulation sam-
ple with a prompt photon are removed. Even though the
CS is dominated by tt̄γ events, and the tt̄γ simulations
alone are used for the scale factor calculation, this tech-
nique gives a total estimate for all of the W (→ ℓν) + X
background processes, which are present by construction
in the CS.

Sample Signal region Lepton control region
tt̄ MC@NLO 0.3 ± 0.2 0.5 ± 0.3

tt̄γ WHIZARD 2.5 ± 0.2 7.9 ± 0.4
Total 2.8 ± 0.3 8.4 ± 0.5
Data 10.1 ± 3.5

Table 2: Number of events in the signal region and in the lepton con-
trol region, as predicted by the tt̄ MC@NLO and tt̄γ WHIZARD cal-
culations, after subtracting the overlapping contribution from elec-
trons misidentified as photons. Only statistical uncertainties are
quoted.

To verify that the event characteristics used in this
method are well modelled in the lepton control region, the
Emiss

T and pγT distributions in the data and simulation are
shown in Fig. 1. The distributions agree within uncertain-
ties.
Multijet events, another source of background, may con-

tain genuine photons or misidentified jets that hadronize
to an isolated π0. High Emiss

T is rare in multijet events but
can be realized by mismeasured jets or by heavy-flavour
quark jets decaying semileptonically. To estimate the mul-
tijet contribution in the signal region (SR), control regions
(CRs) are defined with events that fail the b-tag require-
ment or the Emiss

T requirement (see Table 3).

Emiss
T <100 GeV Emiss

T > 150 GeV
≥ 1 b-tag CR1 SR
0 b-tag CR2 CR3

Table 3: Definition of the control regions CR1,CR2,CR3, and signal
region SR for the multijet background estimation.

The CR3 data sample is contaminated by tt̄, single
top, and W/Z+jets events that have genuine Emiss

T , and
this contamination must be removed. This contamination
NMC,multijet

CR3 is estimated from the Monte Carlo simulation
and accounts for approximately 45% of the events in the
CR3. A scale factor between the tagged and untagged
samples is calculated in the low Emiss

T < 100GeV con-
trol regions (NData

CR1 /NData
CR2 ), and this scale factor is subse-

quently applied to the high-Emiss
T region of the untagged
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Figure 1: The Emiss

T
spectrum in the lepton control region with a

relaxed p
γ

T
requirement of 90GeV and no mT(γ, Emiss

T
) cut (top) and

the p
γ

T
spectrum in the lepton control region with no upper bound

on Emiss

T
and no mT(γ, Emiss

T
) cut (bottom).

CS to obtain the prediction for the signal region:

NPred
SR =

(

NData
CR3 −NMC,multijet

CR3

)

×
[

NData
CR1

NData
CR2

]

In order to check the accuracy of this method,
the background estimate is calculated after all se-
lection requirements and then repeated without the
mT(γ,E

miss
T ) > 100 GeV requirement, which is expected

to have little effect on the multijet background. The two
calculations yield predictions of 3.3 ± 0.7 (stat.) ± 0.6
(syst.) events before the mT(γ,E

miss
T ) requirement and

2.7 ± 0.7 (stat.) ± 0.7 (syst.) events after all require-
ments, with uncertainty due only to limited statistics in
the CRs. The difference of 0.6 events is used as a system-
atic uncertainty associated with this method. The num-
ber of expected QCD multijet events in the signal region
is therefore 2.7 ± 1.1 events.
Finally, the Z(→ νν̄)+jets process is estimated, from

studies of simulated events, to contribute 0.3 ± 0.3 events
in the signal region. The background from other sources
is estimated to be negligible.

7. Systematic uncertainties on the background

The main source of systematic uncertainties on the back-
ground is the scale factor derived from simulation for
prompt photon and misidentified jet or τ processes. The
uncertainty on this factor is dominated by the theoreti-
cal uncertainties on the tt̄ processes. Uncertainties such
as Monte Carlo modelling and different initial- and final-
state radiation models are evaluated by comparing Ac-
erMC (LO) [50], MC@NLO (NLO), and POWHEG (NLO)
tt̄ simulations. The impact of using different fragmenta-
tion and hadronization models is estimated by comparing
two POWHEG samples, one showered with HERWIG and
the other with PYTHIA. The uncertainty is defined as the
greatest difference among the resulting scale factors with
respect to the MC@NLO factor and is evaluated to be
17%. Other systematic uncertainties are smaller since the
scale factor is a ratio of the event population in the signal
and control regions and most of the uncertainties cancel
out. The effects of the jet energy scale [51] and jet energy
resolution uncertainties [44] are determined to be 4% and
2%, respectively, and the relative uncertainty due to the
b-tagging efficiency is evaluated to be 1%. The systematic
uncertainty in the photon identification is based on the re-
sults of data-driven measurements with Z → e+e− decays
and contributes 1% uncertainty in the scale factor. The
systematic uncertainty due to pile-up is estimated to cause
background variations of up to 4%, while the systematic
uncertainty due to lepton identification, specifically in the
lepton veto in the event selection, is estimated to be 6%.
The impact of the luminosity uncertainty is less than 1%
because only the small contribution from Z(→ νν̄)+jets
background is normalized using the integrated luminosity.
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8. Signal efficiencies and systematic uncertainties

The combined product of acceptance and efficiency of
the event selection is calculated with simulated events for
each point in the GGM benchmark grids. Low mχ̃0

1

val-
ues typically result in gravitinos with relatively low pT,
which translates to lower efficiency for the Emiss

T require-
ment relative to high-mχ̃0

1

points. A typical efficiency for

high-mass gluino points (mg̃ = 900GeV,mχ̃0

1

= 450GeV)

is 10%, including the branching ratio for all Higgs boson
decays and the contribution from neutralino decays to Z
bosons that subsequently decay to bb̄. Uncertainties on
the signal cross section due to PDFs, renormalization and
factorization scales, and the strong coupling constant αs

are calculated separately for each production process as
described in Ref. [38] and combined into an overall uncer-
tainty that varies significantly for different signal points.
Most of the signal points have a combined cross-section
uncertainty of 2–5% but the total uncertainty can reach
50% for the points with very large gluino masses. The
uncertainties on the signal acceptance include an uncer-
tainty ranging from 3% to 16% due to the limited number
of simulated events at each benchmark grid point. The
uncertainty on the jet energy scale and jet energy resolu-
tion, b-tagging efficiency, photon and lepton identification,
luminosity, and pile-up are evaluated as in Section 7. The
uncertainties on the jet energy scale and jet energy res-
olution vary from 1% to 10% across the different signal
points. The relative uncertainty on the signal selection ef-
ficiency due to the uncertainty in the b-tagging efficiency
varies between 1% and 16% throughout the signal grid.
The systematic uncertainty on the photon identification is
less than 6%. The systematic uncertainty on lepton iden-
tification is 3%. Scaling the number of pile-up events in
simulation gives rise to variations of up to 6% through-
out the grid. The systematic uncertainty on luminosity is
evaluated to be 4% [52, 53]. All the sources of described
background and signal systematic uncertainties are sum-
marized in Table 4.

9. Results

Table 5 summarizes the expected number of Standard
Model events and observed data events in the signal re-
gion. A total of 7.5 ± 2.2 events are expected for the no-
signal hypothesis while 7 events are observed. The distri-
bution of Emiss

T after all requirements except on Emiss
T it-

self is shown in Fig. 2, along with the distribution of pγT
after all requirements except those on mT(γ,E

miss
T ) and

∆φ(Emiss
T , jet). The distribution of mT(γ,E

miss
T ) after all

requirements except that on ∆φ(Emiss
T , jet) and the distri-

bution of ∆φ(Emiss
T , jet) after all requirements except that

on mT(γ,E
miss
T ) are shown in Fig. 3. The observed data

agree with the background-only predictions.
Since no excess is observed above the background-only

prediction, the main result of the search is to constrain
contributions from physics beyond the Standard Model.

Source of uncertainty Background Signal
Lepton identification 6% 3%

Jet energy scale 4% 1%
Jet energy resolution 2% < 1%
Photon identification 1% 6%

b-tagging 1% 4%
Pile-up 4% 1%

Theoretical uncertainties 17% 9%
Monte Carlo statistics – 3%

Luminosity < 1% 4%

Table 4: Summary of relative systematic uncertainties on the num-
bers of background and signal events (for the representative signal
point mg̃ = 900GeV,m

χ̃
0

1

= 450GeV). Theoretical uncertainties

on the background originate from the Monte Carlo modelling and
different initial- and final-state radiation models. Theoretical uncer-
tainties on the signal cross section originate from the PDFs, renor-
malization and factorization scales, and αs.
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) and ∆φ(Emiss

T
, jet) (bottom).

6



0 50 100 150 200 250 300 350 400

E
ve

nt
s 

/ 1
0 

G
eV

-110

1

10

210 ATLAS
-1 Ldt = 4.7 fb∫

=7 TeVs

QCD multijet
W+jets

tt
single top
SM Total
data

ATLAS

) [GeV]miss

T
,Eγ(Tm

0 50 100 150 200 250 300 350 400D
at

a/
M

C
 r

at
io

0
0.5

1
1.5

2
2.5

3
3.5 stat. error

syst. error

0 0.5 1 1.5 2 2.5 3

E
ve

nt
s 

/ 0
.1

 R
ad

-110

1

10

210 ATLAS
-1 Ldt = 4.7 fb∫

=7 TeVs

QCD multijet
W+jets
tt
single top
SM Total
data

ATLAS

,jet)miss

T
(Eφ∆

0 0.5 1 1.5 2 2.5 3D
at

a/
M

C
 r

at
io

0
0.5

1
1.5

2
2.5

3
3.5 stat. error

syst. error

Figure 3: The mT(γ, Emiss

T
) distribution after all selection crite-

ria except the one for ∆φ(Emiss

T
, jet) (top) and the ∆φ(Emiss

T
, jet)

distribution after all selection criteria except the one on
mT(γ, Emiss

T
) (bottom).

Background source Expected events
Electron misidentified as photon 1.1 ± 0.1
Prompt photon and misidentified jet/τ 3.4 ± 1.8
QCD multijet 2.7 ± 1.1
Z(→ νν)+jets 0.3 ± 0.3
Total number of expected events 7.5 ± 2.2
Observed events in the data 7

Table 5: Summary of the expected number of Standard Model events
in the signal region and the number of events observed in the data.
The systematic and statistical uncertainties, both included, are of
the same order.

The profile likelihood is used with an asymptotic approx-
imation and the CLs method to calculate confidence lim-
its [54, 55]. From the number of observed and expected
events, a 95% confidence level upper limit on the visible
cross section, defined by the product of production cross
section times efficiency times acceptance, is derived. The
expected 95% confidence limit is 8.1 events, correspond-
ing to an upper limit on the visible cross section of 1.7 fb.
The observed limit is 7.4 events, corresponding to a visible
cross section of 1.6 fb.

The calculated acceptances for the simulated signal
events and their cross sections are used in the framework of
the specific GGMmodels described in Section 1 to map the
excluded signal region. For each point in the benchmark
plane observed upper limits on the signal strength are cal-
culated, including both strong production of squarks and
gluinos and weak production of neutralinos and charginos.
Observed and expected limits for the combined produc-
tion processes are shown in Fig. 4. The grey zone at the
lower right represents the theoretically forbidden region
where the lightest neutralino is no longer the NLSP. Gluino
masses less than 900GeV and squark masses less than
1020GeV for neutralino masses above 220GeV are ex-
cluded in the respective planes. The production cross sec-
tions at points with high neutralino mass and high gluino
or squark mass are low, and an insufficient number of
events is expected there. For points at very low neutralino
mass the cross section is high but the expected Emiss

T is
relatively low and only a small fraction of events pass the
event selection. For this region the direct gaugino pro-
duction through weak interactions is sizeable. The points
at intermediate neutralino mass (220 < mχ̃0

1

< 380GeV)
are excluded by this search, regardless of gluino or squark
masses, purely on the basis of the expected weak produc-
tion. This gives rise to the “chimney”-shaped exclusion
region extending beyond the top edge of the benchmark
plane.

If a Higgs boson mass mh = 125GeV is used instead
of 115GeV, the branching ratio to bb̄ is reduced, and the
exclusion is weakened. The important differences in ex-
cluded cross section for supersymmetric particle produc-
tion, at high gluino mass and moderately high neutralino
mass, are about 10%. In this relevant region, a 10% change
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in cross section corresponds to a 10GeV reduction in the
900GeV gluino mass exclusion.
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Figure 4: Excluded region in the gluino-neutralino benchmark plane
(top) and the squark-neutralino plane (bottom). The solid contour
marks the observed exclusion, the dotted contours mark the observed
exclusions if the signal cross section is shifted by ±1σ, and the dashed
black line marks the expected exclusion. The shaded band gives the
±1σ ranges of the expected limit distribution. The grey lower-right
regions, corresponding to models with gluino or squark NLSP, are
not considered.

10. Conclusions

A search for supersymmetry with a signature consist-
ing of an isolated high transverse momentum photon, a
b-tagged jet, and high missing transverse momentum is
performed using 4.7 fb−1 of

√
s=7 TeV pp collision data

recorded with the ATLAS detector at the LHC. Seven
events are observed, consistent with the expected Stan-
dard Model background of 7.5 ± 2.2 events. A model-
independent 95% confidence level upper limit of 1.6 fb is
set on the visible cross section of events passing the se-
lection. The cross-section limits are used to constrain
higgsino-like neutralino production for a typical GGM
model in two benchmark planes. These are the first direct
experimental constraints on this signature. For neutralino

masses greater than 220GeV, this search excludes gluino
masses less than 900GeV and squark masses less than
1020GeV in the gluino-neutralino and squark-neutralino
benchmark planes, respectively.
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J. Maneira124a, A. Manfredini99, L. Manhaes de Andrade Filho24b, J.A. Manjarres Ramos136, A. Mann98,

13



P.M. Manning137, A. Manousakis-Katsikakis9, B. Mansoulie136, R. Mantifel85, A. Mapelli30, L. Mapelli30, L. March167,
J.F. Marchand29, F. Marchese133a,133b, G. Marchiori78, M. Marcisovsky125, C.P. Marino169, F. Marroquim24a,
Z. Marshall30, L.F. Marti17, S. Marti-Garcia167, B. Martin30, B. Martin88, J.P. Martin93, T.A. Martin18,
V.J. Martin46, B. Martin dit Latour49, S. Martin-Haugh149, H. Martinez136, M. Martinez12, V. Martinez Outschoorn57,
A.C. Martyniuk169, M. Marx82, F. Marzano132a, A. Marzin111, L. Masetti81, T. Mashimo155, R. Mashinistov94,
J. Masik82, A.L. Maslennikov107, I. Massa20a,20b, G. Massaro105, N. Massol5, P. Mastrandrea148,
A. Mastroberardino37a,37b, T. Masubuchi155, H. Matsunaga155, T. Matsushita66, C. Mattravers118,d, J. Maurer83,
S.J. Maxfield73, D.A. Maximov107,h, A. Mayne139, R. Mazini151, M. Mazur21, L. Mazzaferro133a,133b, M. Mazzanti89a,
J. Mc Donald85, S.P. Mc Kee87, A. McCarn165, R.L. McCarthy148, T.G. McCarthy29, N.A. McCubbin129,
K.W. McFarlane56,∗, J.A. Mcfayden139, G. Mchedlidze51b, T. Mclaughlan18, S.J. McMahon129, R.A. McPherson169,l,
A. Meade84, J. Mechnich105, M. Mechtel175, M. Medinnis42, S. Meehan31, R. Meera-Lebbai111, T. Meguro116,
S. Mehlhase36, A. Mehta73, K. Meier58a, B. Meirose79, C. Melachrinos31, B.R. Mellado Garcia173, F. Meloni89a,89b,
L. Mendoza Navas162, Z. Meng151,x, A. Mengarelli20a,20b, S. Menke99, E. Meoni161, K.M. Mercurio57, P. Mermod49,
L. Merola102a,102b, C. Meroni89a, F.S. Merritt31, H. Merritt109, A. Messina30,y, J. Metcalfe25, A.S. Mete163, C. Meyer81,
C. Meyer31, J-P. Meyer136, J. Meyer174, J. Meyer54, S. Michal30, L. Micu26a, R.P. Middleton129, S. Migas73,
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Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
37 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende,
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