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Abstract

Measurements are presented of production properties and couplings of the recently discovered Higgs boson using
the decays into boson pairs,H → γγ, H→ZZ∗→ 4ℓ andH→WW∗→ ℓνℓν. The results are based on the complete
pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass
energies of

√
s=7 TeV and

√
s=8 TeV, corresponding to an integrated luminosity of about 25fb−1. Evidence for Higgs

boson production through vector-boson fusion is reported.Results of combined fits probing Higgs boson couplings to
fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented.
All measurements are consistent with expectations for the Standard Model Higgs boson.

1. Introduction

The discovery of a new particle of mass about
125 GeV in the search for the Standard Model (SM)
Higgs boson at the CERN Large Hadron Collider
(LHC) [1], reported in July 2012 by the ATLAS [2] and
CMS [3] Collaborations, is a milestone in the quest to
understand the origin of electroweak symmetry break-
ing [4–9].

This paper presents measurements of several prop-
erties of the newly observed particle, including its
mass, production strengths and couplings to fermions
and bosons, using diboson final states:1 H → γγ,
H→ZZ∗→ 4ℓ, andH→WW∗→ ℓνℓν. Spin studies are
reported elsewhere [10]. Due to the outstanding per-
formance of the LHC accelerator throughout 2012, the
present data sample is a factor of∼2.5 larger than that
used in Ref. [2]. With these additional data, many as-
pects of the ATLAS studies have been improved: sev-
eral experimental uncertainties have been reduced and
new exclusive analyses have been included. In particu-
lar, event categories targeting specific production modes
have been introduced, providing enhanced sensitivity to
different Higgs boson couplings.

The results reported here are based on the data sam-
ples recorded with the ATLAS detector [11] in 2011
(at
√

s = 7 TeV) and 2012 (at
√

s = 8 TeV), corre-
sponding to integrated luminosities of about 4.7 fb−1

and 20.7 fb−1, respectively. Similar studies, including

1Throughout this paper, the symbolℓ stands for electron or muon.

also fermionic decays, have been reported recently by
the CMS Collaboration using a smaller dataset [12].

This paper is organised as follows. Section 2 de-
scribes the data sample and the event reconstruction.
Section 3 summarises the Monte Carlo (MC) samples
used to model signal and background processes. The
analyses of the three decay channels are presented in
Sections 4–6. Measurements of the Higgs boson mass,
production properties and couplings are discussed in
Section 7. Section 8 is devoted to the conclusions.

2. Data sample and event reconstruction

After data quality requirements, the integrated lumi-
nosities of the samples used for the studies reported here
are about 4.7 fb−1 in 2011 and 20.7 fb−1 in 2012, with
uncertainties given in Table 1 (determined as described
in Ref. [13]). Because of the high LHC peak luminosity
(up to 7.7× 1033 cm−2 s−1 in 2012) and the 50 ns bunch
spacing, the number of proton–proton interactions oc-
curring in the same bunch crossing is large (on average
20.7, up to about 40). This “pile-up” of events requires
the use of dedicated algorithms and corrections to mit-
igate its impact on the reconstruction ofe.g. leptons,
photons and jets.

For the H→ZZ∗→4ℓ and H→WW∗→ ℓνℓν chan-
nels, the primary vertex of the event is defined as the
reconstructed vertex with the highest

∑

p2
T, wherepT

is the magnitude of the transverse momentum2 of each

2ATLAS uses a right-handed coordinate system with its originat
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Table 1: Main sources of experimental uncertainty, and of theoretical
uncertainty on the signal yield, common to the three channels con-
sidered in this study. Theoretical uncertainties are givenfor a SM
Higgs boson of massmH = 125 GeV and are taken from Refs. [14–
16]. “QCD scale” indicates (here and throughout this paper)QCD
renormalisation and factorisation scales and “PDFs” indicates parton
distribution functions. The ranges for the experimental uncertainties
cover the variations withpT andη.

Source (experimental) Uncertainty (%)
Luminosity ±1.8 (2011),±3.6 (2012)
Electron efficiency ±2–5
Jet energy scale ±1–5
Jet energy resolution ±2–40

Source (theory) Uncertainty (%)
QCD scale ±8 (ggF),±1(VBF, VH), +4

−9 (ttH)
PDFs+ αs ±8 (ggF, ttH),±4 (VBF, VH)

associated track; it is required to have at least three as-
sociated tracks withpT > 0.4 GeV. For theH → γγ

analysis a different primary vertex definition is used, as
described in Section 4.

Muon candidates [17] are formed by matching re-
constructed tracks in the inner detector (ID) with either
complete tracks or track segments reconstructed in the
muon spectrometer (MS). The muon acceptance is ex-
tended to the region 2.5 < |η| < 2.7, which is outside the
ID coverage, using tracks reconstructed in the forward
part of the MS.

Electron candidates [18] must have a well-
reconstructed ID track pointing to a cluster of
cells with energy depositions in the electromagnetic
calorimeter. The cluster should satisfy a set of identifi-
cation criteria requiring the longitudinal and transverse
shower profiles to be consistent with those expected
for electromagnetic showers. Tracks associated with
electromagnetic clusters are fitted using a Gaussian
Sum Filter [19], which allows bremsstrahlung energy
losses to be taken into account. The identification
criteria described in Ref. [18] have been modified with
time to maintain optimal performance as a function of
pile-up, in particular for low-pT electrons.

The reconstruction, identification and trigger efficien-
cies for electrons and muons, as well as their energy and
momentum scales and resolutions, are determined us-

the nominal interaction point (IP) in the centre of the detector, and
the z-axis along the beam line. Thex-axis points from the IP to the
centre of the LHC ring, and they-axis points upwards. Cylindrical co-
ordinates (r, φ) are used in the transverse plane,φ being the azimuthal
angle around the beam line. Observables labelled “transverse” are
projected into thex− y plane. The pseudorapidity is defined in terms
of the polar angleθ asη = − ln tan(θ/2).

ing large samples ofZ → ℓℓ, W → ℓν andJ/ψ → ℓℓ

events [18, 20]. The resulting uncertainties are smaller
than±1% in most cases, one exception being the uncer-
tainty on the electron selection efficiency which varies
between±2% and±5% as a function ofpT andη.

Photon candidates [21] are reconstructed and iden-
tified using shower shapes in the electromagnetic
calorimeter, with or without associated conversion
tracks, as described in Section 4.

Jets [22, 23] are built from topological clusters [24]
using the anti-kt algorithm [25] with a distance param-
eter R = 0.4. They are typically required to have
transverse energies greater than 25 GeV (30 GeV) for
|η| < 2.4 (2.4 ≤ |η| < 4.5), where the higher threshold
in the forward region reduces the contribution from jet
candidates produced by pile-up. To reduce this contri-
bution further, jets within the ID acceptance (|η| < 2.47)
are required to have more than 25–75% (depending on
the pile-up conditions and Higgs boson decay mode) of
the summed scalarpT of their associated tracks coming
from tracks originating from the event primary vertex.
Pile-up corrections based on the average event trans-
verse energy density in the jet area [26] and the number
of reconstructed vertices in the data are also applied.

Jets originating fromb-quarks [27–29] are identi-
fied (“b-tagged”) by combining information from algo-
rithms exploiting the impact parameter of tracks (de-
fined as the distance of closest approach to the pri-
mary vertex in the transverse plane), the presence of a
displaced vertex, and the reconstruction ofD- and B-
hadron decays.

The missing transverse momentum,Emiss
T [30], is

the magnitude of the negative vector sum of thepT of
muons, electrons, photons, jets and clusters of calorime-
ter cells with|η| < 4.9 not associated with these objects.
The uncertainty on theEmiss

T energy scale is obtained
from the propagation of the uncertainties on the con-
tributing components and thus depends on the consid-
ered final state. A track-based missing transverse mo-
mentum,pmiss

T , is calculated as the negative vector sum
of the transverse momenta of tracks associated with the
primary vertex.

The main sources of experimental uncertainty com-
mon to all the channels considered in this study are sum-
marised in the top part of Table 1.

3. Signal and background simulation

The SM Higgs boson production processes consid-
ered in these studies are gluon fusion (gg → H, de-
noted ggF), vector-boson fusion (qq′ → qq′H, denoted
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VBF), and Higgs-strahlung (qq̄′ → WH,ZH, denoted
WH/ZH or jointly VH). The small contribution from
the associated production with att pair (gg/qq̄→ tt̄H,
denotedttH) is taken into account in theH → γγ and
H → ZZ∗ analyses. Samples of MC-simulated events

Table 2: Event generators used to model the signal and the main
background processes. “PYTHIA” indicates that PYTHIA6 [31] and
PYTHIA8 [32] are used for the simulations of 7 TeV and 8 TeV data,
respectively.

Process Generator
ggF, VBF POWHEG [33, 34]+PYTHIA
WH, ZH, tt̄H PYTHIA
H→ZZ∗→ 4ℓ decay PROPHECY4f [35, 36]
W+jets,Z/γ∗+jets ALPGEN [37]+HERWIG [38],

POWHEG+PYTHIA, SHERPA [39]
tt, tW, tb MC@NLO [40]+HERWIG
tqb AcerMC [41]+PYTHIA6
qq̄→WW POWHEG+PYTHIA6
gg→WW gg2WW [42, 43]+HERWIG
qq̄→ ZZ∗ POWHEG [44]+PYTHIA
gg→ ZZ∗ gg2ZZ [43, 45]+HERWIG
WZ MadGraph [46, 47]+PYTHIA6, HERWIG
Wγ+jets ALPGEN+HERWIG
Wγ∗ MadGraph [48]+PYTHIA6 for mγ∗ < 7 GeV

POWHEG+PYTHIA for mγ∗ > 7 GeV
qq̄/gg→ γγ SHERPA

are employed to model Higgs boson production and
compute signal selection efficiencies. The event gener-
ators are listed in Table 2. Cross-section normalisations
and other corrections (e.g. Higgs bosonpT spectrum)
are obtained from up-to-date calculations as described
in Refs. [2, 14–16, 49–77]. Table 3 shows the produc-
tion cross sections and the branching ratios for the final
states considered in this study for a Higgs boson with
massmH = 125 GeV, while Table 1 summarises the the-
oretical uncertainties on the expected signal common to
all channels.

Backgrounds are determined using data alone or a
combination of data and MC simulation, as discussed in
Sections 4–6. The generators employed in most cases
are also listed in Table 2. To generate parton show-
ers and their hadronisation, and to simulate the under-
lying event [78–80], PYTHIA6 (for 7 TeV samples as
well as for 8 TeV samples produced with MadGraph
or AcerMC) or PYTHIA8 (for other 8 TeV samples)
are used. Alternatively, HERWIG is employed, com-
bined with the underlying event simulation provided by
JIMMY [81]. When PYTHIA6 or HERWIG are used,
PHOTOS [82, 83] is employed to describe additional
photon radiation from charged leptons. The small con-
tributions fromZ(∗) and W(∗) decays to electrons and
muons through intermediateτ-leptons are included in

the signal and background generation.
The following parton distribution function (PDF)

sets are used in most cases: CT10 [84] for the
POWHEG, MC@NLO, gg2WW and gg2ZZ samples;
CTEQ6L1 [85] for the PYTHIA8, ALPGEN, Ac-
erMC, MadGraph, HERWIG and SHERPA samples;
and MRSTMCal [86] for the PYTHIA6 samples. In
most cases, the generated MC samples are processed
through a full simulation [87] of the ATLAS detector
based on GEANT4 [88]. Corrections obtained from
measurements in the data are applied to the simulation
to account for small differences between data and simu-
lation in e.g.the reconstruction of leptons, photons and
jets. The simulation also includes realistic modelling
(tuned to the data) of the event pile-up from the same
and nearby bunch crossings.

Table 3: SM Higgs boson cross sections (in pb) at
√

s=8 (7) TeV for
mH = 125 GeV. The total values as well as the contributions from the
individual production modes are listed. The branching ratios to the
final-state channels considered in this paper are also given(whereℓ
stands for electron or muon), together with their relative uncertainty.
Up-to-date theoretical calculations are used [14–16, 35, 36, 89].

Cross section (pb) Branching ratio
at
√

s=8 (7) TeV (relative uncertainty)
ggF 19.52 (15.32) H→WW∗→ ℓνℓν 0.01 (± 5%)
VBF 1.58 (1.22) H → γγ 2.28×10−3 (± 5%)
WH 0.70 (0.57) H → ZZ∗ → 4ℓ 1.25×10−4 (± 5%)
ZH 0.39 (0.31)
tt̄H 0.13 (0.09)
Total 22.32 (17.51)

4. The H → γγ channel

This channel is particularly sensitive to physics be-
yond the Standard Model since the decay proceeds via
loops (which in the SM are dominated byW-boson ex-
change).

Events are required to have two high-pT photons with
invariant mass in the range 100 – 160 GeV. The main
background is continuumγγ production, with smaller
contributions fromγ+jet and dijet processes. Com-
pared to the previously published results [2], additional
categories of events are introduced in the analysis of
the 8 TeV data to increase the sensitivity to production
through VBF or in association with aW or Z boson.

4.1. Event selection

The data used in this channel are selected us-
ing a diphoton trigger [90] requiring two clusters
formed from energy depositions in the electromagnetic
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calorimeter, with shapes compatible with electromag-
netic showers. AnET threshold of 20 GeV is applied
to each cluster for the 7 TeV data, while at 8 TeV the
thresholds are increased to 35 GeV on the leading (high-
est ET) and 25 GeV on the sub-leading (next-highest
ET) cluster. The trigger efficiency is larger than 99%
for events passing the final event selection.

In the offline analysis, photon candidates are required
to haveET > 40 GeV and 30 GeV for the leading and
sub-leading photon, respectively. Both photons must be
reconstructed in the fiducial region|η| < 2.37, excluding
the calorimeter barrel/end-cap transition region 1.37 ≤
|η| < 1.56.

Photon candidates are required to pass tight identi-
fication criteria based mainly on shower shapes in the
electromagnetic calorimeter [2]. They are classified as
converted if they are associated with two tracks consis-
tent with aγ → e+e− conversion process or a single
track leaving no hit in the innermost layer of the inner
detector, and as unconverted otherwise [91]. Identifi-
cation efficiencies, averaged overη, range from 85%
to above 95% for theET range under consideration.
Jets misidentified as photons are further rejected by ap-
plying calorimeter and track isolation requirements to
the photon candidates. The calorimeter isolation is de-
fined as the sum of the transverse energies of positive-
energy topological clusters within a cone of size∆R =
√

∆φ2 + ∆η2= 0.4 around the photon candidates, ex-
cluding the core of the showers. It is required to be
smaller than 4 GeV and 6 GeV for the 7 TeV and
8 TeV data, respectively. The pile-up contribution is
corrected on an event-by-event basis [92]. The track iso-
lation, applied to the 8 TeV data only, is defined as the
scalar sum of the transverse momenta of all tracks with
pT > 0.4 GeV associated with the diphoton production
vertex (defined below) and lying within a cone of size
∆R = 0.2 around the photon candidate; it is required to
be smaller than 2.6 GeV. Conversion tracks associated
with either photon candidate are excluded.

For the precise measurement of the diphoton invari-
ant mass (mγγ), as well as for the computation of track-
based quantities (e.g.track isolation, selection of jets as-
sociated with the hard interaction), the diphoton produc-
tion vertex should be known precisely. The determina-
tion of the vertex position along the beam axis is based
on so-called “photon pointing”, where the directions of
the two photons, measured using the longitudinal and
lateral segmentation of the electromagnetic calorimeter,
are combined with a constraint from the average beam-
spot position. For converted photons the position of the
conversion vertex is also used. This technique alone is

sufficient to ensure that the contribution of angular mea-
surement uncertainties to the diphoton invariant mass
resolution is negligible. For a more precise identifica-
tion of the primary vertex, needed for the computation
of track-based quantities, this pointing information is
combined with tracking information from each recon-
structed vertex: theΣp2

T for the tracks associated with
a given vertex and, for the 8 TeV data, theΣpT of the
tracks and the azimuthal angle between the transverse
momentum of the diphoton system and that of the vec-
tor sum of the trackpT. A Neural Network (likelihood)
discriminant is used for the 8 TeV (7 TeV) data. The
performance of this algorithm is studied usingZ → ee
decays, ignoring the tracks associated with the electrons
and weighting the events so that thepT and rapidity dis-
tributions of theZ boson match those expected from the
Higgs boson signal. The probability of finding a vertex
within 0.3 mm of the one computed from the electron
tracks is larger than 75%.

The photon energy calibration is obtained from a de-
tailed simulation of the detector geometry and response,
independently for converted and unconverted photons.
The calibration is refined by applyingη-dependent cor-
rection factors determined from studies ofZ → ee
events in data [18]: they range from±0.5% to±1.5%
depending on the pseudorapidity of the photon. Sam-
ples of radiativeZ → ℓℓγ decays are used to verify
the photon energy scale. The energy response of the
calorimeter shows a stability of better than±0.1% with
time and various pile-up conditions.

The signal efficiency of the above selections at 8 TeV
is estimated to be 37.5% for a Higgs boson withmH =

125 GeV.
The number of events in the diphoton mass region

100–160 GeV passing this inclusive selection is 23788
in the 7 TeV data and 118893 in the 8 TeV data.
The fraction of genuineγγ events, as estimated from
data [93], is (75+3

−4)%.

4.2. Event categorisation

To increase the sensitivity to the overall Higgs boson
signal, as well as to the specific VBF and VH production
modes, the selected events are separated into 14 mutu-
ally exclusive categories for further analysis, following
the order of preference listed below.

Lepton category(8 TeV data only): This category tar-
gets mainlyVH events where theW or Z bosons decay
to charged leptons. An isolated electron (ET >15 GeV)
or muon (pT > 10 GeV) candidate is required. To re-
move contamination fromZγ production withZ → ee,
electrons forming an invariant mass with either photon

4



in the range 84 GeV< meγ < 94 GeV are not consid-
ered.

Emiss
T category(8 TeV data only): This category tar-

gets mainlyVH events withW → ℓν or Z → νν. An
Emiss

T significance (defined asEmiss
T /σEmiss

T
, where in this

caseσEmiss
T
= 0.67 GeV1/2√ΣET with ΣET being the

event total transverse energy) greater than five is re-
quired, corresponding toEmiss

T > 70 – 100 GeV depend-
ing onΣET .

Low-mass two-jet category(8 TeV data only): To se-
lectVH events where theW or Z boson decays hadron-
ically, a pair of jets with invariant mass in the range
60 GeV < mj j < 110 GeV is required. To reduce the
ggF contamination, the pseudorapidity difference be-
tween the dijet and diphoton systems is required to be
|∆ηγγ, j j | < 1, and the component of the diphoton trans-
verse momentum orthogonal to the diphoton thrust axis
in the transverse plane3 [94, 95] is required to satisfy
pTt > 70 GeV.

High-mass two-jet categories: These categories are
designed to select events produced through the VBF
process, which is characterised by the presence of two
forward jets with little hadronic activity in the central
part of the detector. Jets are reconstructed as described
in Section 2. The selection for the 8 TeV data is based
on a multivariate technique using a Boosted Decision
Tree (BDT), whose input quantities are: the pseudora-
pidities of the two jets (η j1, η j2) and their separation
in η; the invariant mass of the dijet system; the differ-
enceη∗ = ηγγ − (η j1 + η j2)/2, whereηγγ is the pseu-
dorapidity of the diphoton system; the minimal radial
distance (∆R =

√

∆φ2 + ∆η2) of any jet–photon pair;
and the difference∆φγγ, j j between the azimuthal angles
of the diphoton and dijet momenta. The BDT training
is performed using a signal sample, as well as a back-
ground sample composed of simulatedγγ events com-
bined withγ j and j j components obtained from data.
The BDT response distributions for data and simulation
are shown in Fig. 1. The BDT output is used to define
two high-mass two-jet categories: a “tight” category
corresponding to BDT≥ 0.74, and a “loose” category
for 0.44 ≤ BDT < 0.74. For the 7 TeV data, the same
cut-based selection as described in Ref. [2] is applied,
namelymj j > 400 GeV,|∆η j j | > 2.8 and|∆φγγ, j j | > 2.8.

Untagged categories: Events not selected in any of
the above categories are classified in nine additional cat-
egories according to the properties of their diphoton sys-

3pTt = |(pγ1
T + pγ2

T ) × t̂|, wheret̂ =
pγ1

T −pγ2
T

|pγ1
T −pγ2

T |
denotes the thrust

axis in the transverse plane, andpγ1
T , pγ2

T are the transverse momenta
of the two photons.

BDT response
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Figure 1: Distribution of the VBF BDT response after applying the
selection of the inclusive analysis and requiring in addition the pres-
ence of two jets with|∆η j j | > 2 and|η∗ | < 5. The data in the signal
sidebands (i.e. excluding themγγ region 120–130 GeV), the expected
background, and the expected signal from VBF and ggF production
are shown. They are all normalised to unity except ggF, whichis
normalised to the ratio between the numbers of ggF and VBF events
passing the selection described above.

tem. Events with both photons unconverted are classi-
fied intounconverted centralif |η| < 0.75 for both pho-
tons, andunconverted restotherwise. Events with at
least one converted photon are similarly separated into
converted centralif |η| < 0.75 for both photons,con-
verted transitionif 1.3 < |η| < 1.75 for either photon,
andconverted restotherwise. Finally, all untagged cat-
egories exceptconverted transitionare split intolow pTt

andhigh pTt sub-categories by a cut atpTt = 60 GeV.
This classification is motivated by differences in mass
resolution and signal-to-background ratio for the vari-
ous categories.

4.3. Background estimation

The background is obtained from fits to the diphoton
mass spectrum in the data over the range 100–160 GeV
after the full selection. The procedure, the choice of
the analytical forms for the background and the deter-
mination of the corresponding uncertainties follow the
method described in Ref. [2]. Depending on the cate-
gory, the analytical form is either a fourth-order Bern-
stein polynomial [96] (used also for the inclusive sam-
ple), an exponential of a second-order polynomial, or a
single exponential. In these fits, the Higgs boson signal
is described by the sum of a Crystal Ball function [97]
for the core of the distribution and a Gaussian function
for the tails.
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4.4. Systematic uncertainties

Systematic uncertainties can affect the signal yield,
the signal fractions in the various categories (with pos-
sible migrations between them), the signal mass reso-
lution and the mass measurement. The main sources
specific to theH → γγ channel are listed in Table 4,
while sources in common with other decay channels are
summarised in Section 2 and Table 1. The uncertainties
described below are those affecting the 8 TeV analysis
(see Ref. [2] for the 7 TeV analysis).

Table 4: FormH = 125 GeV and the 8 TeV data analysis, the impact
of the main sources of systematic uncertainty specific to theH → γγ

channel on the signal yield, event migration between categories and
mass measurement and resolution. Uncertainties common to all chan-
nels are listed in Table 1. The± and∓ signs indicate anticorrelations
between categories.

Source Uncertainty (%)

on signal yield
Trigger ±0.5
Photon identification ±2.4
Isolation ±1.0
Photon energy scale ±0.25
ggF (theory), tight high-mass two-jet cat. ±48
ggF (theory), loose high-mass two-jet cat. ±28
ggF (theory), low-mass two-jet cat. ±30
Impact of background modelling ±(2 – 14), cat.-dependent

on category population (migration)
Material modelling −4 (unconv),+3.5 (conv)
pT modelling ±1 (low-pTt),

∓(9 – 12) (high-pTt, jets),
±(2 – 4) (lepton,Emiss

T )
∆φγγ, j j , η∗ modelling in ggF ±(9 – 12),±(6 – 8)
Jet energy scale and resolution ±(7 – 12) (jets),

∓(0 – 1) (others)
Underlying event two-jet cat. ±4 (high-mass tight),

±8 (high-mass loose),
±12 (low-mass)

Emiss
T ±4 (Emiss

T category)
on mass scale and resolution

Mass measurement ±0.6, cat.-dependent
Signal mass resolution ±(14 – 23), cat.-dependent

Signal yield: Relevant experimental uncertainties on
the signal yield come from the knowledge of the lumi-
nosity (Table 1) and the photon identification efficiency.
The latter is estimated by comparing the efficiencies ob-
tained using MC simulations and several data-driven
methods:Z → eeevents with a simulation-based ex-
trapolation from electrons to photons, an isolation side-
band technique using an inclusive photon sample, and
photons fromZ → ℓℓγ radiative decays. Owing to
several analysis improvements and the large size of the
8 TeV data sample, the resulting uncertainty is signifi-
cantly reduced compared to that reported in Ref. [2] and
amounts to±2.4%. Smaller experimental uncertainties
come from the knowledge of the trigger efficiency, the
impact of the photon isolation requirement and the pho-

ton energy scale. In addition to the theoretical uncer-
tainties on inclusive Higgs boson production listed in
Table 1, the ggF contribution to the two-jet categories
is subject to large uncertainties (Table 4) due to missing
higher-order corrections; they are estimated using the
method described in Ref. [98] and the MCFM [99] gen-
erator calculations. Finally, the background modelling
contributes an uncertainty between±2% and±14% de-
pending on the category.

Event migration: Mis-modelling of the detector ma-
terial could cause event migration between the uncon-
verted and converted photon categories in the simula-
tion. The uncertainty is obtained from MC samples pro-
duced with variations of the material description. The
uncertainty in the population of thepTt categories due
to the description of the Higgs bosonpT spectrum is
determined by varying the QCD scales and PDFs used
in the HqT program [62]. Uncertainties on the mod-
elling of two-jet variables for the ggF process, in par-
ticular ∆φγγ, j j and η∗, affect the contribution of ggF
events to the high-mass two-jet categories. They are
estimated by comparing the baseline POWHEG gener-
ator with SHERPA and MCFM. Uncertainties on the jet
energy scale and resolution affect the selection of jets
used in some category definitions, thereby causing mi-
gration between jet-based and other categories. The un-
certainty due to the modelling of the underlying event is
estimated by comparing simulations with and without
multi-parton interactions. Uncertainties on theEmiss

T re-
construction are assessed by varying the transverse en-
ergies of its components (photons, electrons, jets, soft
energy deposits) within their respective uncertainties.

Mass measurement and mass resolution: The mea-
surement of the Higgs boson mass in theH → γγ chan-
nel is discussed in Section 7.2. Uncertainties on the
diphoton mass scale come from the following sources:
the calibration of the electron energy scale (obtained
from Z → ee events); the uncertainty on its extrap-
olation to the energy scale of photons, dominated by
the description of the detector material; and the knowl-
edge of the energy scale of the presampler detector lo-
cated in front of the electromagnetic calorimeter. The
total uncertainty amounts to±0.55% (corresponding to
±0.7 GeV). The mass resolution, obtained from the
Crystal Ball function used in the fits described in Sec-
tion 4.3, ranges from 1.4 GeV to 2.5 GeV depending on
the category. The main uncertainties come from the
calorimeter energy scale and the extrapolation from the
electron to the photon response. Smaller contributions
arise from pile-up and the primary vertex selection.
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Figure 2: Invariant mass distribution of diphoton candidates after all
selections of the inclusive analysis for the combined 7 TeV and 8 TeV
data. The result of a fit to the data with the sum of a SM Higgs boson
signal (withmH = 126.8 GeVand free signal strength) and background
is superimposed. The residuals of the data with respect to the fitted
background are displayed in the lower panel.

4.5. Results

The diphoton invariant mass distribution after selec-
tions for the full data sample is shown in Fig. 2. At the
maximum deviation from the background-only expec-
tation, which occurs formH ∼ 126.5 GeV, the signif-
icance of the observed peak is 7.4σ for the combined
7 TeV and 8 TeV data and the category-based analysis
(compared with 4.3σ expected from SM Higgs boson
production at this mass), which establishes a discovery-
level signal in theγγ channel alone. Table 5 lists the

Table 5: For theH → γγ analysis of the
√

s = 8 TeV data, the num-
bers of events observed in the data (ND), the numbers of background
events (NB) estimated from fits to the data, and the expected SM Higgs
boson signal (NS) for mH = 126.8 GeV, split by category. All num-
bers are given in a mass window centred atmH = 126.8 GeV and con-
taining 90% of the expected signal (the size of this window changes
from category to category and for the inclusive sample). Thepredicted
numbers of signal events in each of the ggF, VBF,WH, ZH and tt̄H
processes are also given.

Category ND NB NS ggF VBF WH ZH t̄tH
Untagged 14248 13582 350 320 19 7.0 4.2 1.0
Loose high-mass two-jet 41 28 5.0 2.3 2.7 < 0.1 < 0.1 < 0.1
Tight high-mass two-jet 23 13 7.7 1.8 5.9 < 0.1 < 0.1 < 0.1
Low-mass two-jet 19 21 3.1 1.5 < 0.1 0.92 0.54 < 0.1
Emiss

T significance 8 4 1.2 < 0.1 < 0.1 0.43 0.57 0.14
Lepton 20 12 2.7 < 0.1 < 0.1 1.7 0.41 0.50
All categories (inclusive) 13931 13205 370 330 27 10 5.8 1.7

observed number of events in the main categories, the
estimated background from fits to the data (described in

Section 4.3), and the predicted signal contributions from
the various production processes.

Additional interpretation of these results is presented
in Section 7.

5. The H→ ZZ∗→ 4ℓ channel

Despite the small branching ratio, this channel pro-
vides good sensitivity to Higgs boson studies,e.g. to
the coupling toZ bosons, mainly because of the large
signal-to-background ratio.

Events are required to have two pairs of same-flavour,
opposite-charge, isolated leptons: 4e, 2e2µ, 2µ2e, 4µ
(where final states with two electrons and two muons
are ordered by the flavour of the dilepton pair with mass
closest to theZ-boson mass). The largest background
comes from continuum (Z(∗)/γ∗)(Z(∗)/γ∗) production,
referred to hereafter asZZ∗. Important contributions
arise also fromZ + jets andtt̄ production, where two
of the charged lepton candidates can come from decays
of hadrons withb- or c-quark content, misidentification
of light-quark jets, and photon conversions.

The analysis presented here is largely the same as that
described in Ref. [100] with only minor changes. The
electron identification is tightened in the 8 TeV data to
improve the background rejection for final states with
a pair of electrons forming the lower-massZ∗ boson.
The mass measurement uses a constrained fit to theZ
mass to improve the resolution. The lepton pairing is
modified to reduce the mis-pairing in the 4µ and 4e fi-
nal states, and the minimum requirement on the mass
of the secondZ∗ boson is relaxed. Final-state radiation
(FSR) is included in the reconstruction of the firstZ(∗) in
events containing muons. Finally, a classification which
separates Higgs boson candidate events into ggF–like,
VBF–like and VH–like categories is introduced.

5.1. Event selection

The data are selected using single-lepton or dilepton
triggers. ThepT threshold of the single-muon trigger is
24 GeV (18 GeV) in 2012 (2011) and theET threshold
of the single-electron trigger is 24 GeV (20–22 GeV).
The dielectron trigger threshold isET = 12 GeV and
the dimuon trigger threshold ispT = 13 GeV (10 GeV
in 2011) for both leptons. In addition, an asymmetric
dimuon trigger and electron–muon triggers are used as
described in Ref. [100]. The efficiency for events pass-
ing the offline analysis cuts to be selected by at least one
of the above triggers is between 97% and 100%.

Muon and electron candidates are reconstructed as
described in Section 2. In the region|η| < 0.1, which
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has limited MS coverage, ID tracks withpT > 15 GeV
are identified as muons if their calorimetric energy de-
posits are consistent with a minimum ionising particle.
Only one muon per event is allowed to be reconstructed
either in the MS alone or without MS information. For
the 2012 data, the electron requirements are tightened
in the transition region between the barrel and end-cap
calorimeters (1.37 < |η| < 1.52), and the pixel-hit re-
quirements are stricter to improve the rejection of pho-
ton conversions.

Each electron (muon) must satisfyET > 7 GeV (pT >

6 GeV) and be measured in the pseudorapidity range
|η| < 2.47 (|η| < 2.7). The highest-pT lepton in the
quadruplet must satisfypT > 20 GeV, and the second
(third) lepton must satisfypT > 15 GeV (pT > 10 GeV).
To reject cosmic rays, muon tracks are required to have
a transverse impact parameter of less than 1 mm.

Multiple quadruplets within a single event are pos-
sible. For each quadruplet, the same-flavour, opposite-
charge lepton pair with invariant mass closest to theZ-
boson mass (mZ) is referred to as the leading lepton pair.
Its invariant mass, denoted bym12, is required to be be-
tween 50 GeV and 106 GeV. The invariant mass of the
other (sub-leading) lepton pair,m34, is required to be in
the rangemmin < m34 < 115 GeV. The value ofmmin

is 12 GeV for a reconstructed four-lepton massm4ℓ <

140 GeV, rises linearly to 50 GeV atm4ℓ = 190 GeV,
and remains constant for higher masses. If two or more
quadruplets satisfy the above requirements, the one with
m34 closest to theZ-boson mass is selected. For further
analysis, events are classified in four sub-channels, 4e,
2e2µ, 2µ2e, 4µ.

The Z+jets andtt̄ background contributions are re-
duced by applying requirements on the lepton trans-
verse impact parameter divided by its uncertainty,
|d0|/σd0. This ratio must be smaller than 3.5 for muons
and smaller than 6.5 for electrons (the electron impact
parameter is affected by bremsstrahlung and thus its dis-
tribution has longer tails). In addition, leptons must sat-
isfy isolation requirements based on tracking and calori-
metric information, similar to those described in Sec-
tion 4.1, as discussed in Ref. [2].

The impact of FSR photon emission on the re-
constructed invariant mass is modelled using the MC
simulation (PHOTOS), which reproduces the rate of
collinear photons withET > 1.3 GeV in Z → µµ

decays in data to±5% [101]. Leading muon pairs
with 66 GeV< m12 < 89 GeV are corrected for FSR
by including any reconstructed photon withET above
1 GeV lying close (typically within∆R < 0.15) to the
muon tracks, provided that the correctedm12 satisfies
m12 < 100 GeV. The MC simulation predicts that about

4% of all H → ZZ∗ → 4µ candidate events should have
this correction.

For the 8 TeV data, the signal reconstruction and se-
lection efficiency for a SM Higgs boson withmH =

125 GeV is 39% for the 4µ sub-channel, 26% for
the 2e2µ/2µ2e sub-channels and 19% for the 4e sub-
channel.

The final discriminating variable in this analysis is the
4ℓ invariant mass. Its resolution, which is improved by
typically 15% by applying aZ-mass constrained kine-
matic fit to the leading lepton pair, is about 1.6 GeV,
1.9 GeV and 2.4 GeV for the 4µ, 2e2µ/2µ2eand 4esub-
channels, respectively, and formH = 125 GeV.

5.2. Event categorisation

To enhance the sensitivity to the individual produc-
tion modes, events passing the above selection are as-
signed to one of three categories, named VBF–like,
VH–like, and ggF–like. Events are VBF–like if the two
highestpT jets are separated by more than three units in
pseudorapidity and have an invariant mass greater than
350 GeV. Events that do not qualify as VBF–like are
considered for the VH–like category. They are accepted
in this category if they contain an additional lepton (eor
µ) with pT > 8 GeV, satisfying the same requirements as
the four leading leptons. The remaining events are as-
signed to the ggF–like category. No classification based
on the 4ℓ flavour is made in the VBF–like and VH–like
categories. Higgs boson production through VBF and
VH is expected to account for about 60% and 70% of
the total signal events in the VBF–like and VH–like cat-
egories, respectively. The signal-to-background ratio in
the signal peak region is about five for the VBF–like cat-
egory, about three for the VH–like category, and about
1.5 for the inclusive analysis.

5.3. Background estimation

The expected background yield and composition are
estimated using the MC simulation forZZ∗ production,
and methods based on control regions (CRs) from data
for theZ+ jets andtt̄ processes [2]. The transfer factors
used to extrapolate the background yields from the CRs
to the signal region are obtained from the MC simula-
tion and cross-checked with data. Since the background
composition depends on the flavour of the sub-leading
lepton pair, different approaches are followed for the
ℓℓ + µµ and theℓℓ + eefinal states.

The reducibleℓℓ + µµ background is dominated by
tt̄ andZ + jets (mostlyZbb̄) events. A CR is defined
by removing the isolation requirement for the muons of
the sub-leading pair, and by requiring that at least one
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of them fails the transverse impact parameter selection.
This procedure allows thett̄ andZ+ jets backgrounds to
be estimated simultaneously from a fit to them12 distri-
bution.

To determine the reducibleℓℓ + ee background, a
CR is formed by relaxing the selection criteria for the
electrons of the sub-leading pair: each of these elec-
trons is then classified as “electron–like” or “fake–like”
based on requirements on appropriate discriminating
variables [102]. The numbers of events with different
combinations of “electron–like” or “fake–like” objects
are then used to estimate the true composition of the
CR (in terms of isolated electrons, non-prompt electrons
from heavy-flavour decays, electrons from photon con-
versions and jets misidentified as electrons), from which
the expected yields in the signal region can be obtained
using transfer factors from the MC simulation.

Similar techniques are used to determine the back-
grounds for the VBF–like and VH–like categories.

5.4. Systematic uncertainties
The dominant sources of systematic uncertainty af-

fecting theH → ZZ∗ 8 TeV analysis are listed in Table 6
(see Ref. [2] for the 7 TeV analysis). Lepton reconstruc-

Table 6: FormH = 125 GeV and the 8 TeV data analysis, the impact of
the main sources of systematic uncertainty specific to theH → ZZ∗

channel on the signal yield, estimated reducible background, event
migration between categories and mass measurement. Uncertainties
common to all channels are listed in Table 1.

Source Uncertainty (%)

Signal yield 4µ 2µ2e 2e2µ 4e
Muon reconstruction and identification ±0.8 ±0.4 ±0.4 -
Electron reconstruction and identification - ±8.7 ±2.4 ±9.4

Reducible background (inclusive analysis) ±24 ±10 ±23 ±13
Migration between categories

ggF/VBF/VH contributions to VBF–like cat. ±32/11/11
ZZ∗ contribution to VBF–like cat. ±36
ggF/VBF/VH contributions to VH–like cat. ±15/5/6
ZZ∗ contribution to VH–like cat. ±30

Mass measurement 4µ 2µ2e 2e2µ 4e
Lepton energy and momentum scale ±0.2 ±0.2 ±0.3 ±0.4

tion, identification and selection efficiencies, as well as
energy and momentum resolutions and scales, are de-
termined using large control samples from the data, as
described in Section 2. Only the electron uncertainty
contributes significantly to the uncertainty on the signal
yield.

The background uncertainty is dominated by the un-
certainty on the transfer factors from the CRs to the sig-
nal region and the available number of events in the con-
trol regions.

The uncertainty on the population of the various cate-
gories (migration) comes mainly from the knowledge of

the theoretical cross sections for the various production
processes, the modelling of the underlying event and the
the knowledge of the jet energy scale.

The H → ZZ∗ → 4ℓ mass measurement is dis-
cussed in Section 7.2. The main sources contributing
to the electron energy scale uncertainty are described
in Section 4.4; the largest impact (±0.4%) is on the 4e
final state. Systematic uncertainties from the knowl-
edge of the muon momentum scale (discussed in detail
in Ref. [100]) are smaller. Mass scale uncertainties re-
lated to FSR and background contamination are below
±0.1%.
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Figure 3: The distribution of the four-lepton invariant mass, m4ℓ, for
the selected candidates in the data. The estimated background, as
well as the expected SM Higgs boson signal formH = 124.3 GeV
(scaled by the signal strength obtained from fits to the data), are also
shown. The single-resonant peak atm4ℓ ∼ 90 GeV includes contribu-
tions from s-channelZ/γ∗ and t-channel (Z∗/γ∗)(Z∗/γ∗) production.

5.5. Results

The reconstructed four-lepton mass spectrum after
all selections of the inclusive analysis is shown in
Fig. 3. The data are compared to the (scaled) ex-
pected Higgs boson signal formH = 124.3 GeV and
to the estimated backgrounds. At the maximum devi-
ation from the background-only expectation (occurring
at mH = 124.3 GeV), the significance of the observed
peak is 6.6σ for the combined 7 TeV and 8 TeV data,
to be compared with 4.4σ expected from SM Higgs bo-
son production at this mass. This result establishes a
discovery-level signal in the 4ℓ channel alone.

Table 7 presents the numbers of observed and ex-
pected events in the peak region. Out of a total of
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32 events selected in the data, one and zero candidates
are found in the VBF–like and VH–like categories, re-
spectively, compared with an expectation of 0.7 and 0.1
events from the signal and 0.14 and 0.04 events from the
background.

Additional interpretation of these results is presented
in Section 7.

Table 7: For theH→ZZ∗→ 4ℓ inclusive analysis, the number of
expected signal (mH = 125 GeV) and background events, together
with the number of events observed in the data, in a window of size
±5 GeV aroundm4ℓ = 125 GeV, for the combined

√
s = 7 TeV and√

s= 8 TeV data.

Signal ZZ∗ Z + jets,tt̄ Observed
4µ 6.3±0.8 2.8±0.1 0.55±0.15 13

2e2µ/2µ2e 7.0±0.6 3.5±0.1 2.11±0.37 13
4e 2.6±0.4 1.2±0.1 1.11±0.28 6

6. The H→WW∗
→ ℓνℓν channel

This decay mode provides direct access to the Higgs
boson couplings toW bosons. Its rate is large, but a
narrow mass peak cannot be reconstructed due to the
presence of two neutrinos in the final state. The recon-
structed topology consists of two opposite-charge lep-
tons and a large momentum imbalance from the neutri-
nos. The dominant SM backgrounds areWW (which
includesWW∗), tt̄ and Wt, all of which produce two
W bosons. The classification of events by jet multiplic-
ity (Njet) allows the control of the background from top
quarks, which containsb-quark jets, as well as the ex-
traction of the signal strengths for the ggF and VBF pro-
duction processes. For the hypothesis of a SM Higgs
boson, the spin-zero initial state and theV−A struc-
ture of theW-boson decays imply a correlation between
the directions of the charged leptons, which can be ex-
ploited to reject theWW background. These correla-
tions lead to the use of quantities such as the dilepton
invariant massmℓℓ and angular separation∆φℓℓ in the se-
lection criteria described below. Drell–Yan (DY) events
(pp→ Z/γ∗ → ℓℓ) may be reconstructed with signifi-
cant missing transverse momentum because of leptonic
τ decays or the degradation of theEmiss

T measurement
in the high pile-up environment of the 2012 run. Fi-
nally, W+jets production in which a jet is reconstructed
as a lepton, and the diboson processesWγ(∗), WZ, and
ZZ∗, are also significant backgrounds after all event se-
lection.

The studies presented here are a significant update of
those reported in Ref. [2]. The signal regions considered

includeee, eµ, andµµ final states with zero, one, or at
least two reconstructed jets. TheNjet≥ 2 analysis has
been re-optimised to increase the sensitivity to Higgs
boson production through VBF formH = 125 GeV. Im-
proved DY rejection and estimation techniques have al-
lowed the inclusion ofeeandµµ events from the 8 TeV
data. The analysis of the 7 TeV data, most recently
documented in Ref. [103], has been updated to apply
improvements from the 8 TeV analysis, including more
stringent lepton isolation requirements, which reduce
theW+jets background by 40%.

6.1. Event selection

Events are required to have two opposite-charge lep-
tons (eor µ) and to pass the same single-lepton triggers
as described in Section 5 for theH → ZZ∗ channel. The
leading lepton must satisfypT > 25 GeV and the sub-
leading leptonpT >15 GeV. Electron and muon iden-
tification and isolation requirements (see Ref. [2]) are
more restrictive than those used in theH → ZZ∗ analy-
sis in order to suppress theW+jets background.

In the ee/µµ channels, Z→ℓℓ and low-mass
γ∗→ℓℓ events, including J/ψ and Υ production,
are rejected by requiring|mℓℓ −mZ |>15 GeV and
mℓℓ > 12 GeV, respectively. In theeµ channels, low-
massγ∗→ ττ→ eννµνν production is rejected by im-
posingmℓℓ > 10 GeV.

Drell–Yan and multi-jet backgrounds are sup-
pressed by requiring large missing transverse mo-
mentum. For Njet≤1, a requirement is made
on Emiss

T, rel = Emiss
T · sin |∆φclosest|, where∆φclosest is the

smallest azimuthal angle between theEmiss
T vector and

any jet or high-pT charged lepton in the event; if
|∆φclosest| > π/2, thenEmiss

T, rel = Emiss
T is taken. For ad-

ditional rejection of the DY background in theee/µµ
channels withNjet≤ 1, the track-basedpmiss

T described
in Section 2 is used, modified topmiss

T, rel in a similar way
as Emiss

T, rel. For these channels, requirements are also
made onfrecoil, an estimate of the magnitude of the soft
hadronic recoil opposite to the system consisting of the
leptons and any accompanying jet, normalised to the
momentum of the system itself. Thefrecoil value in DY
events is on average larger than that of non-DY events,
where the high-pT system is balanced at least in part by
recoiling neutrinos.

The Njet≥2 analysis usesEmiss
T instead ofEmiss

T, rel be-
cause the larger number of jets in the final states re-
duces the signal efficiency of theEmiss

T, rel criterion. For
theee/µµ channels withNjet≥2, anEmiss

T variant called
“Emiss

T, STVF” is also employed. In the calculation of
Emiss

T, STVF, the energies of (soft) calorimeter deposits
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unassociated with high-pT leptons, photons, or jets are
scaled by the ratio of the summed scalarpT of tracks
from the primary vertex unmatched with such objects to
the summed scalarpT of all tracks from any vertex in
the event which are also unmatched with objects [104].

For all jet multiplicities, selections exploiting the
kinematic features ofH→WW∗→ ℓνℓν events are ap-
plied. The dilepton invariant mass is required to be
small, mℓℓ < 50 GeV for Njet≤1 andmℓℓ < 60 GeV for
Njet≥ 2; the azimuthal separation of the leptons is also
required to be small,∆φℓℓ < 1.8.

6.2. Event categorisation
The analysis is divided into categories withNjet=0,

Njet= 1, and Njet≥ 2. In the Njet= 0 analysis,
Emiss

T, rel>25 GeV (Emiss
T, rel>45 GeV andpmiss

T, rel> 45 GeV)
is required foreµ (ee/µµ) final states. The transverse
momentum of the dilepton system is required to be
large,pℓℓT >30 GeV. Foree/µµ events, the hadronic re-
coil is required to be typical of events with neutrinos in
the final state,frecoil< 0.05. Finally, the azimuthal sep-
aration between thepℓℓT andEmiss

T vectors must satisfy
|∆φℓℓ, Emiss

T
|>π/2, in order to remove potentially poorly

reconstructed events.
In the Njet=1 analysis, theEmiss

T, rel and pmiss
T, rel require-

ments are the same as forNjet=0, but the hadronic re-
coil threshold is looser,frecoil< 0.2. The top-quark back-
ground is suppressed by rejecting events with ab-tagged
jet. Theb-tagging algorithm described in Section 2 is
used, at an operating point with 85% efficiency forb-
quark jets and a mis-tag rate of 11% for light-quark
and gluon jets, as measured in a sample of simulated
tt̄ events. TheZ → ττ background ineµ final states
is suppressed using an invariant massmττ computed as-
suming that the neutrinos fromτ decays are collinear
with the charged leptons [105] and that they are the only
source ofEmiss

T . The requirement|mττ −mZ | ≥25 GeV
is applied.

The Njet≥ 2 analysis is optimised for the selection
of the VBF production process. The two leading jets,
referred to as “tagging jets”, are required to have a
large rapidity separation,|∆y j j |>2.8, and a high invari-
ant mass,mj j > 500 GeV. To reduce the contribution
from ggF, events containing any jet withpT >20 GeV
in the rapidity gap between the two tagging jets are
rejected. Both leptons are required to be in the ra-
pidity gap. The DY background is suppressed by im-
posingEmiss

T > 20 GeV foreµ, andEmiss
T > 45 GeV and

Emiss
T, STVF> 35 GeV foree/µµ. The sameZ → ττ veto

and b-jet veto are applied as in theNjet=1 analy-
sis. Thett̄ background is further reduced by requir-
ing a small total transverse momentum,|ptot

T |<45 GeV,

whereptot
T =pℓℓT +pjets

T +Emiss
T , andpjets

T is the vectorial
sum of all jets in the event withpT > 25 GeV.

The total signal selection efficiency for
H→WW∗→ ℓνℓν events produced withℓ = e, µ,
including all the final state topologies considered, is
about 5.3% at 8 TeV for a Higgs boson mass of 125
GeV.

The dilepton transverse massmT is the dis-
criminating variable used in the fit to the data
to extract the signal strength. It is defined
as mT = ((Eℓℓ

T +Emiss
T )2− | pℓℓT +Emiss

T |2)1/2 with
Eℓℓ

T = (| pℓℓT |
2+m2

ℓℓ
)1/2. For the eµ channels with

Njet≤ 1, the fit is performed separately for events
with 10 GeV<mℓℓ < 30 GeV and events with
30 GeV<mℓℓ <50 GeV, since the signal-to-background
ratio varies across themℓℓ distribution, as shown in
Fig. 4.

6.3. Background estimation
The leading SM processes producing two isolated

high-pT leptons and large values ofEmiss
T areWW and

top-quark production, where the latter includes (here
and in the following) bothtt̄ and single top-quark pro-
cesses (tW, tb andtqb). These backgrounds, as well as
Z → ττ, are normalised to the data in control regions
defined by selections similar to those used for the sig-
nal region, but with some criteria reversed or modified
to obtain signal-depleted samples enriched in particular
backgrounds. The event yield in the CR (after subtract-
ing contributions from processes other than the targeted
one) is extrapolated to the signal region using transfer
factors obtained from MC simulation.

Additional significant backgrounds arise from
W+jets andZ/γ∗, which are dissimilar to the signal
but have large cross sections. A small fraction of
these pass the event selection through rare final-state
configurations and/or mis-measurements. This type
of background is difficult to model reliably with the
simulation and is therefore estimated mainly from data.

A third category of background consists of diboson
processes with smaller cross sections, includingWγ(∗),
WZ, and ZZ∗ (inclusively indicated in the following
asOther VV), and theWW background in theNjet≥ 2
analysis. These processes are estimated using the MC
simulation normalised to the NLO cross sections from
MCFM [106], except for theNjet≥ 2 WW background,
for which the cross section from the relevant MC gener-
ators (see Table 2) is used. TheOther VVprocesses all
produce same-charge and opposite-charge lepton pairs,
as doesW+jets. The number and kinematic features of
same-charge events which would otherwise pass the full
event selection are compared to the above-mentioned
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predictions for these backgrounds, and good agreement
is observed.

6.3.1. W+jets
The W+jets background is estimated using a CR in

the data in which one of the two leptons satisfies the
identification and isolation criteria, and the other lep-
ton (denoted here as “anti-identified”) fails these crite-
ria but satisfies looser requirements. All other analysis
selections are applied. The contribution to the signal re-
gion is then obtained by scaling the number of events
in the CR by transfer factors, defined as the ratio of the
number of fully identified lepton candidates passing all
selections to the number of anti-identified leptons. The
transfer factors are obtained from a dijet sample as a
function of thepT andη of the anti-identified lepton.

6.3.2. Z/γ∗

The Z/γ∗ yield in theee/µµ channels forNjet≤1 is
estimated using thefrecoil requirement efficiency in data
for DY and non-DY processes. The former is measured
in ee/µµ events in theZ-boson peak region. The latter
is measured in theeµ signal region, taking advantage
of the fact that thefrecoil distribution is nearly identical
for all non-DY processes including the signal, as well
as foreµ andee/µµ final states. The DY normalisation
in theee/µµ signal region can then be extracted, given
the two measured efficiencies and the total number of
events in theee/µµ signal region before and after the
frecoil requirement. For theee/µµ channels withNjet≥2,
the two-dimensional distribution (Emiss

T , mℓℓ) in the data
is used to estimate the totalZ/γ∗ yield, as in Ref. [103].

The Z → ττ background is normalised to the data
using aneµ CR defined by the back-to-back configu-
ration of the leptons,∆φℓℓ >2.8. For the correspond-
ing CR with Njet≥2, nob-tagged jets are allowed, and
|ptot

T |<45 GeV is required in addition, in order to reduce
the contamination from top-quark production. A sepa-
rate CR in theZ→ ℓℓ peak region is used to correct the
modelling of the VBF-related event selection.

6.3.3. t̄t and single top-quark
The top-quark background for theNjet= 0 category

is estimated using the procedure described in Ref. [2],
namely from the number of events in data with any num-
ber of reconstructed jets passing theEmiss

T, rel requirement
(a sample dominated by top-quark production), multi-
plied by the fraction of top-quark events with no recon-
structed jets obtained from simulation. This estimate is
corrected using a CR containingb-tagged jets. The top-
quark background in theNjet≥ 1 channels is normalised
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Figure 4: Themℓℓ distribution ofeµ events withNjet= 0 for the 8 TeV
H→WW∗→ ℓνℓν analysis. The events withmℓℓ < 50 GeV correspond
to the signal region except that the∆φℓℓ < 1.8 requirement is not ap-
plied here, and the events with 50 GeV< mℓℓ < 100 GeV correspond
to the Njet=0 WW control region. The signal is stacked on top of
the background. The hatched area represents the total uncertainty on
the sum of the signal and background yields from statistical, exper-
imental, and theoretical sources. The lower part of the figure shows
the ratio of the data to the predicted background. For comparison, the
expected ratio of the signal plus background to the background alone
is also shown.

to the data in a CR defined by requiring exactly oneb-
tagged jet and all other signal selections except for the
requirements on∆φℓℓ andmℓℓ.

6.3.4. WW
The WW background forNjet≤ 1 is normalised us-

ing CRs in data defined with the same selection as
the signal region except that the∆φℓℓ requirement is
removed and themℓℓ bound is modified: forNjet= 0
50 GeV≤mℓℓ <100 GeV is required, while forNjet= 1
mℓℓ > 80 GeV is used to define the CR. Figure 4 shows
the mℓℓ distribution ofeµ events withNjet= 0 in the 8
TeV data. The level of agreement between the predicted
background and the data formℓℓ > 100 GeV, a region
with negligible signal contribution, validates theWW
background normalisation and the extrapolation proce-
dure based on the simulation. TheNjet≥ 2 prediction is
taken from simulation because of the difficulty of iso-
lating a kinematic region with enough events and small
contamination from the top-quark background.
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Table 8: FormH = 125 GeV, the leading systematic uncertainties
for the 8 TeVH→WW∗→ ℓνℓν analysis. All numbers are summed
over lepton flavours. Sources contributing less than 4% are omitted,
and individual entries below 1% are indicated with a ’-’. Relative
signs indicate correlation and anticorrelation (migration) between the
Njet categories represented by adjacent columns, and a± indicates an
uncorrelated uncertainty. The exception is the jet energy scale and
resolution, which includes multiple sources of uncertainty treated as
correlated across categories but uncorrelated with each other. All rows
are uncorrelated.

Source Njet= 0 Njet= 1 Njet≥2

Theoretical uncertainties on total signal yield (%)
QCD scale for ggF,Njet≥ 0 +13 - -
QCD scale for ggF,Njet≥ 1 +10 −27 -
QCD scale for ggF,Njet≥ 2 - −15 +4
QCD scale for ggF,Njet≥ 3 - - +4
Parton shower and underlying event +3 −10 ±5
QCD scale (acceptance) +4 +4 ±3

Experimental uncertainties on total signal yield (%)
Jet energy scale and resolution 5 2 6

Uncertainties on total background yield (%)
WW transfer factors (theory) ±1 ±2 ±4
Jet energy scale and resolution 2 3 7
b-tagging efficiency - +7 +2
frecoil efficiency ±4 ±2 -

6.4. Systematic uncertainties

The main sources of systematic uncertainty affecting
this analysis are reported in Table 8 and described in
detail in Ref. [107].

Theoretical uncertainties on the inclusive signal pro-
duction cross sections are given in Section 2. Addi-
tional, larger uncertainties from the QCD renormalisa-
tion and factorisation scales affect the predicted distri-
bution of the ggF signal among the exclusive jet bins
and can produce migration between categories. These
uncertainties are estimated using the HNNLO pro-
gram [108, 109] and the method reported in Ref. [110].
Their impact on the signal yield is summarised in Ta-
ble 8, in addition to other non-negligible contributions
(parton shower and underlying event modelling, as well
as acceptance uncertainties due to QCD scale varia-
tions).

The experimental uncertainties affecting the expected
signal and background yields are associated primarily
with the reconstruction and identification efficiency, and
with the energy and momentum scale and resolution, of
the final-state objects (leptons, jets, andEmiss

T ), as de-
scribed in Section 2. The largest impact on the signal
expectation comes from the knowledge of the jet energy
scale and resolution (up to 6% in theNjet≥ 2 channel).

For the backgrounds normalised using control re-
gions, uncertainties come from the numbers of events

in the CR and the contributions of other processes, as
well as the transfer factors to the signal region.

For theWW background in theNjet≤1 final states,
the theoretical uncertainties on the transfer factors (eval-
uated according to the prescription of Ref. [15]) in-
clude the impact of missing higher-order QCD correc-
tions, PDF variations, and MC modelling choices. They
amount to±2% and±4–6% relative to the predicted
WWbackground in theNjet= 0 andNjet= 1 final states,
respectively. For theWW yield in the Njet≥ 2 chan-
nel, which is obtained from simulation, the total uncer-
tainty is 42% for QCD production with gluon emission,
and 11% for the smaller but non-negligible contribution
from purely electroweak processes; the latter includes
the size of possible interference with Higgs boson pro-
duction through VBF.

The leading uncertainties on the top-quark back-
ground are experimental. Theb-tagging efficiency is the
most important of these, and it appears in Table 8 pri-
marily through its effect on this background. Theoret-
ical uncertainties have the greatest relative importance
for Njet≥2, giving±2% on the total background yield
in this final state.

TheW+jets transfer factor uncertainty (±(40–45)%)
is dominated by differences in the jet composition be-
tween dijet andW+jets samples as observed in the MC
simulation. The uncertainties on the muon and electron
transfer factors are treated as correlated among theNjet

categories but uncorrelated with each other. Their im-
pact on the total background uncertainty is smaller than
±2.5%. The main uncertainty on the DY contribution
in theNjet≤1 channels comes from the use of thefrecoil

efficiency evaluated at the peak of theZ-boson mass dis-
tribution for the estimation of the DY contamination in
the low-mℓℓ region.

The uncertainty on themT shape for the total back-
ground, which is used in the fit to extract the signal
yield, is dominated by the uncertainties on the normali-
sations of the individual components. The only explicit
mT shape uncertainty is applied to theWWbackground,
and is determined by comparing several generators and
showering algorithms.

The estimated background contributions with their
uncertainties are listed in Table 9.

6.5. Results

Figure 5 shows the transverse mass distributions af-
ter the full selection forNjet≤1 andNjet≥2 final states.
The regions withmT >150 GeV are depleted of signal
contribution; the level of agreement of the data with the
expectation in these regions, which are different from
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Table 9: For theH→WW∗→ ℓνℓν analysis of the 8 TeV data, the
numbers of events observed in the data and expected from signal
(mH = 125.5 GeV) and backgrounds inside the transverse mass re-
gions 0.75mH <mT <mH for Njet≤1 andmT <1.2mH for Njet≥2.
All lepton flavours are combined. The total background as well as its
main components are shown. The quoted uncertainties include the sta-
tistical and systematic contributions, and account for anticorrelations
between the background predictions.

Njet=0 Njet= 1 Njet≥ 2

Observed 831 309 55
Signal 100±21 41±14 10.9±1.4
Total background 739±39 261±28 36±4

WW 551±41 108±40 4.1±1.5
Other VV 58±8 27±6 1.9±0.4
Top-quark 39±5 95±28 5.4±2.1
Z+jets 30±10 12±6 22±3
W+jets 61±21 20±5 0.7±0.2

those used to normalise the backgrounds, illustrates the
quality of the background estimates. The expected num-
bers of signal and background events at 8 TeV are pre-
sented in Table 9. The VBF process contributes 2%,
12% and 81% of the predicted signal in theNjet= 0,=1,
and≥ 2 final states, respectively. The total number of
observed events in the samemT windows as in Table 9
is 218 in the 7 TeV data and 1195 in the 8 TeV data.

An excess of events relative to the background-only
expectation is observed in the data, with the maxi-
mum deviation (4.1σ) occuring atmH =140 GeV. For
mH =125.5 GeV, a significance of 3.8σ is observed,
compared with an expected value of 3.8σ for a SM
Higgs boson.

Additional interpretation of these results is presented
in Section 7.

7. Higgs boson property measurements

The results from the individual channels described in
the previous sections are combined here to extract infor-
mation about the Higgs boson mass, production proper-
ties and couplings.

7.1. Statistical method

The statistical treatment of the data is described in
Refs. [111–115]. Hypothesis testing and confidence in-
tervals are based on the profile likelihood ratio [116]
Λ(α). The latter depends on one or more parameters of
interestα, such as the Higgs boson production strength
µ normalised to the SM expectation (so thatµ = 1 cor-
responds to the SM Higgs boson hypothesis andµ = 0
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Figure 5: The transverse mass distributions for events passing the full
selection of theH→WW∗→ ℓνℓν analysis: (a) summed over all lep-
ton flavours for final states withNjet≤1; (b) different-flavour final
states withNjet≥2. The signal is stacked on top of the background,
and in (b) is shown separately for the ggF and VBF production pro-
cesses. The hatched area represents the total uncertainty on the sum
of the signal and background yields from statistical, experimental, and
theoretical sources. In the lower part of (a), the residualsof the data
with respect to the estimated background are shown, compared to the
expectedmT distribution of a SM Higgs boson.
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to the background-only hypothesis), massmH , coupling
strengthsκ, ratios of coupling strengthsλ, as well as on
nuisance parametersθ:

Λ(α) =
L
(

α , ˆ̂θ(α)
)

L(α̂, θ̂)
(1)

The likelihood functions in the numerator and de-
nominator of the above equation are built using sums
of signal and background probability density func-
tions (pdfs) in the discriminating variables (chosen to
be the γγ and 4ℓ mass spectra forH → γγ and
H→ZZ∗→ 4ℓ, respectively, and themT distribution
for theH→WW∗→ ℓνℓν channel).The pdfs are derived
from MC simulation for the signal and from both data
and simulation for the background, as described in Sec-
tions 4–6. Likelihood fits to the observed data are done
for the parameters of interest. The single circumflex
in Eq. (1) denotes the unconditional maximum likeli-
hood estimate of a parameter and the double circum-
flex denotes the conditional maximum likelihood esti-
mate for given fixed values of the parameters of interest
α. Systematic uncertainties and their correlations [111]
are modelled by introducing nuisance parametersθ de-
scribed by likelihood functions associated with the es-
timate of the corresponding effect. The choice of the
parameters of interest depends on the test under con-
sideration, with the remaining parameters being “pro-
filed”, i.e., similarly to nuisance parameters they are set
to the values that maximise the likelihood function for
the given fixed values of the parameters of interest.

7.2. Mass and production strength

The mass of the new particle is measured from the
data using the two channels with the best mass reso-
lution, H → γγ andH→ZZ∗→ 4ℓ. In the two cases,
mH = 126.8 ± 0.2 (stat) ± 0.7 (sys) GeV andmH =

124.3+0.6
−0.5 (stat)+0.5

−0.3 (sys) GeV are obtained from fits to
the mass spectra.

To derive a combined mass measurement, the profile
likelihood ratioΛ(mH) is used, where the individual sig-
nal strengthsµγγ andµ4ℓ are treated as independent nui-
sance parameters in order to allow for the possibility of
different deviations from the SM expectation in the two
channels. The ratios of the cross sections for the various
production modes for each channel are fixed to the SM
values. It was verified that this restriction does not cause
any bias in the results. The combined mass is measured
to be:

mH = 125.5± 0.2 (stat)+0.5
−0.6 (sys) GeV (2)

As discussed in Sections 4.4 and 5.4, the main
sources of systematic uncertainty are the photon and
lepton energy and momentum scales. In the combina-
tion, the consistency between the muon and electron fi-
nal states in theH→ZZ∗→4ℓ channel causes a∼ 0.8σ
adjustment of the overalle/γ energy scale, which trans-
lates into a∼ 350MeV downward shift of the fitted
mγγ

H value with respect to the value measured from the
H → γγ channel alone.

To quantify the consistency between the fittedmγγ

H
andm4ℓ

H masses, the data are fitted with the profile like-
lihood ratioΛ(∆mH), where the parameter of interest is
the mass difference∆mH = mγγ

H −m4ℓ
H . The average mass

mH and the signal strengthsµγγ andµ4ℓ The result is:

∆mH = 2.3+0.6
−0.7 (stat)± 0.6 (sys) GeV (3)

where the uncertainties are 68% confidence intervals
computed with the asymptotic approximation [116].
From the value of the likelihood at∆mH = 0, the
probability for a single Higgs boson to give a value of
Λ(∆mH) disfavouring the∆mH = 0 hypothesis more
strongly than observed in the data is found to be at
the level of 1.2% (2.5σ) using the asymptotic approx-
imation, and 1.5% (2.4σ) using Monte Carlo ensem-
ble tests. In order to test the effect of a possible non-
Gaussian behaviour of the three principal sources con-
tributing to the electron and photon energy scale sys-
tematic uncertainty (theZ → eecalibration procedure,
the knowledge of the material upstream of the electro-
magnetic calorimeter and the energy scale of the pre-
sampler detector) the consistency between the two mass
measurements is also evaluated by considering±1σ val-
ues for these uncertainties. With this treatment, the con-
sistency increases to up to 8%.

To measure the Higgs boson production strength, the
parameterµ is determined from a fit to the data using the
profile likelihood ratioΛ(µ) for a fixed mass hypothesis
corresponding to the measured valuemH = 125.5 GeV.
The results are shown in Fig. 6, where the production
strengths for the three channels and their main analysis
categories, as well as the overall combination, are pre-
sented. The overall signal production strength is mea-
sured to be:

µ = 1.33± 0.14 (stat)± 0.15 (sys) (4)

where the systematic uncertainty receives similar con-
tributions from the theoretical uncertainty on the signal
cross section (ggF QCD scale and PDF, see Table 1) and
all other, mainly experimental, sources. The uncertainty
on the mass measurement reported in Eq. (2) produces a
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±3% variation ofµ. The consistency between this mea-
surement and the SM Higgs boson expectation (µ = 1)
is about 7%; the use of a flat likelihood for the ggF QCD
scale systematic uncertainty in the quoted±1σ inter-
val yields a similar level of consistency with theµ = 1
hypothesis. The overall compatibility between the sig-
nal strengths measured in the three final states and the
SM predictions is about 14%, with the largest devia-
tion (∼ 1.9σ) observed in theH → γγ channel. Good
consistency between the measured and expected signal
strengths is also found for the various categories of the
H → γγ, H→ZZ∗→ 4ℓ andH→WW∗→ ℓνℓν analyses,
which are the primary experimental inputs to the fit dis-
cussed in this section. If the preliminaryH → ττ [117]
andH → bb̄ [118] results, for which only part of the
8 TeV dataset is used (13 fb−1), were included, the com-
bined signal strength would beµ = 1.23± 0.18.

7.3. Evidence for production via vector-boson fusion

The measurements of the signal strengths described
in the previous section do not give direct information
on the relative contributions of the different production
mechanisms. Furthermore, fixing the ratios of the pro-
duction cross sections for the various processes to the
values predicted by the Standard Model may conceal
tensions between the data and the theory. Therefore,
in addition to the signal strengths for different decay
modes, the signal strengths of different production pro-
cesses contributing to the same decay mode4 are deter-
mined, exploiting the sensitivity offered by the use of
event categories in the analyses of the three channels.

The data are fitted separating vector-boson-mediated
processes, VBF andVH, from gluon-mediated pro-
cesses, ggF andttH, involving fermion (mainly top-
quark) loops or legs.5 Two signal strength parameters,
µggF+ttH = µggF = µttH andµVBF+VH = µVBF = µVH,
which scale the SM-predicted rates to those observed,
are introduced for each of the considered final states.
The results are shown in Fig. 7. The 95% CL con-
tours of the measurements are consistent with the SM
expectation. A combination of all channels would pro-
vide a higher-sensitivity test of the theory. This can
be done in a model-independent way (i.e. without as-
sumptions on the Higgs boson branching ratios) by
measuring the ratios (µVBF+VH × B/BSM)/(µggF+ttH ×

4Such an approach avoids model assumptions needed for a con-
sistent parameterisation of production and decay modes in terms of
Higgs boson couplings.

5Such a separation is possible under the assumption that the kine-
matic properties of these production modes agree with the SMpredic-
tions within uncertainties.
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Figure 6: The measured production strengths for a Higgs boson of
massmH =125.5 GeV, normalised to the SM expectations, for diboson
final states and their combination. Results are also given for the main
categories of each analysis (described in Sections 4.2, 5.2and 6.2).
The best-fit values are shown by the solid vertical lines, with the total
±1σ uncertainty indicated by the shaded band, and the statistical un-
certainty by the superimposed horizontal error bars. The numbers in
the second column specify the contributions of the (symmetrised) sta-
tistical uncertainty (top), the total (experimental and theoretical) sys-
tematic uncertainty (middle), and the theory uncertainty (bottom) on
the signal cross section (from QCD scale, PDF, and branchingratios)
alone; for the individual categories only the statistical uncertainty is
given.

B/BSM) for the individual channels and their combina-
tion. The results of the fit to the data with the likeli-
hoodΛ(µVBF+VH/µggF+ttH) are shown in Fig. 8. Good
agreement with the SM expectation is observed for the
individual final states and their combination.

To test the sensitivity to VBF production alone, the
data are also fitted with the ratioµVBF/µggF+ttH . A value

µVBF/µggF+ttH = 1.4+0.4
−0.3 (stat)+0.6

−0.4 (sys) (5)

is obtained from the combination of the three channels
(Fig. 9), where the main components of the system-
atic uncertainty come from the theoretical predictions
for the ggF contributions to the various categories and
jet multiplicities and the knowledge of the jet energy
scale and resolution. This result provides evidence at
the 3.3σ level that a fraction of Higgs boson production
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occurs through VBF (as Fig. 9 shows, the probability for
a vanishing value ofµVBF/µggF+ttH , given the observa-
tion in the data, is 0.04%). The inclusion of preliminary
H → ττ results [117], which also provide some sensi-
tivity to this ratio, would give a significance of 3.1σ.

7.4. Couplings measurements
Following the approach and benchmarks recom-

mended in Refs. [119, 120], measurements of couplings
are implemented using a leading-order tree-level moti-
vated framework. This framework is based on the fol-
lowing assumptions:

− The signals observed in the different search chan-
nels originate from a single resonance. A mass
of 125.5 GeV is assumed here; the impact of the
uncertainty reported in Eq. (2) on the results dis-
cussed in this section is negligible.

− The width of the Higgs boson is narrow, justifying
the use of the zero-width approximation. Hence
the predicted rate for a given channel can be de-
composed in the following way:

σ · B (i → H → f ) =
σi · Γ f

ΓH
(6)

whereσi is the production cross section through
the initial statei, Γ f the partial decay width into
the final statef andΓH the total width of the Higgs
boson.
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Figure 8: Measurements of theµVBF+VH/µggF+ttH ratios for dibo-
son final states and their combination, for a Higgs boson massmH

=125.5 GeV. The best-fit values are represented by the solid vertical
lines, with the total±1σ and±2σ uncertainties indicated by the dark-
and light-shaded band, respectively, and the statistical uncertainties
by the superimposed horizontal error bars. The numbers in the second
column specify the contributions of the statistical uncertainty (top),
the total (experimental and theoretical) systematic uncertainty (mid-
dle), and the theoretical uncertainty (bottom) on the signal cross sec-
tion (from QCD scale, PDF, and branching ratios) alone. For amore
complete illustration, the distributions of the likelihood ratios from
which the total uncertainties are extracted are overlaid.

− Only modifications of coupling strengths are con-
sidered, while the tensor structure of the La-
grangian is assumed to be the same as in the Stan-
dard Model. This implies in particular that the ob-
served state is a CP-even scalar.6

The coupling scale factorsκ j are defined in such a
way that the cross sectionsσ j and the partial decay
widthsΓ j associated with the SM particlej scale with
κ2

j compared to the SM prediction [119]. With this no-

tation, and withκ2
H being the scale factor for the to-

tal Higgs boson widthΓH , the cross section for the
gg→ H → γγ process, for example, can be expressed
as:

6The spin-CP hypothesis is addressed in Ref. [10].
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nels and a Higgs boson massmH = 125.5 GeV. The parameter
µVH/µggF+ttH is profiled in the fit. The dashed curve shows the SM
expectation. The horizontal dashed lines indicate the 68% and 95%
CL.

σ · B (gg→ H → γγ)
σSM(gg→ H) · BSM(H → γγ)

=
κ2

g · κ2
γ

κ2
H

(7)

In some of the fits,κH and the effective scale factors
κγ andκg for the loop-inducedH → γγ andgg → H
processes are expressed as a function of the more fun-
damental factorsκW, κZ, κt, κb andκτ (only the dominant
fermion contributions are indicated here for simplicity).
The relevant relationships are:

κ2
g(κb, κt) =

κ2
t · σtt

ggH + κ
2
b · σ

bb
ggH + κtκb · σtb

ggH

σtt
ggH + σ

bb
ggH + σ

tb
ggH

κ2
γ(κb, κt, κτ, κW) =

∑

i, j κiκ j · Γi j
γγ

∑

i, j Γ
i j
γγ

(8)

κ2
H =

∑

j j=WW∗ , ZZ∗ , bb̄, τ−τ+,

γγ, Zγ, gg, tt̄, cc̄, ss̄, µ−µ+

κ2
jΓ

SM
j j

ΓSM
H

whereσi j
ggH, Γi j

γγ andΓSM
f f are obtained from theory [14,

15, 119].
Results are extracted from fits to the data using the

profile likelihood ratioΛ(κ), where theκ j couplings are
treated either as parameters of interest or as nuisance
parameters, depending on the measurement.

The assumptions made for the various measurements
are summarised in Table 10 and discussed in the next
sections together with the results.

Figure 10: Likelihood contours (68% CL) of the coupling scale fac-
tors κF andκV for fermions and bosons (benchmark model 1 in Ta-
ble 10), as obtained from fits to the three individual channels and their
combination (for the latter, the 95% CL contour is also shown). The
best-fit result (×) and the SM expectation (+) are also indicated.

7.4.1. Couplings to fermions and bosons
The first benchmark considered here (indicated as

model 1 in Table 10) assumes one coupling scale fac-
tor for fermions,κF , and one for bosons,κV; in this sce-
nario, theH → γγ and gg → H loops and the total
Higgs boson width depend only onκF andκV, with no
contributions from physics beyond the Standard Model
(BSM). The strongest constraint onκF comes indirectly
from thegg→ H production loop.

Figure 10 shows the results of the fit to the data for
the three channels and their combination. Since only
the relative sign ofκF andκV is physical, in the follow-
ing κV > 0 is assumed. Some sensitivity to this relative
sign is provided by the negative interference between
theW-boson loop andt-quark loop in theH → γγ de-
cay. The data prefer the minimum with positive relative
sign, which is consistent with the SM prediction, but
the local minimum with negative sign is also compati-
ble with the observation (at the∼ 2σ level). The two-
dimensional compatibility of the SM prediction with the
best-fit value is 12%. The 68% CL intervals ofκF and
κV, obtained by profiling over the other parameter, are:

κF ∈ [0.76, 1.18] (9)

κV ∈ [1.05, 1.22] (10)

with similar contributions from the statistical and sys-
tematic uncertainties.

In this benchmark model, the assumption of no con-
tributions from new particles to the Higgs boson width
provides strong constraints on the fermion couplingκF ,
as about 75% of the total SM width comes from decays
to fermions or involving fermions. If this assumption is
relaxed, only the ratioλFV = κF/κV can be measured
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Table 10: Summary of the coupling benchmark models discussed in this paper, whereλi j = κi/κ j , κii = κiκi/κH , and the functional dependence
assumptions are:κV = κW = κZ, κF = κt = κb = κτ (and similarly for the other fermions),κg = κg(κb, κt), κγ = κγ(κb, κt , κτ, κW), andκH = κH(κi ).
The tick marks indicate which assumptions are made in each case. The last column shows, as an example, the relative couplings involved in the
gg→ H → γγ process, see Eq. (7), and their functional dependence in thevarious benchmark models.

Model Probed Parameters of Functional assumptions Example:gg→ H → γγ

couplings interest κV κF κg κγ κH

1 Couplings to
fermions and bosons

κV, κF
√ √ √ √ √

κ2
F · κ2

γ(κF , κV)/κ2
H(κF , κV)

2 λFV, κVV
√ √ √ √

- κ2
VV · λ2

FV · κ2
γ(λFV , λFV , λFV , 1)

3
Custodial symmetry

λWZ, λFZ, κZZ -
√ √ √

- κ2
ZZ · λ

2
FZ · κ

2
γ(λFZ, λFZ, λFZ, λWZ)

4 λWZ, λFZ, λγZ, κZZ -
√ √

- - κ2
ZZ · λ

2
FZ · λ

2
γZ

5 Vertex loops κg, κγ =1 =1 - -
√

κ2
g · κ2

γ/κ
2
H(κg, κγ)

(benchmark model 2 in Table 10), which still provides
useful information on the relationship between Yukawa
and gauge couplings. Fits to the data give the following
68% CL intervals forλFV and κVV = κVκV/κH (when
profiling over the other parameter):

λFV ∈ [0.70, 1.01] (11)

κVV ∈ [1.13, 1.45] (12)

The two-dimensional compatibility of the SM pre-
diction with the best-fit value is 12%. These results
also exclude vanishing couplings of the Higgs boson to
fermions (indirectly, mainly through thegg → H pro-
duction loop) by more than 5σ.

7.4.2. Ratio of couplings to the W and Z bosons
In the Standard Model, custodial symmetry imposes

the constraint that theW andZ bosons have identical
couplings to the Higgs boson and thatρ=1 (as measured
at LEP [121]). The former constraint is tested here by
measuring the ratioλWZ = κW/κZ.

The simplest and most model-independent approach
is to extract the ratio of branching ratios normalised to
their SM expectation,λ2

WZ = B(H → WW∗)/B(H →
ZZ∗) ·BSM(H → ZZ∗)/BSM(H →WW∗), from the mea-
sured inclusive rates of theH → WW∗ andH → ZZ∗

channels. A fit to the data with the likelihoodΛ(λWZ),
where µggF+ttH × B(H→ ZZ∗)/BSM(H → ZZ∗) and
µVBF+VH/µggF+ttH are profiled, givesλWZ = 0.81+0.16

−0.15.
A more sensitive measurement can be obtained by

also using information fromWH and ZH production,
from the VBF process (which in the SM is roughly
75% W-fusion and 25%Z-fusion mediated) and from
the H → γγ decay mode. A fit to the data using
benchmark model 3 in Table 10 gives the likelihood
curve shown in Fig. 11, withλWZ ∈ [0.61, 1.04] at the
68% CL, dominated by the statistical uncertainty; the

other parameters,λFZ andκZZ, are profiled. The three-
dimensional compatibility of the SM prediction with the
best-fit value is 19%.
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Figure 11: Likelihood curve for the coupling scale factorλWZ (bench-
mark model 3 in Table 10). The thin dotted lines indicate the continu-
ation of the likelihood curve when restrictingλFZ to be either positive
or negative. The dashed curves show the SM expectation with the
right (left) minimum indicatingλFZ positive (negative).

Potential contributions from BSM physics affecting
theH → γγ channel could produce apparent deviations
of the ratioλWZ from unity even if custodial symme-
try is not broken. It is therefore desirable to decouple
the observedH → γγ event rate from the measurement
of λWZ. This is done with an extended fit for the ratio
λWZ, where one extra degree of freedom (λγZ = κγ/κZ)
absorbs possible BSM effects in theH → γγ channel
(benchmark model 4 in Table 10). This measurement
yields:

λWZ = 0.82± 0.15 (13)

and a four-dimensional compatibility of the SM predic-
tion with the best-fit value of 20%.
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7.4.3. Constraints on production and decay loops
Many BSM physics scenarios predict the existence

of new heavy particles, which can contribute to loop-
induced processes such asgg → H production and
H → γγ decay. In the approach used here (benchmark
model 5 in Table 10), it is assumed that the new parti-
cles do not contribute to the Higgs boson width and that
the couplings of the known particles to the Higgs boson
have SM strength (i.e. κi=1). Effective scale factorsκg

andκγ are introduced to parameterise thegg→ H and
H → γγ loops. The results of their measurements from
a fit to the data are shown in Fig. 12. The best-fit values
when profiling over the other parameters are:

κg = 1.04± 0.14 (14)

κγ = 1.20± 0.15 (15)

The two-dimensional compatibility of the SM predic-
tion with the best-fit value is 14%.

γκ
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gκ
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-1Ldt = 20.7 fb∫ = 8 TeV s
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, ZZ*, WW*γγ→Combined H
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Figure 12: Likelihood contours for the coupling scale factorsκγ andκg

probing BSM contributions to theH → γγ andgg→ H loops, assum-
ing no BSM contributions to the total Higgs boson width (benchmark
model 5 in Table 10). The best-fit result (×) and the SM expecta-
tion (+) are also indicated.

7.4.4. Summary
The results of the measurements of the coupling scale

factors discussed in the previous sections, obtained un-
der the assumptions detailed in Section 7.4 and Ta-
ble 10, are summmarised in Fig. 13. The measurements
in the various benchmark models are strongly corre-
lated, as they are obtained from fits to the same exper-
imental data. A simpleχ2-like compatibility test with
the SM is therefore not meaningful.

The coupling of the new particle to gauge bosonsκV

is constrained by several channels, directly and indi-
rectly, at the±10% level. Couplings to fermions with
a significance larger than 5σ are indirectly observed

mainly through the gluon-fusion production process, as-
suming the loop is dominated by fermion exchange. The
ratio of the relative couplings of the Higgs boson to the
W andZ bosons,κW/κZ, is measured to be consistent
with unity, as predicted by custodial symmetry. Under
the hypothesis that all couplings of the Higgs boson to
the known particles are fixed to their SM values, and as-
suming no BSM contributions to the Higgs boson width,
no significant anomalous contributions to thegg→ H
andH → γγ loops are observed.

Parameter value
-1 0 1

ATLAS

-1Ldt = 4.6-4.8 fb∫ = 7 TeV s
-1Ldt = 20.7 fb∫ = 8 TeV s

 = 125.5 GeVHm

, ZZ*, WW*γγ →Combined H 
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σ2 
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VVκ, FVλ

WZλ
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,Zγλ, WZλ

ZZκ, FZλ

gκ
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σ2 

γκ
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σ2 

Model:
γκ, gκ

Total uncertainty
σ 1± σ 2±

Figure 13: Summary of the measurements of the coupling scalefac-
tors for a Higgs boson with massmH=125.5 GeV. The best-fit values
are represented by the solid vertical lines, with the±1σ and±2σ un-
certainties given by the dark- and light-shaded band, respectively. For
a more complete illustration, the distributions of the likelihood ra-
tios from which the total uncertainties are extracted are overlaid. The
measurements in the various benchmark models, separated bydouble
horizontal lines, are strongly correlated.

8. Conclusions

Data recorded by the ATLAS experiment at the
CERN Large Hadron Collider in 2011 and 2012, cor-
responding to an integrated luminosity of up to 25 fb−1

at
√

s = 7 TeV and
√

s = 8 TeV, have been analysed
to determine several properties of the recently discov-
ered Higgs boson using theH → γγ, H→ZZ∗→ 4ℓ and
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H→WW∗→ ℓνℓν decay modes. The reported results in-
clude measurements of the mass and signal strength,
evidence for production through vector-boson fusion,
and constraints on couplings to bosons and fermions as
well as on anomalous contributions to loop-induced pro-
cesses. The precision exceeds previously published re-
sults in several cases. All measurements are consistent
with expectations for the Standard Model Higgs boson.
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C.L. Lampen7, W. Lampl7, E. Lançon137, U. Landgraf48, M.P.J. Landon75, V.S. Lang58a, C. Lange42,
A.J. Lankford164, F. Lanni25, K. Lantzsch30, A. Lanza120a, S. Laplace79, C. Lapoire21, J.F. Laporte137, T. Lari90a,
A. Larner119, M. Lassnig30, P. Laurelli47, V. Lavorini37a,37b, W. Lavrijsen15, P. Laycock73, B.T. Le55, O. Le Dortz79,

28



E. Le Guirriec84, E. Le Menedeu12, T. LeCompte6, F. Ledroit-Guillon55, C.A. Lee152, H. Lee106, J.S.H. Lee117,
S.C. Lee152, L. Lee177, G. Lefebvre79, M. Lefebvre170, M. Legendre137, F. Legger99, C. Leggett15, A. Lehan73,
M. Lehmacher21, G. Lehmann Miotto30, A.G. Leister177, M.A.L. Leite24d, R. Leitner128, D. Lellouch173,
B. Lemmer54, V. Lendermann58a, K.J.C. Leney146c, T. Lenz106, G. Lenzen176, B. Lenzi30, R. Leone7, K. Leonhardt44,
S. Leontsinis10, C. Leroy94, J-R. Lessard170, C.G. Lester28, C.M. Lester121, J. Levêque5, D. Levin88,
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G. Maccarrone47, A. Macchiolo100, B. Maček74, J. Machado Miguens125a, D. Macina30, R. Mackeprang36,
R. Madar48, R.J. Madaras15, H.J. Maddocks71, W.F. Mader44, A. Madsen167, M. Maeno8, T. Maeno25, L. Magnoni164,
E. Magradze54, K. Mahboubi48, J. Mahlstedt106, S. Mahmoud73, G. Mahout18, C. Maiani137, C. Maidantchik24a,
A. Maio125a,c, S. Majewski115, Y. Makida65, N. Makovec116, P. Mal137,z, B. Malaescu79, Pa. Malecki39,
V.P. Maleev122, F. Malek55, U. Mallik62, D. Malon6, C. Malone144, S. Maltezos10, V.M. Malyshev108, S. Malyukov30,
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104 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
105 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen,
Netherlands
106 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
107 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
108 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
109 Department of Physics, New York University, New York NY, United States of America
110 Ohio State University, Columbus OH, United States of America
111 Faculty of Science, Okayama University, Okayama, Japan
112 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of
America
113 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
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116 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
117 Graduate School of Science, Osaka University, Osaka, Japan
118 Department of Physics, University of Oslo, Oslo, Norway
119 Department of Physics, Oxford University, Oxford, United Kingdom
120 (a) INFN Sezione di Pavia;(b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
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