

Facultat de Medicina i Odontologia

Departament d'Anatomia i Embriologia Humana

Análisis de las variaciones circadianas y estacionales del índice cariométrico de los pinealocitos:

Estudio morfológico comparativo de las porciones distal e intermedia en la glándula pineal del conejo

TESIS DOCTORAL

Presentada por:

Francisco Tomás Aguirre

Dirigida por:

Dr. Francisco Martínez Soriano

Dr. Alfonso A. Valverde Navarro

Octubre 2002

UMI Number: U603017

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U603017

Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

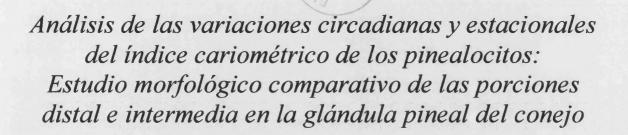
Microform Edition © ProQuest LLC.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

CB 0001661141

UNIVERSITAT DE VALÈNCIA BIBLIOTECA CC. SALUT


N° Registre 6769 DATA 25/11/04

1000

SIGNATURA BID. T 6047

DOBIS: 6 1658367X LIBIS: 6 18625900

Trabajo de Investigación presentado por:

FRANCISCO TOMÁS AGUIRRE

para optar al grado de Doctor en Medicina y Cirugía en la Universidad de Valencia

dirigido por los Profesores

FRANCISCO MARTÍNEZ SORIANO
Y
ALFONSO-AMADOR VALVERDE NAVARRO

Catedrático y Profesor Ayudante, respectivamente, del Departamento de Anatomía y Embriología Humana de la Universidad de Valencia

Octubre de 2002

UNIVERSITAT DE VALÈNCIA FACULTAT DE MEDICINA I ODONTOLOGIA DE VALÈNCIA

En el día de hoy se ha proc	edido a la lectura de la tes	sis titulada:
Suális dels oxugares		
Caronétries de la pine	alxitos: Estudio luorfol	éper compartuo
de la parciones distal é inte		
de D. Francisco Toma	s Aguire	
que ha obtenido la calificaci	ión de EXCELLANT CO	IN LAUBE
Firmado El Presidente del Tribuna	al, Dr. D. Francis wo Land	iet del ambo
El Secretario, Dr. D.	mas Hernandet filde	tejada
	so River tomes	1
El Vocal Dr. D. Vero	mo Pier Alude.	•••••
	uel Herrera fora	
V		
n Valencia	14 de telrero	de2003
11000	El Secretario del Tribunal	
CELL	Talini d	
El Presidente	Tau Mydel	-
	Ervocal	
El Vocal		MADEREDE
1./2 /m		ELVocal
7	166	
4	Firma del Alympo	
	0//	

Francisco Martínez Soriano, Catedrático de Universidad y Alfonso-Amador Valverde Navarro , Profesor Ayudante de Facultad, ambos del Departamento de Anatomía y Embriología Humana de la Universidad de Valencia,

HACEMOS CONSTAR:

Que Francisco Tomás Aguirre ha realizado bajo nuestra dirección el trabajo de su Tesis Doctoral que ha terminado con el mayor aprovechamiento, y que las aportaciones de este estudio en el campo de la estructura y funcionalidad de la glándula pineal son originales del autor.

Y para que así conste y surta los efectos oportunos, firmamos en Valencia a 7 de Octubre de 2002.

A Paloma, la meua dona

Agradecimientos

Me gustaría agradecer de forma sincera toda la ayuda que he recibido durante el tiempo en que se llevó a cabo la realización de este trabajo. Son sin duda muchas las personas que me han ayudado, directa o indirectamente, y, con toda seguridad, lo expresado en palabras no hace justicia a mi gratitud y estima hacia ellas.

A mi maestra, la Profesora Amparo Ruiz Torner, que me descubrió las maravillas del estudio del Sistema Nervioso, y que ha sido un apoyo constante, tanto en lo científico como en lo personal, en la realización de este trabajo.

Al Profesor Francisco Montes, que sacó tiempo de donde no había para ayudarme con el planteamiento y desarrollo matemático de esta Tesis.

A los Profesores Amparo Oliver y José Manuel Tomás que fueron los primeros en escuchar mis dudas y siempre estuvieron dispuestos a solucionarlas.

A mis padres y a mis hermanos, por su apoyo constante, no solamente ahora sino en todos y cada uno de los momentos difíciles de mi vida.

Dejo para el final a los Directores de este trabajo, los Profesores Francisco Martínez Soriano y Alfonso A. Valverde Navarro. Al profesor Martínez Soriano, no solamente debo agradecer el tiempo y la dedicación empleados en la dirección de esta tesis, sino la paciencia y las muestras constantes de afecto hacia mí desde que iniciara mi formación como estudiante de Anatomía hace ya unos cuantos años. Al profesor Valverde debo agradecerle, además de sus consejos y su apoyo constante, el mantener el espíritu ilusionante siempre necesario en la realización de todo trabajo de investigación. Pero mi mayor motivo de gratitud hacia ambos es, sin duda, el de haberme ofrecido su amistad.

Índice:

Introducción pág.	2
- Recuerdo Histórico	3
- Situación	4
- Clasificación morfológica de Vollrath	5
- Estructura Histológica	7
- Funcionalidad: Órgano secretor	15
- Inervación	16
- Vascularización	18
 Organización y desarrollo de la glándula pineal en la especie humana 	18
- Variaciones Morfofuncionales de la Glándula Pineal: Influencia de los factores ambientales	19
Planteamiento del Problema	24
Material y métodos	26
Análisis Estadístico	37
- Estadística descriptiva del total de la muestra	39
- Resultados : representaciones gráficas	46
- Análisis	77
Discusión	89
Conclusiones	94
Bibliografia	96

INTRODUCCIÓN

Introducción

La glándula o cuerpo pineal es una estructura de pequeñas dimensiones localizada en el diencéfalo dorsal. Emerge de la porción póstero-superior del mismo, y se apoya sobre la lámina cuadrigémina. Se encuentra en estrecha relación con las meninges y está rodeada de una rica red vásculo-nerviosa.

Debido a su morfología externa, semejante a la de una piña, recibió el nombre de pineal o *Konarion* en griego.

Recuerdo Histórico

Las primeras referencias históricas sobre esta estructura pineal se remontan al inicio de lo que entendemos como ciencia médica, de forma que Galeno hace referencia al interés de anatomistas de la Grecia antigua por una estructura impar situada sobre el acueducto del cerebro.

Probablemente fue Herófilo el primero en hacer referencia explícita a dicha estructura e incluso en atribuirle una función, ya que para los antiguos griegos la pineal se comportaba a modo de válvula que regulaba el flujo del pensamiento desde los ventrículos cerebrales.

Galeno en cambio, al observar que el complejo pineal se localiza fuera del sistema ventricular, discrepa de la función anteriormente atribuida y dada la estrecha relación topográfica entre la pineal y los vasos sanguíneos considera que se trata de una estructura puente o de comunicación entre el cerebro y los mencionados vasos. En cierto modo, Galeno hace una aproximación adelantada a lo que hoy interpretamos como función glandular.

El concepto funcional galénico se mantiene hasta el siglo XVII, en el que Descartes le añade además una significación metafisica; definiendo el complejo pineal como el órgano mediante el cual el alma influye sobre el cuerpo, elemento de confluencia entre cuerpo y espíritu.

No será hasta las postrimerías del siglo XIX el momento en que la concepción sobre la glándula pineal se vea sometida a la influencia de importantes hallazgos clínicos y experimentales. En 1898, Heubner publica un caso clínico en el que presenta la aparición de una pubertad precoz asociada a un tumor pineal. Así mismo, se realizan múltiples investigaciones y estudios filogenéticos que evidencian tanto la naturaleza esencialmente fotorreceptora de esta estructura diencefálica en vertebrados inferiores como la evolución morfofuncional que experimenta ya que en los mamíferos se comporta como estructura fundamentalmente secretora (postulada por Studnicka en 1905).

Como ejemplo de los numerosos estudios queremos señalar las experiencias de McCord y Allen (1917) en relación con la naturaleza fotorreceptora de la pineal de la rana y los estudios microscópicos de anatomía comparada llevados a cabo por Holmgren (1959).

Ya en 1943 Bargman apunta la posible participación de la glándula en la regulación de la función hipotalámica, fundamentalmente a través de la conexiones nerviosas, y establece la necesidad de centrar la investigación en determinar la influencia que la luz puede ejercer sobre la fisiología pineal. No obstante será a partir de 1958, año en que Lerner consigue aislar la melatonina e identificarla como principal producto de secreción de la glándula, cuando quede establecida la naturaleza neuroendocrina de la pineal.

Situación

Como ya mencionamos al principio, la glándula pineal se localiza en la porción posterosuperior del diencéfalo. Los estudios filogenéticos demuestran que su situación topográfica presenta muy escasas diferencias entre los vertebrados inferiores y los mamíferos. Constituye a modo de evaginación situada entre las comisuras habenular y caudal en el centro del cerebro, descansando sobre la lámina cuadrigémina.

En algunos vertebrados inferiores no obstante, han sido identificadas otras estructuras de origen diencefálico que se han dado en denominar "órganos pineales accesorios". Entre ellos podemos señalar el órgano frontal de los anuros, el órgano parapineal de los peces, o el ojo parietal de los lacértidos.

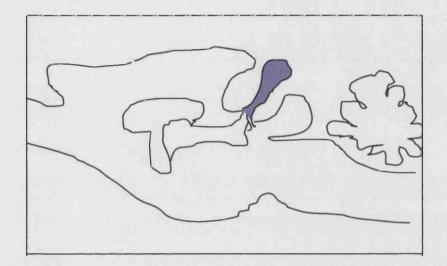
Clasificación morfológica de Vollrath

El complejo pineal en los diferentes mamíferos presenta unas relaciones topográficas, un origen y un desarrollo comunes, sin embargo existen numerosas variaciones respecto a su posición y su morfología cuando se desciende en la escala animal.

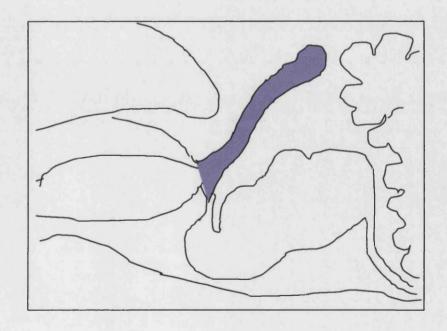

Vollrath (1981) estableció una clasificación, aún en vigor, basada fundamentalmente en las relaciones de la proximidad que establece la glándula con el tercer ventrículo y que viene determinada, a su vez, por el tamaño y la morfología pineales.

Dentro de dicha clasificación se diferencian tres tipos principales:

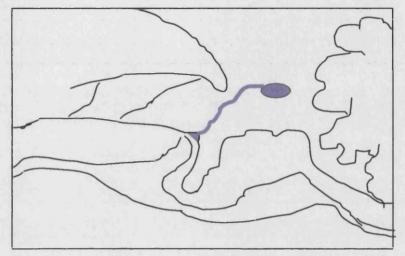
- Tipo A, denominado también Proximal
- Tipo AB o Intermedio
- Tipo ABC o Distal


Las pineales más gruesas, próximas al ventrículo y con poca elongación constituyen el Tipo A y las encontramos, además de en el hombre, en especies como el orangután y la oveja.

Pineal Tipo A (Esquema)


Las glándulas del Tipo AB son de mayor tamaño y se dan en especies como el cerdo, la vaca o el asno.

Pineal Tipo AB (Esquema)


El ABC recoge las pineales más largas y elongadas, aquellas que, en su extensión, pueden alcanzar incluso las proximidades del cerebelo. Los ratones y cobayas son las especies más representativas de este tipo.

Pineal Tipo ABC (Esquema)

Esta clasificación se completa utilizando la tipografía del alfabeto griego para referenciar las porciones que aparecen marcadamente disminuidas de tamaño (p.ej. $\alpha\beta$ C: en el conejo), omitiendo la letra si la porción no se ha desarrollado (p.ej. α C: en el hamster dorado).

Existen casos aislados en determinadas especies en que el escaso desarrollo glandular no permite adoptar esta clasificación (p.ej. el elefante). En estos casos se emplea la denominación A diff. (Martínez Soriano; Glándula pineal: estructura y función (1987))

Estructura Histológica

La gran diferencia de la glándula pineal de los mamíferos respecto a la de otras especies inferiores se basa en que los primeros presentan una mayor complejidad histológica y una ausencia de elementos fotosensoriales que permite considerar la glándula pineal con un carácter puramente secretor.

Diferentes estudios y observaciones señalan que la zona periférica es funcionalmente diferente a la central y que responde de forma más específica a los estímulos físicos. Por ello, podríamos hablar de una porción cortical y una medular topográfica y funcionalmente diferenciadas.

Esta diferenciación se establece a partir de diferentes estudios experimentales morfológicos y fisiológicos, que apuntan una posible división del parénquima de la glándula pineal en una porción externa o cortical y en una central o medular. En primer lugar podemos señalar la diferenecias en los índices cariométricos de ambas zonas. Estas variaciones cariométricas fueron señaladas en los estudios de Vollrath (1981), en otros trabajos previos como los de Miline (1968), Blumfield y Tap (1970) y posteriormente por López-Iglesias (1987). En todos ellos se pone de manifiesto la existencia de un diferente comportamiento de la zona cortical y la medular dependiendo de la hora del día o de la noche, ésto es, la existencia de una influencia circadiana. Otros trabajos establecen, además, diferencias cortico-medulares claramente dependendientes de la región pineal estudiada (Diehl 1984, Becker y Vollrath 1983).

Las diferencias corticomedulares dependientes del fotoperíodo, esto es en función de las épocas del año estudiadas, fueron consideradas por Popova (1975), y posteriormente se puso de manifiesto ya de manera clara la existencia tanto de ritmos circadianos como de ritmos estacionales diferenciados entre cortical y medular (Cimas 1992).

Estudios más recientes revelan así mismo la distinta naturaleza de la inervación según se trate de la pineal profunda o de las porciones más superficiales de la glándula. Experiencias, llevadas a cabo sobre ratas albinas adultas, han puesto en evidencia la presencia de fibras nerviosas acetilcolinesterasa- positivas en la pineal profunda y ausencia de las mismas a nivel de la pineal superficial (Swiatkiewicz 2000).

El parénquima glandular se organiza histológicamente del siguiente modo:

Tipos celulares: En la glándula pineal encontramos tres tipos fundamentales de células:

- La célula principal (o pinealocito tipo I, o pinealocito estricto) de carácter eminentemente neurosecretor.
- La célula intersticial (o pinealocito tipo II)
- Las células gliales (astrocitos y oligodendroglía)

El pinealocito tipo I supone más del 80 % del total del componente celular del parénquima pineal. Presenta una morfología diversa con múltiples prolongaciones de formas diferentes.

En el hombre se han descrito pinealocitos mono, bi y multipolares. Parece ser que en las áreas periféricas son predominantes los monopolares, mientras que la ubicación específica de los otros grupos no está totalmente aclarada.

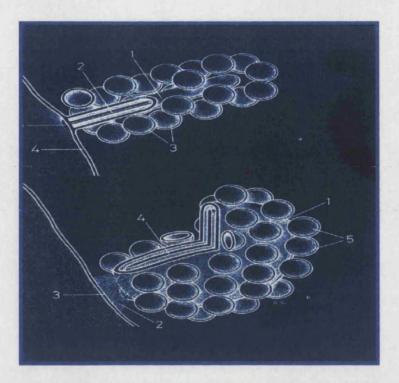
Si bien, la existencia de dos tipos de pinealocitos diferenciados es un hecho aceptado por la práctica totalidad de los autores, existen importantes diferencias con respecto a la interpretación de la naturaleza de ambos tipos celulares.

Los pinealocitos tipo II ocupan los espacios entre los pinealocitos tipo I, poseen prolongaciones que atraviesan grandes distancias, generalmente adosados a los espacios perivasculares y canales intrapineales.

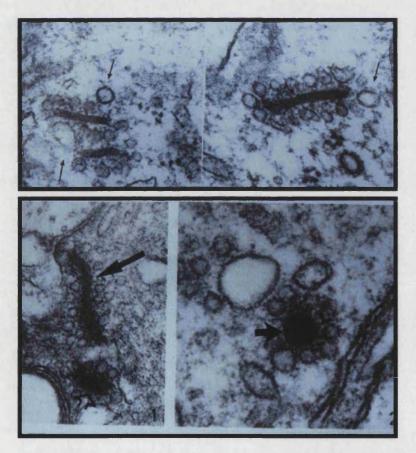
Los diferentes estudios realizados sobre estos pinealocitos intersticiales o pinealocitos tipo II establecen la naturaleza glial de estas células. Moller (1978) e Higley (1984), mediante técnicas histoquímicas y Luo (1984) estudiando su ultraestructura, concluyen que los pinealocitos tipo II son astrocitos inmaduros.

En el estudio citológico del parénquima pineal es de señalar la presencia de una serie de organelas y elementos celulares característicos. Los más destacables son: las cintas sinápticas, las esférulas sinápticas y los canales intrapineales.

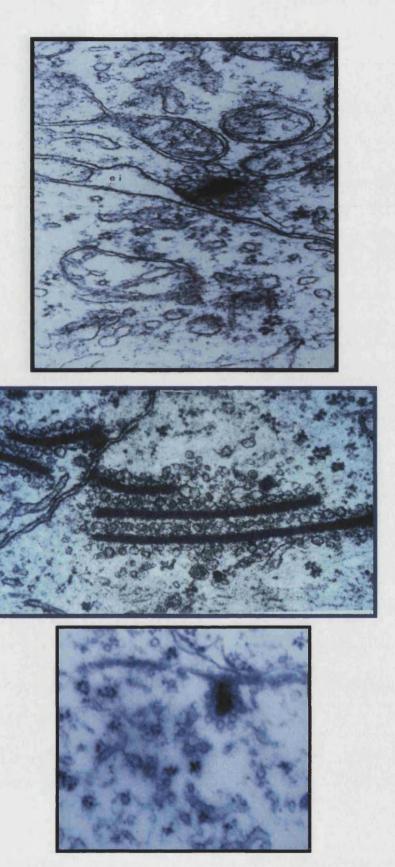
CINTAS SINÁPTICAS:


Uno de los elementos más característicos de la citología pineal está representado por la presencia de las llamadas cintas sinápticas, estructuras de número variable, formadas por una condensación sináptica alrededor de la cual se disponen gran cantidad de vesículas granuladas.

Atendiendo a la evolución, estas estructuras podrían ser interpretadas como reminiscencia de la función fotosensorial del pinealocito, ya que experimentalmente se ha demostrado que presentan oscilaciones cuantitativas estrechamente relacionadas con la intensidad lumínica. Estas oscilaciones siguen también un ritmo circadiano objetivado por múltiples estudios. Así el número de cintas es mínimo por la mañana, aumentando de manera progresiva durante la tarde y alcanzando su máximo por la noche. La aplicación de diferentes estímulos físicos externos también ocasiona modificaciones en su producción.

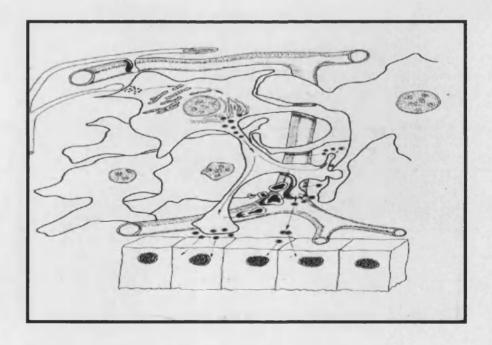

El significado funcional de las cintas no está claramente establecido pero, las variaciones antes referidas, parecen relacionarlo de manera evidente con la función metabólica básica de la glándula pineal. En ese sentido se ha sugerido la posibilidad de que pudieran constituir reservorios de precursores de la secreción glandular (Martínez Soriano 1987)

ESFÉRULAS SINÁPTICAS:


También son estructuras características las llamadas esférulas sinápticas. Se trata de formaciones redondeadas que aparecen rodeadas de vesículas de tamaño superior a las de las cintas.

Representación esquemática de la estructura de una cinta sináptica. (tomado de Vollrath 1981)

Cintas y esférulas sinápticas: fotografías a microscopía electrónica (I) (tomado de Martínez Soriano 1992, 1984)

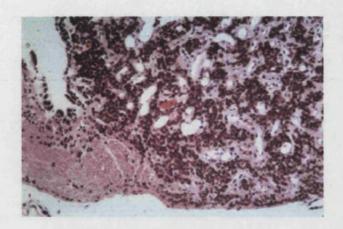


Cintas y esférulas sinápticas: fotografías a microscopía electrónica (II) (tomados respectivamente de Martínez Soriano 1992, Vollrath 1981 y Martínez Soriano 1999)

CANALES INTRAPINEALES:

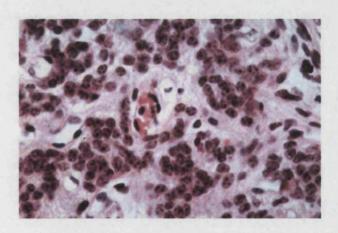
Los pinealocitos no forman uniones compactas ni desmosomas sino que se distribuyen de manera continua o discontinua. Los espacios de separación entre los pinealocitos constituyen los canales intrapineales.

En los trabajos de Martínez Soriano (1984 y 1991) se demostró el papel de estos canales como verdaderas vías de conducción de material de secreción desde los pinealocitos hasta los espacios perivasculares por todo el parénquima glandular; así como las variaciones que presenta la longitud y anchura de los mismos a lo largo de las 24 horas del día, en relación con la actividad funcional glandular o como respuesta a la aplicación de estímulos físicos externos (especialmente de tipo lumínico, concretamente la luz laser).



Representación esquemática de la estructura de un canal intrapineal. (tomado de Martínez Soriano 1987)

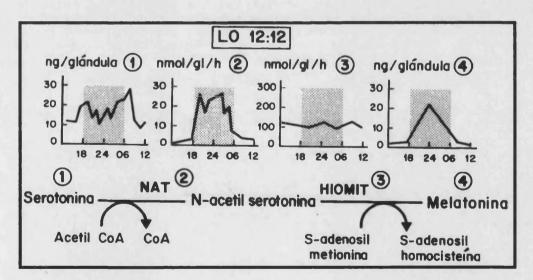
Cuerpo Pineal


Hematoxilina - Eosina 40x

En el centro se puede observar un canal vascular

Cuerpo Pineal

Hematoxilina – Eosina 400x En el centro se puede observar un canal vascular


(tomado del Atlas Digital de Histología General de la Universidad de California Sur)

Funcionalidad: Órgano secretor

Directa o indirectamente sensible a la luz, la glándula pineal suministra al organismo una información temporal, mediante la liberación nocturna de melatonina.

La melatonina es sintetizada por los pinealocitos a partir del triptófano. Éste es transformado en serotonina, a partir de la cual y mediante la acción de dos enzimas, la N-acetil-transferasa y la hidroxi-indol-O-metil-transferasa, se obtiene la melatonina. La actividad del último de los enzimas de la ruta metabólica disminuye en presencia de la luz y aumenta en la oscuridad lo que provoca que la concentración de melatonina siga el mismo ritmo circadiano (Martínez Soriano *et al.*, 1984; Martínez Soriano, 1987).

En la rata la secreción de melatonina está supuestamente controlada por el núcleo supraquiasmático (NSQ) a través de las terminaciones simpáticas que liberan noradrenalina (NA). Ésta, al unirse a los receptores adrenérgicos, activa la adenilciclasa, lo que se traduce en un incremento del AMPc. El AMPc activa la transcripción de la serotonin-N-Acetiltransferasa (NAT) con lo que aumenta la serotonina y secundariamente la melatonina (Foulkes et al, 1997).

Esquema de la síntesis de melatonina (González González y Valladolid Martín, 1994)

16

La NA, el neurotransmisor primario de las fibras simpáticas, es liberada en grandes cantidades a nivel de las terminaciones intrapineales al comienzo de la oscuridad y actúa sobre los receptores α₁ y β-adrenérgicos de la membrana del pinealocito (Klein, D.C.,1985). El efecto de la NA sobre los receptores β-adrenérgicos se traduce en una activación de la adenilciclasa. La estimulación de los receptores α₁-adrenérgicos de forma aislada no tiene efecto sobre la acumulación del AMPc sin embargo provoca un incremento de la concentración de iones de Ca²⁺ libres y potencia los efectos β-adrenérgicos sobre los niveles de AMPc. La vía del AMPc está estrechamente ligada a la activación transcripcional y translacional y al mantenimiento de la actividad de la NAT (Klein et al,1996) y podría estar también involucrada en la desactivación de la NAT (Sthele et al,1992; Foulkes et al,1996). La NAT es, por tanto, el enzima clave en la síntesis y liberación de la melatonina y presenta las mismas oscilaciones circadianas que la propia indolamina.

Inervación

En los mamíferos podemos encontrar los siguientes tipos de fibras aferentes y eferentes configurando la inervación de la glándula pineal:

Fibras Aferentes:

Centrales o Intercomisurales
Autónomas o Vegetativas
Simpáticas
Parasimpáticas

Fibras Eferentes

Fibras Aferentes:

centrales o Intercomisurales: Son conexiones propiamente cerebrales y su origen es desconocido. Penetran en la pineal por las comisuras caudal y habenular. Las fibras procedentes de esta última son precisamente las más numerosas y se integran en los tractos procedentes de los colículos, de la estría medular y de la propia habénula. El papel de estas fibras no está totalmente establecido.

- Autónomas o Vegetativas:

- O Simpáticas: Estas fibras alcanzan la glándula formando parte del nervio conario (n. pinealis). Discurren paralelas a los vasos y penetran por el cono de la pineal. Su origen se establece en el ganglio cervical superior.
- O Parasimpáticas: El origen y terminación de estas fibras tampoco está totalmente aclarado. Las fibras preganglionares parecen originarse en el núcleo salivar superior troncoencefálico, pasando a formar parte del nervio petroso mayor a partir del nervio intermediario de Wrisberg. La sinapsis ganglionar tendría lugar en un pequeño ganglio localizado en la anastomosis entre el petroso mayor y el plexo carótido-timpánico. Desde allí, las fibras postganglionares alcanzan el cerebro acompañando a la arteria carótida interna. Su destino final, en el caso de los vertebrados inferiores, serían las células nerviosas del ganglio intrapineal. En los vertebrados superiores la localización de este ganglio es variable, inconstante y no intrapineal.

Fibras Eferentes:

En los vertebrados inferiores, las fibras eferentes de la glándula pineal tienen su origen en el ganglio intrapineal. Este acúmulo ganglionar se localiza fundamentalmente en la porción distal (C) de la glándula. Parece tratarse de células nerviosas de carácter parasimpático. Desde allí se organizarían los tractos nerviosos correspondientes, identificados en diversos estudios como el nervio caudal de la glándula pineal y tractos habénulo-pineales. En los vertebrados superiores no se ha demostrado la existencia de este tipo de fibras.

Vascularización

La irrigación de la pineal en los mamíferos depende de las arterias coroideas posteriores, ramas de las cerebrales posteriores. Las coroideas posteriores llegan a la glándula pegadas a la piamadre y penetran en su interior siguiendo las ramificaciones trabeculares.

El drenaje venoso confluye en un vaso que se une a la gran vena de Galeno para desembocar en el seno recto, a nivel de su porción anterior.

Es de destacar en lo que se refiere a la organización estructural de los vasos pineales, la peculiaridad morfológica de los espacios perivasculares. Se trata de espacios con muy poca uniformidad, gran complejidad, alternando pasos estrechos con grandes dilataciones hasta, comunicarse con los canales intercelulares. Además, es notorio el hecho de que la morfología de dichos espacios no es constante, modificándose incluso a lo largo de las 24 horas del día (Martínez Soriano 1984). Esto apunta la estrecha relación entre los espacios perivasculares y los canales intrapineales, vinculando las variaciones circadianas a la dinámica metabólica de la glándula.

Queremos señalar también que el aporte total de sangre a la pineal es uno de los mayores de toda la economía, comparable al de la neurohipófisis, aunque el consumo real de oxígeno de la glándula pineal es proporcionalmente bajo y va disminuyendo con la edad. Así mismo, existen variaciones en el aporte vascular a la pineal dependientes del régimen de iluminación, observándose una disminución del mismo al pasar de luz a oscuridad (Martínez Soriano 1987).

Organización y desarrollo de la glándula pineal en la especie humana

En la especie humana la pineal comienza a desarrollarse durante el segundo mes de gestación y lo hace a partir de tres esbozos que emergen de la porción posterior del diencéfalo.

Durante la fase embrionaria los componentes celulares se disponen formando cordones los cuales se homogeinizan posteriormente constituyendo dos lóbulos que quedan separados por un tracto conjuntivo que se hace imperceptible tras el nacimiento.

Algunos estudios afirman que existe actividad funcional ya durante la fase fetal en virtud de la presencia de numerosas cintas sinápticas y de la detección de serotonina (Olson 1973).

Otras estructuras descritas en la fase fetal serían un nervio que comunica la pineal con el órgano subcomisural y una pequeña masa ganglionar de la que partirían fibras nerviosas con destino por determinar (Moller 1974 y 1983).

Tras el nacimiento, la estructura lobular sufre un profundo cambio y se adopta un patrón en mosaico que se completa alrededor del noveno mes de vida extrauterina. No obstante, esta organización tampoco es definitiva y va variando hasta desaparecer poco después del año de vida postnatal.

Estos cambios, la significación de muchos de los cuales continúa siendo una incógnita, ponen de manifiesto, una vez más, el gran dinamismo que la glándula pineal experimenta desde los primeros momentos del desarrollo del ser humano, descartando la adaptación de esta estructura como inerme o atrófica.

Variaciones Morfofuncionales de la Glándula Pineal: Influencia de los factores ambientales

Tanto su naturaleza estructural como la ausencia de verdaderas células fotorreceptoras en la glándula pineal de los mamíferos parecerían sugerir que ésta no se vería influenciada por luz, pero numerosos estudios desarrollados en la década de los 60 demostraron que esto no era así y pusieron de manifiesto la relación y dependencia de la pineal con el medio ambiente.

A comienzos de la década de 1960, Fiske (1960) y Quay (1961) realizan experimentos que demuestran la disminución del peso de la glándula pineal de animales sometidos a iluminación continua. Quay (1961) y Roth (1962), por su parte, ponen de manifiesto la disminución del tamaño de las células del parénquima glandular en condiciones similares de iluminación continua.

En 1964 Axelrod y Wurtman demuestran la inhibición que experimenta la síntesis de melatonina en las ya mencionadas condiciones de iluminación continua.

Asimismo, diversos estudios comprueban la existencia de ritmos circadianos en la producción de melatonina y de su precursor la serotonina. Los niveles máximos de melatonina se alcanzan en la noche y los mínimos en el día, siendo este ritmo inverso en el caso de la serotonina. (Wurtman 1963, Reiter 1966, Weinberg 1979, Vollrath 1981, Martínez Soriano 1984).

Reiter en 1984 concluye, a partir de los estudios anteriores, que la función circadiana de la glándula pineal queda claramente definida en función de sus parámetros bioquímicos.

Como ya se mencionó con antelación, diversos trabajos han demostrado las variaciones circadianas que sufren las estructuras citológicas e incluso de los canales intrapineales. Los elementos más directamente relacionados con la influencia lumínica son los núcleos y las cintas y esférulas sinápticas; como se ha puesto de manifiesto mediante estudios de microscopía óptica en el caso de los núcleos o de microscopía electrónica cuando el objeto de estudio se centra en las cintas o en las esférulas (Martínez Soriano 1987)

Los trabajos cariométricos realizados sobre el núcleo del pinealocito se basan en el hecho de que las variaciones en su tamaño se pueden superponer a la actividad celular y por tanto a la del conjunto de la glándula. En resumen, considerando el tamaño del núcleo como marcador de actividad funcional.

La conclusión general que se obtiene de los trabajos realizados estudiando la influencia de la iluminación sobre la pineal es que la luz inhibe su actividad y por el contrario ésta se ve incrementada en las horas de oscuridad.

Destacan los trabajos de Miline (1957), Bostelman (1968) o Reiter (1971) que demuestran la existencia de atrofia glandular y disminución del número de pinealocitos equiparables a una "pinealectomía fisiológica", que tiene lugar en diferentes animales de experimentación sometidos a condiciones de iluminación continuada.

En la misma línea, cabe destacar las experiencias de Doi y cols.(1985) en embriones de pollo sometidos también a iluminación continua. Dichos embriones presentan un retraso en el desarrollo de la glándula que afecta tanto a su estructura como a su función.

Por otra parte ya en 1968 Bostelman había constatado que las condiciones de oscuridad mantenida actúaba como un factor de estimulación y provocaba el aumento del tamaño del núcleo de los pinealocitos.

Las experiencias del propio Bostelman y las llevadas a cabo posteriormente por Lues (1971) y Lin (1973) también en condiciones de oscuridad mantenida, demuestran el aumento de la actividad cerebral traducidas por el aumento en el número de las organelas citoplasmáticas

En 1988, Karasek observa, no obstante, que en animales de experimentación mantenidos en condiciones de oscuridad continua que son sometidos a estímulos luminosos, se produce una reducción de la actividad celular, disminuyendo tanto el tamaño del núcleo como del número de organelas. Esto pone de manifiesto, una vez más, la existencia de una relación directa entre la actividad glandular y las variaciones de la intensidad de luz.

La glándula pineal, tal y como se ha mencionado con anterioridad, experimenta variaciones morfológicas y funcionales a lo largo de las 24 horas del día. Dichas variaciones morfológicas se aprecian tanto a nivel celular, expresadas por los cambios en los núcleos y organelas, como a nivel histológico en los canales intrapineales.

En ese sentido, los trabajos de Cimas (1987 y 1992) dan cuenta de las diferencias en los índices cariométricos de los pinealocitos y en el número de ribbons o cintas sinápticas en función de la hora y del día respectivamente, en concordancia con los resultados de los trabajos de Vollrath (1986) y Matsushima (1990).

Por otro lado se señala la importante relación existente entre el periodo estacional y la actividad de la glándula pineal. Esto permite considerar, según el número de horas de luz, de un fotoperíodo corto para las estaciones de invierno y otoño, o de un fotoperíodo largo que incluye el verano y la primavera. Como demuestran los estudios de Quay o los de Wurtman, ambos en 1963 la actividad glandular presenta variaciones dependientes de la estación del año en que dichos estudios están realizados

En este sentido podemos destacar el trabajo de Lincoln (1976) sobre la variaciones nucleares de los pinealocitos de la rata en otoño, o los de Pflugelder (1957), Quay (1963) y Wurtman (1963) sobre las variaciones de actividad de la pineal del hamster en invierno. También Karasek y cols. (1986-1987) refieren variaciones en las estructuras del pinealocito en función del fotoperiodo estudiado.

Hemos de señalar asimismo, que no sólo la luz sino también la temperatura y la latitud ejercen una influencia sobre la actividad de la glándula pineal. En 1963 Quay relaciona la latitud y el fotoperíodo en su influencia conjunta sobre la glándula, demostrando que la pineal es de mayor tamaño en animales de hábitat más próximo a los polos. Ello obligó a considerar, además de la luz, si el factor temperatura interfería de algún modo sobre la fisiología pineal.

Los distintos trabajos consultados establecen, de forma genérica, que el frío ocasiona hiperplasia e hipertrofia de los pinealocitos y provoca además, un aumento de su actividad funcional. Por el contrario el calor deprime la actividad funcional de la glándula. Esto implica que en los meses más fríos y con fotoperíodo más corto coinciden con una mayor actividad glandular (Miline 1969, Miline y cols. 1970, Urry y cols. 1976, Shiotani y cols. (1985).

Como resumen de todo lo expuesto anteriormente destacaríamos la influencia clara que la luz ejerce sobre la glándula pineal, tanto a nivel estructural como funcional; y también que dicha influencia está condicionada por los factores que modifican la intensidad del estímulo lumínico, tales como la hora del día, el fotoperíodo, o la latitud.

La importancia de estos factores que actúan modificando la intensidad fotolumínica ha quedado demostrada en diversos trabajos. Destacan los estudios de Alleva (1989) sobre la variación que experimentan los niveles de melatonina a lo largo de las 24 horas del día así como las variaciones que experimenta el pico máximo de producción de la hormona según la alternancia de fotoperíodos, de diferente longitud, dependiendo de la estación del año. Estos resultados han conducido a postular una participación de la pineal en el control de los ciclos de hibernación animal (Kocsard-Varo 2000).

Recientes estudios, demuestran también la importancia de la pineal en el control del ciclo reproductor, con hallazgos tales como que los periodos de actividad hormonal gonadal coinciden con menores manifestaciones en la actividad estructural de la glándula, mientras que sucede lo contrario con los periodos de ausencia de actividad (Grandi 1995); o en relación con las variaciones circadianas del metabolismo glandular en función del periodo del ciclo reproductor atribuidas a la presencia de receptores para hormonas sexuales en la propia glándula pineal (Haldar y Sarkar 2001).

PLANTEAMIENTO DEL PROBLEMA

(§(s)

Planteamiento del Problema

Tal como se ha expuesto en la introducción la glándula pineal es una estructura sometida a la influencia de los factores medioambientales, fundamentalmente las variaciones de intensidad luminosa diaria y estacional y esta influencia se traduce en cambios tanto de la morfología como de la función.

Diversos autores postulan la existencia de una relación sincrónica entre el entorno y el organismo basada en la adecuación entre sus ritmos, en la adaptación de la funcionalidad del organismo al ritmo medioambiental que habita.

En este sentido, y teniendo en cuenta los múltiples estudios mencionados en la introducción, parece claro que la glándula pineal constituye una de las estructuras anatómicas idóneas, probablemente la más indicada, sobre la que realizar un estudio cronobiológico.

Desde hace alrededor de 20 años, la Unidad de Neuroanatomía del Departamento de Anatomía de la Universidad de Valencia desarrolla, bajo la dirección del Profesor Martínez Soriano, una línea de investigación dedicada a profundizar en el estudio de la glándula pineal, de su estructura y funcionalidad, así como de las influencias que sobre ella ejercen diferentes condiciones ambientales, físicas y químicas.

A lo largo de la revisión bibliográfica expuesta en la introducción de este trabajo se puede observar como, dentro de la organización funcional del complejo pineal, datos, tanto morfológicos como fisiológicos, señalan hacia la posible existencia de una división funcional en dos zonas de comportamiento probablemente diferente, (una periférica y otra central), en el mencionado complejo pineal, las cuales son influenciadas por factores externos (campos magnéticos, intensidad de luz, etc.,)

Por otro lado, estudios comparativos morfológicos han revelado que la pineal de los mamíferos puede variar ampliamente en longitud y anchura desde su base a la parte más distal, clasificando a las mismas en porciones proximal, intermedia o distal (A, B y C) sugiriéndose que, en virtud de las fibras nerviosas que alcanzan cada una de las mencionadas porciones, éstas podrían a su vez tener comportamientos diferentes.

En base a estas premisas los objetivos de nuestro trabajo los hemos planteado de la manera siguiente:

Realizar un estudio de las posibles variaciones de los índices cariométricos de la corteza y de la médula, a lo largo de las 24 horas y en cada una de las cuatro estaciones. Este procedimiento se desarrollaría, tanto en la porción distal como en la intermedia, obviando la parte proximal, porque dada la delgadez y fragilidad de la misma, es extremadamente dificultoso el poder obtenerla en condiciones adecuadas para su estudio. De esta manera podremos conseguir un patrón de funcionamiento morfológico básico que nos permita vislumbrar si realmente el comportamiento de cada una de las zonas a analizar es uniforme o diferente.

MATERIAL Y MÉTODOS

Material y Métodos

Animal de Experimentación

Como se ha mencionado, el animal de experimentación empleado en la presente tesis ha sido el conejo (*Orictolagus Cunículus*).

Se utilizaron conejos machos híbridos zootécnicos de las razas Neocelandesa y Californiana, y cuyo peso medio fue estimado en 1 kg. con un margen de error de 250gr.

Condiciones ambientales

Los animales fueron sometidos a diferentes condiciones ambientales de luminosidad, siendo sacrificados en lotes iguales en las diferentes estaciones del año. En cada estación el proceso se realizó siguiendo el mismo ritmo horario, estableciéndose 6 puntos horarios equidistantes por cada día y comenzando a las 06 h. De tal modo que los conejos fueron sacrificados a las 06, 10, 14, 18, 22 y 02 horas.

De esta manera se conseguían diferenciar el binomio día / noche estableciendo tres puntos horarios con luz (las 10, las 14 y las 18) y otros tres con oscuridad (22, 02 y 06), separados en el tiempo de forma equidistante.

Así, se sacrificaron animales en cada estación según la distribución horaria referida. Los correspondientes al invierno fueron sacrificados en Febrero, los de la primavera en el mes de Mayo, los del verano a finales del mes de Junio y los del otoño en Octubre.

Los conejos empleados en el experimento fueron criados y sacrificados en la ciudad de Valencia. Dada la importancia comentada en la introducción de las diferencias en función de la localización geográfica las citaremos aquí:

Localización de la Facultad de Medicina de Valencia:

Latitud 39° 29' Norte Longitud 3° 19' Este Altitud 24m.

Preparación de las muestras

1.- Obtención de las piezas:

Las glándulas pineales de los animales se han obtenido manteniendo siempre la misma sistemática, la cual se detalla a continuación:

En primer lugar se procede a anestesiar al conejo. La anestesia se realiza mediante inyección intraperitoneal de 50 mg./kg de Nembutal al 0'1%.

A continuación se realiza una laparotomía media desde hipogastrio hasta esternón y toracotomía bilateral tras haber seccionado el diafragma. Posteriormente se canaliza la aorta a través del ventrículo izquierdo. Seguidamente se produce una incisión en la aurícula derecha, se lava con suero fisiológico templado y se perfunde la solución de glutaraldehido al 5% a ritmo lento.

El glutaraldehido provoca rigidez muscular en el animal; la percepción de la misma nos muestra el buen grado de perfusión, y nos indica que es el momento adecuado para realizar la decapitación y el descalotamiento para proceder a la extracción de la glándula pineal.

2.- Microscopía Óptica: Técnica y preparación.

Tras extraer la glándula, y mediante el uso de una lupa estereoscópica, se procedió a trocear la misma en el seno del fijador para obtener fragmentos de un grosor comprendido entre 1 a 2 mm., los cuales fueron sometidos al siguiente proceso:

FIJACIÓN:

Dado que se pretendía conservar en el mayor grado posible la morfología celular ocasionando los mínimos cambios estructurales en la misma, con el fin de estudiar la estructura tisular con un aspecto lo más semejante posible al presentado "in vivo" se prestó especial atención a esta fase.

Ya la perfusión intracardíaca con el glutaraldehido al 5% realizada en el proceso quirúrgico, constituía el primer paso de la fijación. Este líquido fijador había sido preparado previamente a partir de la dilución de glutaraldehido en agua destilada al 25%, a la que se añadió solución tampón hasta obtener la mencionada dilución al 5%.

Se preparó un pocillo en el que fueron introducidos los fragmentos de glándula sumergidos en el líquido fijador, y se mantuvo el mismo por espacio de dos horas en el interior de un frigorífico con una temperatura de 4°C.

Seguidamente las piezas son lavadas durante 15 minutos con una solución tampón obtenida a partir de la disolución de sacarosa al 6,84%. Transcurrido dicho tiempo se recambia el líquido del pocillo y se rellena para proceder a un segundo lavado, nuevamente con la solución tampón, también de 15 minutos.

A continuación iniciamos un segundo proceso de fijación. Tras haber lavado las piezas dos veces como se ha indicado, empleamos ahora una solución de tetraóxido de osmio obtenida a partir de una dilución con solución tampón de sacarosa hasta conseguir una concentración del 2%. Las piezas se mantienen durante dos horas en esta solución también a una temperatura de 4°C.

Mediante esta segunda fijación con la solución de tetraóxido de osmio al 2% se consigue proteger las lipoproteínas naturales de la acción de algunos disolventes, de la desecación y de la congelación.

Seguidamente las piezas son lavadas, al igual que en la primera fase, mediante dos pases sucesivos por la solución tampón de sacarosa de 15 minutos cada uno.

DESHIDRATACIÓN:

La deshidratación se realizará utilizando acetona en concentraciones que irán progresivamente en aumento. En primer lugar mantendremos las muestras durante 30 minutos en la solución de acetona al 30%; a continuación otros 30 minutos en solución al 50% y 30 minutos más en solución al 75%.

A continuación utilizaremos una solución de acetato de uranilo al 2%, que se obtuvo a partir de la disolución de 2 gramos del mencionado acetato en acetona al 75% (c.s.p. 100cc.), para realizar un contraste de las piezas, manteniéndolas una vez más a 4°C durante dos horas.

Se completa la fase de deshidratación utilizando nuevas concentraciones de acetona. En primer lugar 30 minutos en solución de acetona al 90% y seguidamente otros dos pases de 30 minutos cada uno por acetona pura.

INCLUSIÓN:

El medio de inclusión en el presente trabajo ha sido el Durcupán. El Durcupán fue introducido en 1960 por Stauble. Se trata de una resina hidrosoluble, incolora, y que presenta un bajo nivel de viscosidad.

El proceso de inclusión consiste en conseguir hacer penetrar lo más profundamente posible en las muestra histológicas estudiadas una sustancia homogénea y solidificable que permita ser dividida en secciones finas. Esta sustancia debe poseer entre otras características las de ser ópticamente neutra y susceptible de ser eliminada posteriormente; características presentes en el Durcupán.

La preparación de la resina se ha realizado a partir de los materiales de la casa comercial Fulka. Siguiendo las instrucciones del fabricante se procedió a realizar las mezclas en un matraz Herlenmeyer con un agitador magnético para conseguir una perfecta homogeneización. Se utilizaron los productos etiquetados A/M, B, C y D en las siguientes proporciones:

Para obtener Durcupán I se emplearon 10 cc. de A/M, 10 cc. de B y 0,15 cc. de D. Mientras que la proporción para el Durcupán II es la siguiente: 10 cc. de A/M, 10 cc. de B, 0,45 cc. de C y 0,15 cc. de D.

Se procede a continuación a realizar una preinclusión. Se colocan en un pocillo los fragmentos de pineal procesados hasta ahora y se sumergen en una solución al 25% de Durcupán I en acetona pura, manteniéndolos en la misma a temperatura ambiente durante dos horas. A continuación se mantienen las muestras otras dos horas en una solución similar pero con la concentración de Durcupán I al 50%. Seguidamente otras dos horas más en una nueva solución de Durcupán I esta vez al 75%, para finalizar con dos horas más sumergidas en Durcupán I puro, concluyendo así la preinclusión.

La inclusión propiamente dicha se lleva a cabo mediante otras dos horas, esta vez en Durcupán II. Por último las piezas son introducidas en pocillos de caucho que se rellenan también de Durcupán II y que les servirán como molde definitivo. Los pocillos de caucho son mantenidos durante 72 horas en una estufa para mantener una temperatura constante de 60°C que consiga la polimerización del material y la completa desecación de las preparaciones.

MONTAJE:

Previamente a la fase de corte es necesario someter a las piezas a un proceso de tallado. El tallado se realizó mediante el Piramitone. El Piramitone es un aparato que confiere a un extremo de la pieza una morfología de pirámide truncada cuadrangular cuya parte superior constituirá la superficie de corte, y presentará un área de aproximadamente 0,1 mm cuadrados.

Tras el tallado se procede al corte con ultramicrotomo. Se empleó ultramicrotomo Jeol modelo JUM/7 con cuchillas de vidrio destensado de 3 mm. de grosor con forma de triángulo isósceles de 45 mm. de lado, las cuales fueron cortadas mediante aparato LKB-Nifemaker.

El sistema de corte se detalla a continuación:

El ultramicrotomo posee un brazo del que sobresale un vástago, denominado "Holder", que acoge la pieza a cortar. La cuchilla se sujeta mediante tornillos en un receptáculo del soporte situado en la base del ultramicrotomo. Dicho soporte está dotado de un sistema de engranajes que posibilitan los movimientos en los distintos planos del espacio.

Previamente a la colocación de la cuchilla es necesario someter a ésta al siguiente proceso:

Se coloca sobre la platina metálica de una estufa para atemperarla prestando especial atención al que posteriormente constituirá el borde de corte.

En la misma estufa se atempera una pieza de plástico denominada piscina.

La piscina y la cuchilla serán unidas utilizando parafina líquida mediante un espátula formando un receptáculo justo debajo del borde de corte de la cuchilla.

La pieza que constituyen ahora la cuchilla y la piscina se coloca en el soporte del ultramicrotomo, como se mencionó antes, y se dispone en la posición adecuada una vez fijada.

A continuación se llena la piscina con agua destilada hasta enrasar con el borde de la cuchilla y se inicia el corte de la pieza.

Para poder realizar el corte de forma correcta el aparato está dotado de diferentes mecanismos de precisión. Posee un tornillo de avance macrométrico y otro micrométrico que movilizan la cuchilla en sentido anteroposterior para aproximarse a la pieza de forma perfectamente controlada. Así mismo el brazo que sujeta la pieza mediante el mencionado "holder" posee una capacidad de movimiento regular en sentido vertical acercando la pieza de forma uniforme a la cuchilla para ser cortada.

A continuación se procede al denominado desbaste de la pieza que nos permitirá la obtención de los cortes para el estudio. Para ello se aproxima la cuchilla hasta la pieza mediante el tornillo macrométrico hasta que ambas contacten, realizando los primeros cortes, más gruesos, que irán desbastando la pieza hasta conseguir la verdadera superficie de corte.

Sabremos que ésta se ha conseguido por el brillo característico que aparece en la pieza cuando se consigue una ausencia total de rebordes y escalonamientos. Es lo que se denomina "superficie en espejo".

La obtención de los cortes útiles para el estudio puede llevarse a cabo ahora. Con el tornillo micrométrico se consigue la sincronización entre el brazo y la cuchilla, haciendo coincidir el avance anterior de una micra de ésta última con el movimiento vertical del brazo. Se consiguen así cortes con el mencionado grosor de una micra.

Los cortes son recogidos en el agua destilada de la piscina, en la que permanecen flotando debido a su escasísimo grosor. Desde allí son recogidos mediante una pipeta de Pasteur y se depositan sobre la superficie de un portaobjetos.

Este portaobjetos es puesto a secar en la platina de la estufa con el fin de conseguir que desaparezca totalmente la gota de agua que acompaña al corte, dejando a éste totalmente seco, y permitiéndonos la tinción del mismo.

Para realizar la tinción se empleará azul de toluidina al 1%. Utilizando una jeringa de 20cc. a la que se adaptó un filtro de Mili-Pore, se aplican unas gotas del colorante cubriendo por completo el corte de tejido que soporta el portaobjetos. Con el empleo del filtro Mili-Pore se pretende conseguir la distribución homogénea del colorante sobre la muestra.

El proceso de tinción concluye con el secado del colorante, el cual se realiza manteniendo el portaobjetos durante tres minutos en la platina de la estufa. Tras ello, se vierte el colorante sobrante y se lava cuidadosamente con agua destilada secándolo de nuevo al concluir.

Es el momento de realizar la comprobación de la corrección y buen estado del corte a estudiar. Para ello se observa cada corte con un microscopio óptico modelo Axioskop de la marca Zeiss. Si la comprobación es satisfactoria y la estructura se ha conservado se monta la preparación con una gota de Eukit y un cubreobjetos.

El proceso finaliza con la identificación de las muestras mediante la conveniente rotulación que evite posteriores confusiones y permita guardar las preparaciones en las cajas para portaobjetos correspondientes.

El índice cariométrico

El índice cariométrico va a ser el elemento de estudio fundamental de este trabajo. Este índice es una expresión del volumen nuclear, por lo que sus variaciones pueden ser valoradas como la manifestación de los cambios en la actividad celular.

El cálculo de este volumen se realizó empleando la fórmula de Jacobj (1935):

$$V = \pi / 6 \cdot A \cdot B^2 \cdot K$$

Siendo:

V = volumen nuclear

A = diámetro mayor del núcleo

B = diámetro menor del núcleo

K = constante de conversión

La constante de conversión se calculó teniendo en cuenta el micrometro y el objetivo fotográfico utilizados, correspondiendo su valor a 1.72.

Para poder realizar las mediciones cariométricas se realizó el siguiente proceso:

En primer lugar, se fotografiaron las imágenes de las preparaciones microscópicas. Para ello se empleó una cámara fotográfica Olympus-M35W acoplada al microscopio óptico.

De estas fotografías, mediante un negatoscopio, se calcaron en papel los contornos de los núcleos seleccionados. Sobre éstos, se realizaron las lecturas de las medidas. Para ello se utilizó el programa informático VISILOG y la mencionada fórmula de Jacobj.

El cálculo de la constante de conversión en este caso se realizó sometiendo a una cámara de Neubauer al mismo proceso que a las preparaciones para conseguir un cuadrado con un tamaño real conocido. La fotografía obtenida se procesó informáticamente. Teniendo en cuenta que el diámetro menor del cuadrado es su propio lado y el mayor su diagonal, que la medida obtenida fue 1720 veces mayor que el cuadrado real, y que las fotografías se hicieron en el microscopio a 1000 aumentos, el resultado en nuestro caso es una constante K = 1.72.

Finalmente, para homegeneizar las muestras en función de los datos que se poseían se seleccionaron 50 valores de volúmenes nucleares de cada una de las regiones a estudiar. Es decir, cincuenta volúmenes por cada una de las regiones cortical y medular de cada una de las zonas intermedia y distal, en cada punto horario y para cada estación del año.

Es de señalar que, si bien es correcta la denominación de C para la porción Distal, de acuerdo con Vollrath (1981), la denominación correcta de la porción intermedia, que en general sería B, en el caso del conejo, nuestro animal de experimentación, debería ser referenciada como β en lugar de B, (tal como se indicó en la introducción) por lo que nos referiremos a esta porción de ambos modos, aunque preferencialmente utilizando la letra del alfabeto griego

Así pues, las observaciones quedan agrupadas del siguiente modo:

Zona B:

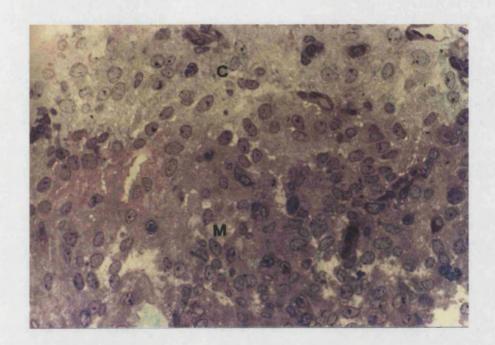
50 núcleos de cortical de la zona β , de las 02 h., de Primavera 50 núcleos de medular de la zona β , de las 02 h., de Primavera 50 núcleos de cortical de la zona β , de las 06 h., de Primavera 50 núcleos de medular de la zona β , de las 06 h., de Primavera 50 núcleos de cortical de la zona β , de las 10 h., de Primavera 50 núcleos de medular de la zona β , de las 10 h., de Primavera 50 núcleos de cortical de la zona β , de las 14 h., de Primavera 50 núcleos de medular de la zona β , de las 14 h., de Primavera 50 núcleos de cortical de la zona β , de las 18 h., de Primavera 50 núcleos de medular de la zona β , de las 18 h., de Primavera 50 núcleos de cortical de la zona β , de las 22 h., de Primavera 50 núcleos de medular de la zona β , de las 22 h., de Primavera 50 núcleos de medular de la zona β , de las 22 h., de Primavera

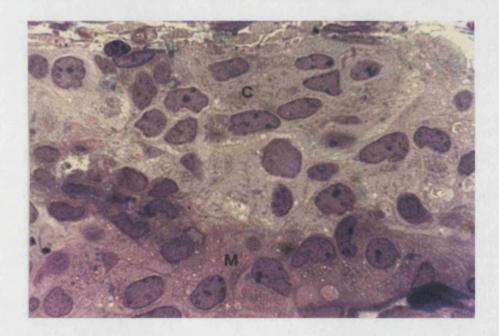
50 núcleos de cortical de la zona β , de las 02 h. , de Verano 50 núcleos de medular de la zona β , de las 02 h. , de Verano 50 núcleos de cortical de la zona β , de las 06 h. , de Verano 50 núcleos de medular de la zona β , de las 06 h. , de Verano 50 núcleos de cortical de la zona β , de las 10 h. , de Verano 50 núcleos de medular de la zona β , de las 10 h. , de Verano 50 núcleos de cortical de la zona β , de las 14 h. , de Verano 50 núcleos de medular de la zona β , de las 14 h. , de Verano 50 núcleos de cortical de la zona β , de las 18 h. , de Verano 50 núcleos de medular de la zona β , de las 18 h. , de Verano 50 núcleos de cortical de la zona β , de las 22 h. , de Verano 50 núcleos de medular de la zona β , de las 22 h. , de Verano 50 núcleos de medular de la zona β , de las 22 h. , de Verano

50 núcleos de cortical de la zona β , de las 02 h., de Otoño 50 núcleos de medular de la zona β , de las 02 h., de Otoño 50 núcleos de cortical de la zona β , de las 06 h., de Otoño 50 núcleos de medular de la zona β , de las 06 h., de Otoño 50 núcleos de cortical de la zona β , de las 10 h., de Otoño 50 núcleos de medular de la zona β , de las 10 h., de Otoño 50 núcleos de cortical de la zona β , de las 14 h., de Otoño 50 núcleos de medular de la zona β , de las 14 h., de Otoño 50 núcleos de cortical de la zona β , de las 18 h., de Otoño 50 núcleos de medular de la zona β , de las 18 h., de Otoño 50 núcleos de cortical de la zona β , de las 22 h., de Otoño 50 núcleos de medular de la zona β , de las 22 h., de Otoño 50 núcleos de medular de la zona β , de las 22 h., de Otoño

50 núcleos de cortical de la zona β , de las 02 h., de Invierno 50 núcleos de medular de la zona β , de las 02 h., de Invierno 50 núcleos de cortical de la zona β , de las 06 h., de Invierno 50 núcleos de medular de la zona β , de las 06 h., de Invierno 50 núcleos de cortical de la zona β , de las 10 h., de Invierno 50 núcleos de medular de la zona β , de las 10 h., de Invierno 50 núcleos de cortical de la zona β , de las 14 h., de Invierno 50 núcleos de medular de la zona β , de las 14 h., de Invierno 50 núcleos de cortical de la zona β , de las 18 h., de Invierno 50 núcleos de medular de la zona β , de las 18 h., de Invierno 50 núcleos de cortical de la zona β , de las 22 h., de Invierno 50 núcleos de medular de la zona β , de las 22 h., de Invierno 50 núcleos de medular de la zona β , de las 22 h., de Invierno

Zona C:


50 núcleos de cortical de la zona C, de las 02 h., de Primavera 50 núcleos de medular de la zona C, de las 02 h., de Primavera 50 núcleos de cortical de la zona C de las 06 h., de Primavera 50 núcleos de medular de la zona C, de las 06 h., de Primavera 50 núcleos de cortical de la zona C, de las 10 h., de Primavera 50 núcleos de medular de la zona C, de las 10 h., de Primavera 50 núcleos de cortical de la zona C, de las 14 h., de Primavera 50 núcleos de medular de la zona C, de las 14 h., de Primavera 50 núcleos de cortical de la zona C, de las 18 h., de Primavera 50 núcleos de medular de la zona C, de las 18 h., de Primavera 50 núcleos de cortical de la zona C, de las 22 h., de Primavera 50 núcleos de medular de la zona C, de las 22 h., de Primavera 50 núcleos de medular de la zona C, de las 22 h., de Primavera


50 núcleos de cortical de la zona C, de las 02 h., de Verano 50 núcleos de medular de la zona C, de las 02 h., de Verano 50 núcleos de cortical de la zona C, de las 06 h., de Verano 50 núcleos de medular de la zona C, de las 06 h., de Verano 50 núcleos de cortical de la zona C, de las 10 h., de Verano 50 núcleos de medular de la zona C, de las 10 h., de Verano 50 núcleos de cortical de la zona C, de las 14 h., de Verano 50 núcleos de medular de la zona C, de las 14 h., de Verano 50 núcleos de cortical de la zona C, de las 18 h., de Verano 50 núcleos de medular de la zona C, de las 18 h., de Verano 50 núcleos de cortical de la zona C, de las 22 h., de Verano 50 núcleos de medular de la zona C, de las 22 h., de Verano 50 núcleos de medular de la zona C, de las 22 h., de Verano

50 núcleos de cortical de la zona C, de las 02 h., de Otoño 50 núcleos de medular de la zona C, de las 02 h., de Otoño 50 núcleos de cortical de la zona C, de las 06 h., de Otoño 50 núcleos de medular de la zona C, de las 06 h., de Otoño 50 núcleos de cortical de la zona C, de las 10 h., de Otoño 50 núcleos de medular de la zona C, de las 10 h., de Otoño 50 núcleos de cortical de la zona C, de las 14 h., de Otoño 50 núcleos de medular de la zona C, de las 14 h., de Otoño 50 núcleos de cortical de la zona C, de las 18 h., de Otoño 50 núcleos de medular de la zona C, de las 18 h., de Otoño 50 núcleos de cortical de la zona C, de las 22 h., de Otoño 50 núcleos de medular de la zona C, de las 22 h., de Otoño 50 núcleos de medular de la zona C, de las 22 h., de Otoño

50 núcleos de cortical de la zona C, de las 02 h., de Invierno 50 núcleos de medular de la zona C, de las 02 h., de Invierno 50 núcleos de cortical de la zona C, de las 06 h., de Invierno 50 núcleos de medular de la zona C, de las 06 h., de Invierno 50 núcleos de cortical de la zona C, de las 10 h., de Invierno 50 núcleos de medular de la zona C, de las 10 h., de Invierno 50 núcleos de cortical de la zona C, de las 14 h., de Invierno 50 núcleos de medular de la zona C, de las 14 h., de Invierno 50 núcleos de cortical de la zona C, de las 18 h., de Invierno 50 núcleos de medular de la zona C, de las 18 h., de Invierno 50 núcleos de cortical de la zona C, de las 22 h., de Invierno 50 núcleos de medular de la zona C, de las 22 h., de Invierno 50 núcleos de medular de la zona C, de las 22 h., de Invierno

Esto supuso la selección y agrupamiento de un total de 4800 valores que se sometieron al análisis estadístico que se detalla a continuación.

Panorámica (x40) y detalle (x100) de las zonas cortical (C) y medular (M) de una glándula pineal de conejo

ANÁLISIS ESTADÍSTICO

Análisis Estadístico

El análisis estadístico de las observaciones se realizó utilizando el programa SPSS versión 10. Los resultados se desarrollaron en dos fases:

En primer lugar se detallan los estadísticos descriptivos para la totalidad de las muestras (las 4800 observaciones) agrupándolos por celdas de los 50 índices cariométricos observados para cada hora, estación, zona y región.

Las representaciones gráficas que se estudian corresponden pues al conjunto de las mismas.

A continuación se seleccionó una muestra representativa de las observaciones para evitar que el gran tamaño de la población estudiada pudiera dar lugar, por sí mismo, a diferencias estadísticamente significativas con independencia de otros factores.

Se obtuvo una muestra que, a partir de las mismas celdas, presentara un tamaño de 10 valores por celda en lugar de los 50. Sobre esta muestra se aplicaron los cálculos estadísticos.

El estudio planteado es un Análisis de la Varianza, a partir de un modelo en el que sólo se consideren interacciones de segundo orden y en el que se estudien las relaciones entre la hora del día de la observación , la estación del año en que ésta se llevó a cabo, el área de la glándula en que se localiza (C o β) y si se trata de la porción medular o cortical de la misma.

En concreto, el modelo es de la siguiente forma:

$$IC_{ijklm} = h_i + e_j + z_k + r_l + (h*e)_{ij} + (h*z)_{ik} + (h*r)_{il} + (e*z)_{jk} + (e*r)_{jl} + (z*r)_{kl} + \epsilon_{ijklm}$$

Donde h es la hora, e la estación del año, z la zona C o β , r la región cortical o medular y ϵ es el error que se distribuye N $(0,\sigma^2)$ y es independiente de unas observaciones a otras.

La variable estudiada será el índice cariométrico. Será considerada como variable dependiente.

Los resultados obtenidos se exponen a continuación:

- En primer lugar se detallan los estadísticos descriptivos del total de la observaciones, distribuidas por horas y agrupadas en las celdas de tamaño 50
- A continuación se detallan las gráficas correspondientes
- Por último se presenta el desarrollo estadístico expuesto: El Análisis de la varianza a partir de una muestra representativa formada por la agrupación de celdas de similares condicionantes pero de tamaño 10.

ESTADÍSTICA DESCRIPTIVA DEL TOTAL DE LA MUESTRA -

(MUESTRA DE TAMAÑO 50 POR HORA)

HORA 2

índice cariométrico

estación del año	ZONA	región	Media	Varianza	Desv. típ.	N	Mínimo	Máximo
invierno	zona C	cortical	141,528	21,627	4,650	50	132,5	150,8
		medular	131,222	15,296	3,911	50	122,1	139,8
		Total	136,375	45,097	6,715	100	122,1	150,8
	zona B	cortical	98,970	49,461	7,033	50	84,1	115,3
		medular	125,336	106,852	10,337	50	100,1	147,6
		Total	112,153	252,914	15,903	100	84,1	147,6
	Total	cortical	120,249	492,554	22,194	100	84,1	150,8
		medular	128,279	69,206	8,319	100	100,1	147,6
		Total	124,264	295,670	17,195	200	84,1	150,8
primavera	zona C	cortical	142,408	22,897	4,785	50	133,1	152,3
		medular	136,924	35,060	5,921	50	120,1	147,9
		Total	139,666	36,280	6,023	100	120,1	152,3
	zona B	cortical	132,146	74,023	8,604	50	116,7	148,0
		medular	126,920	67,553	8,219	50	114,1	140,7
		Total	129,533	76,970	8,773	100	114,1	148,0
	Total	cortical	137,277	74,564	8,635	100	116,7	152,3
		medular	131,922	76,061	8,721	100	114,1	147,9
		Total	134,599	82,139	9,063	200	114,1	152,3
verano	zona C	cortical	152,184	10,965	3,311	50	143,4	160,1
		medular	136,662	12,798	3,577	50	129,3	143,3
		Total	144,423	72,603	8,521	100	129,3	160,1
	zona B	cortical	142,068	228,241	15,108	50	117,5	169,8
		medular	108,662	123,309	11,104	50	91,0	129,1
		Total	125,365	455,808	21,350	100	91,0	169,8
	Total	cortical	147,126	144,236	12,010	100	117,5	169,8
	, 014	medular	122,662	265,346	16,289	100	91,0	143,3
		Total	134,894	354,136	18,818	200	91,0	169,8
otoño	zona C	cortical	157,244	13,151	3,626	50	149,9	164,3
otorio	Zona o	medular	137,640	15,540	3,942	50	130,5	148,7
		Total	147,442	111,251	10,548	100	130,5	164,3
	zona B	cortical	110,214	30,711	5,542	50	100,0	119,8
	Zona B	medular	89,430	29,981	5,476	50	80,2	100,7
		Total	99,822	139,124	11,795	100	80,2	119,8
	Total	cortical	133,729	580,250	24,088	100	100,0	164,3
	Total	medular	113,535	609,451	24,687	100	80,2	148,7
		Total	123,632	694,323	26,350	200	80,2	164,3
Total	zona C	cortical			-	200		
i otai	Zoria C	medular	148,341	61,034	7,812	200	132,5	164,3
		Total	135,612	25,962	5,095		120,1	148,7
	zona B	cortical	141,977	83,997	9,165	400	120,1	164,3
	ZUIIA D		120,849	388,052	19,699	200	84,1	169,8
		medular	112,587	311,750	17,656	200	80,2	147,6
	Tetal	Total	116,718	366,134	19,135	400	80,2	169,8
	Total	cortical	134,595	413,400	20,332	400	84,1	169,8
		medular	124,100	301,303	17,358	400	80,2	148,7
		Total	129,347	384,479	19,608	800	80,2	169,8

HORA 6

índice cariométrico

estación del año	ZONA	región	Media	Varianza	Desv. típ.	N	Minimo	Máximo
invierno	zona C	cortical	146,140	29,755	5,455	50	135,1	159,8
		medular	134,836	12,174	3,489	50	128,9	142,4
		Total	140,488	53,021	7,282	100	128,9	159,8
	zona B	cortical	84,910	40,259	6,345	50	70,4	99,2
		medular	88,372	52,951	7,277	50	75,7	99,6
		Total	86,641	49,161	7,011	100	70,4	99,6
	Total	certical	115,525	981,399	31,327	100	70,4	159,8
		medular	111,604	577,411	24,029	100	75,7	142,4
		Total	113,565	779,352	27,917	200	70,4	159,8
primavera	zona C	cortical	148,528	42,922	6,552	50	128,4	159,7
		medular	150,170	25,618	5,061	50	137,5	163,2
		Total	149,349	34,605	5,883	100	128,4	163,2
	zona B	cortical	107,312	826,837	28,755	50	68,3	166,3
		medular	120,424	586,697	24,222	50	81,3	165,3
		Total	113,868	743,043	27,259	100	68,3	166,3
	Total	cortical	127,920	859,467	29,317	100	68,3	166,3
		medular	135,297	526,505	22,946	100	81,3	165,3
		Total	131,609	703,177	26,517	200	68,3	166,3
verano	zona C	cortical	151,338	10,131	3,183	50	145,3	158,5
		medular	134,440	29,734	5,453	50	122,7	145,7
		Total	142,889	91,838	9,583	100	122,7	158,5
	zona B	cortical	158,544	226,147	15,038	50	133,3	186,4
		medular	123,490	184,167	13,571	50	101,0	145,1
		Total	141,017	513,384	22,658	100	101,0	186,4
	Total	cortical	154,941	130,059	11,404	100	133,3	186,4
		medular	128,965	136,149	11,668	100	101,0	145,7
		Total	141,953	301,971	17,377	200	101,0	186,4
otoño	zona C	cortical	130,896	14,879	3,857	50	122,2	139,1
0.0110	Lond	medular	126,790	24,803	4,980	50	118,6	139,1
		Total	128,843	23,898	4,889	100	118,6	139,1
	zona B	cortical	124,502	164,062	12,809	50	102,0	150,0
		medular	123,226	169,551	13,021	50	100,0	151,2
		Total	123,864	165,532	12,866	100	100,0	151,2
	Total	cortical	127,699	98,891	9,944	100	102,0	150,0
		medular	125,008	99,403	9,970	100	100,0	151,2
		Total	126,353	100,468	10,023	200	100,0	151,2
Total	zona C	cortical	144,226	86,978	9,326	200	122,2	159,8
	Lond	medular	136,559	95,134	9,754	200	118,6	163,2
		Total	140,392	105,559	10,274	400	118,6	163,2
	zona B	cortical	118,817	1036,373	32,193	200	68,3	186,4
	LONG D	medular	113,878	463,990	21,540	200	75,7	165,3
		Total	116,348	754,415	27,467	400	68,3	186,4
	Total	cortical		-		400		
	Total		131,521	722,070	26,871		68,3	186,4
		medular Total	125,219	407,791	20,194	400	75,7	165,3
		rotal	128,370	574,167	23,962	800	68,3	186,4

HORA 10

índice cariométrico

estación del año	ZONA	región	Media	Varianza	Desv. típ.	N	Mínimo	Máximo
invierno	zona C	cortical	145,388	28,302	5,320	50	133,8	155,6
		medular	134,634	22,704	4,765	50	126,2	142,3
		Total	140,011	54,449	7,379	100	126,2	155,6
	zona B	cortical	90,396	41,011	6,404	50	77,4	105,8
		medular	79,544	50,157	7,082	50	69,1	93,6
		Total	84,970	74,863	8,652	100	69,1	105,8
	Total	cortical	117,892	797,973	28,248	100	77,4	155,6
		medular	107,089	802,454	28,328	100	69,1	142,3
		Total	112,490	825,515	28,732	200	69,1	155,6
primavera	zona C	cortical	148,182	9,603	3,099	50	139,1	153,6
		medular	149,434	10,884	3,299	50	142,3	158,3
		Total	148,808	10,536	3,246	100	139,1	158,3
	zona B	cortical	130,490	117,005	10,817	50	100,3	149,9
		medular	134,046	88,282	9,396	50	117,1	148,0
		Total	132,268	104,800	10,237	100	100,3	149,9
	Total	cortical	139,336	141,707	11,904	100	100,3	153,6
		medular	141,740	108,878	10,434	100	117,1	158,3
		Total	140,538	126,115	11,230	200	100,3	158,3
verano	zona C	cortical	157,928	11,260	3,356	50	149,9	164,0
VOI 2010	Lond	medular	139,382	11,925	3,453	50	133,1	147,6
		Total	148,655	98,332	9,916	100	133,1	164,0
	zona B	cortical	159,940	243,170	15,594	50	137,1	184,8
	Lond D	medular	151,536	199,983	14,142	50	124,0	176,5
		Total	155,738	237,173	15,400	100	124,0	184,8
	Total	cortical	158,934	126,952	11,267	100	137,1	184,8
	Total	medular	145,459	142,186	11,924	100		
		Total		179,515		200	124,0	176,5 184,8
otoño	zona C	cortical	152,196		13,398	50	124,0	131,6
Otorio	ZUIIA C	medular	124,242	11,474	3,387	50	118,3	
		Total	118,584 121,413	14,332 20,856	3,786 4,567	100	112,1 112,1	129,8 131,6
	zona B	cortical	-		-	50		
	ZUIIA D	medular	132,290	278,992	16,703	50	110,5	195,9
		Total	99,678	94,554	9,724	100	81,4	120,6 195,9
	Total	cortical	115,984	453,458	21,295	100	81,4	
	Total	medular	128,266	160,122	12,654		110,5	195,9
			109,131	144,155	12,006	100	81,4	129,8
Total	7000 C	Total	118,698	243,371	15,600	200	81,4	195,9
Total	zona C	cortical	143,935	166,631	12,909	200	118,3	164,0
		medular	135,509	139,391	11,806	200	112,1	158,3
		Total	139,722	170,423	13,055	400	112,1	164,0
	zona B	cortical	128,279	785,199	28,021	200	77,4	195,9
		medular	116,201	906,550	30,109	200	69,1	176,
		Total	122,240	880,315	29,670	400	69,1	195,9
	Total	cortical	136,107	536,153	23,155	400	77,4	195,9
		medular	125,855	615,088	24,801	400	69,1	176,5
		Total	130,981	601,210	24,520	800	69,1	195,9

HORA 14

Indice cariométrico

estación del año	ZONA	región	Media	Varianza	Desv. tip.	N	Mínimo	Máximo
invierno	zona C	cortical	155,628	18,357	4,285	50	144,3	161,8
		medular	142,696	32,676	5,716	50	130,6	152,4
		Total	149,162	67,490	8,215	100	130,6	161,8
	zona B	cortical	92,948	94,823	9,738	50	76,8	108,5
		medular	87,054	32,312	5,684	50	75,4	98,7
		Total	90,001	71,698	8,467	100	75,4	108,5
	Total	cortical	124,288	1048,135	32,375	100	76,8	161,8
		medular	114,875	813,992	28,531	100	75,4	152,4
		Total	119,582	948,647	30,800	200	75,4	161,8
primavera	zona C	cortical	157,276	20,768	4,557	50	145,3	164,1
		medular	151,154	24,410	4,941	50	140,3	162,3
		Total	154,215	31,825	5,641	100	140,3	164,1
	zona B	cortical	189,692	398,588	19,965	50	152,9	229,0
	20110 0	medular	141,666	233,441	15,279	50	112,3	171,1
		Total	165,679	895,271	29,921	100	112,3	229.0
	Total	cortical	173,484	472,913	21,747	100	145,3	229,0
	Total	medular	146,410	150,356	12,262	100	112,3	171,1
		Total						
	C	cortical	159,947	494,240	22,231	200	112,3	229,0
verano	zona C		145,724	7,759	2,786	50	139,9	150,6
		medular	138,390	16,687	4,085	50	130,1	149,8
		Total	142,057	25,682	5,068	100	130,1	150,6
	zona B	cortical	164,094	117,501	10,840	50	141,8	181,1
		medular	131,856	180,923	13,451	50	112,0	158,3
		Total	147,975	410,151	20,252	100	112,0	181,1
	Total	cortical	154,909	147,214	12,133	100	139,9	181,1
		medular	135,123	108,588	10,421	100	112,0	158,3
		Total	145,016	225,621	15,021	200	112,0	181,1
otoño	zona C	cortical	149,576	15,840	3,980	50	138,3	156,8
		medular	131,178	18,227	4,269	50	121,5	140,8
		Total	140,377	102,338	10,116	100	121,5	156,8
	zona B	cortical	119,622	124,034	11,137	50	101,7	140,4
		medular	124,654	54,469	7,380	50	110,3	140,8
		Total	122,138	94,744	9,734	100	101,7	140,8
	Total	cortical	134,599	295,807	17,199	100	101,7	156,8
		medular	127,916	46,729	6,836	100	110,3	140,8
		Total	131,257	181,629	13,477	200	101,7	156,8
Total	zona C	cortical	152,051	37,116	6,092	200	138,3	164,1
		medular	140,854	75,211	8,672	200	121,5	162,3
		Total	146,453	87,442	9,351	400	121,5	164,1
	zona B	cortical	141,589	1605,306	40,066	200	76,8	229,0
		medular	121,307	553,106	23,518	200	75,4	171,1
		Total	131,448	1179,594	34,345	400	75,4	229,0
	Total	cortical	146,820	846,585	29,096	400	76,8	229,0
		medular	131,081	409,132	20,227	400	75,4	171,1
		Total				800		
		TOLAI	138,951	689,079	26,250	800	75,4	229,0

HORA 18

índice cariométrico

ZONA	región	Media	Varianza	Desv. tip.	N	Mínimo	Máximo
zona C	cortical	146,382	20,623	4,541	50	139,1	157,8
	medular	130,408	13,020	3,608	50	124,5	140,8
	Total	138,395	81,088	9,005	100	124,5	157,8
zona B	cortical	131,472	104,055	10,201	50	103,8	159,0
	medular	119,762	117,510	10,840	50	102,3	145,6
	Total	125,617	144,291	12,012	100	102,3	159,0
Total	cortical	138,927	117,847	10,856	100	103,8	159,0
	medular	125,085	93,226	9,655	100	102,3	145,6
	Total	132,006	153,148	12,375	200	102,3	159,0
zona C	cortical	136,548	10,334	3,215	50	130,1	143,2
	medular	144,042	17,893	4,230	50	135,1	151,2
	Total	140,295	28,153	5,306	100	130,1	151,2
zona B	cortical	143,772	144,474	12,020	50	121,8	169,5
	medular	132,868	257,585	16,049	50	100,7	164,3
	Total	138,320	229,024	15,134	100	100,7	169,5
Total	cortical				100	121,8	169,5
	medular						164,3
	Total						169,5
zona C		_		-			151,3
	medular						149,8
	Total						151,3
zona B	cortical	_	-				145,8
							141,0
							145,8
Total		-	-				151,3
							149,8
							151,3
zona C							151,6
	medular						135,6
	Total						151,6
zona B	cortical			-			169,8
	medular						148,
	Total						169,8
Total	cortical						169,8
	medular			The second second			148,
	Total						169,8
zona C	cortical			-			157,8
	medular		The second second				151,
	Total						157,8
zona B	cortical			-			169,
	medular						164,
							169,
Total				-			169,
							164,3
							169,8
	zona C zona B Total zona C zona B Total zona C zona B Total zona C zona C	zona C cortical medular Total zona B cortical medular Total Total cortical medular Total zona C cortical medular Total zona B cortical medular Total zona C cortical medular Total zona B cortical medular Total zona C cortical medular Total zona B cortical medular Total zona B cortical medular Total zona B cortical medular Total	zona C cortical medular medula	zona C cortical medular medular medular medular medular Total 130,408 13,020 130,408 13,020 130,408 130,408 130,408 130,408 130,408 130,408 130,408 130,408 130,408 130,408 130,408 140,405 140,405 140,405 140,405 140,405 140,405 140,405 140,405 140,405 140,405 140,405 140,409 1	Zona C	Zona C	Zona C

HORA 22

índice cariométrico

estación del año	ZONA	región	Media	Varianza	Desv. tip.	N	Mínimo	Máximo
invierno	zona C	cortical	141,374	20,861	4,567	50	132,4	149,1
		medular	133,390	60,293	7,765	50	119,1	146,8
		Total	137,382	56,264	7,501	100	119,1	149,1
	zona B	cortical	135,576	85,151	9,228	50	117,0	154,8
		medular	112,710	52,173	7,223	50	102,1	127,4
		Total	124,143	200,002	14,142	100	102,1	154,8
	Total	cortical	138,475	60,960	7,808	100	117,0	154,8
		medular	123,050	163,661	12,793	100	102,1	146,8
		Total	130,762	171,527	13,097	200	102,1	154,8
primavera	zona C	cortical	137,456	35,023	5,918	50	125,7	150,3
		medular	129,708	13,625	3,691	50	120,8	136,1
		Total	133,582	39,238	6,264	100	120,8	150,3
	zona B	cortical	126,910	150,187	12,255	50	102,0	149,3
		medular	125,732	147,469	12,144	50	105,6	145,8
		Total	126,321	147,675	12,152	100	102,0	149,3
	Total	cortical	132,183	119,755	10,943	100	102,0	150,3
		medular	127,720	83,725	9,150	100	105,6	145,8
		Total	129,952	106,234	10,307	200	102,0	150,3
verano	zona C	cortical	138,042	17,267	4,155	50	130,1	146,5
		medular	137,552	23,592	4,857	50	128,3	148,5
		Total	137,797	20,284	4,504	100	128,3	148,5
	zona B	cortical	116,694	124,953	11,178	50	95,6	134,9
	ZONG D	medular	88,932	86,912	9,323	50	74,5	106,3
		Total	102,813	299,491	17,306	100	74,5	134,9
	Total	cortical	127,368	185,477	13,619	100	95,6	146,5
	Total	medular	113,242	651,640	25.527	100	74,5	148,5
		Total	120,305	466,592		200		
otoño	zona C	cortical	_		21,601	50	74,5	148,5
otorio	Zona C	medular	146,648	14,402	3,795	50	139,7	153,6
		Total	127,850	10,002	3,163	100	121,3	133,2
	zona B	cortical	137,249	101,312	10,065		121,3	153,6
	ZONA D	medular	120,766	115,904	10,766	50	100,7	134,5
		Total	100,414	27,944	5,286	50	90,6	110,9
	Total	cortical	110,590	175,794	13,259	100	90,6	134,5
	Total	medular	133,707	233,656	15,286	100	100,7	153,6
			114,132	208,865	14,452	100	90,6	133,2
Tatal	0	Total	123,920	316,425	17,788	200	90,6	153,6
Total	zona C	cortical	140,880	34,948	5,912	200	125,7	153,6
		medular	132,125	40,335	6,351	200	119,1	148,5
	5	Total	136,502	56,758	7,534	400	119,1	153,6
	zona B	cortical	124,986	168,112	12,966	200	95,6	154,8
		medular	106,947	266,713	16,331	200	74,5	145,8
		Total	115,967	298,427	17,275	400	74,5	154,8
	Total	cortical	132,933	164,585	12,829	400	95,6	154,8
		medular	119,536	312,019	17,664	400	74,5	148,5
		Total	126,235	282,931	16,821	800	74,5	154,8

RESULTADOS -REPRESENTACIONES GRÁFICAS

En primer lugar se realizó el análisis de las medias de los índices cariométricos para el total de las observaciones, considerando como un único conjunto las zonas C y β y sin diferenciar cortical y medular. Es decir, estudiando el comportamiento de la pineal analizada en bloque.

Según los resultados obtenidos, podemos observar (fig.1) que los valores máximos se concentran en las horas diurnas, presentando el pico en las 14 horas, que coincide con la hora, de entre las observadas, de máxima intensidad lumínica.

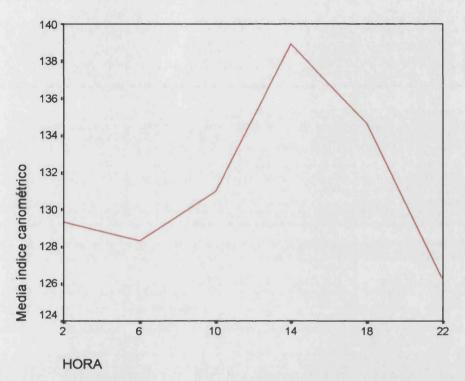
Seguidamente se analizaron las diferencias entre las regiones cortical y medular (también entendiendo las zonas C y β como unidad). Las resultados obtenidos a partir de esta observación son básicamente tres:

- Se mantienen los valores máximos de índices cariométricos para las horas diurnas, con el pico máximo en las 14 horas, tanto para la cortical como para la medular.
- Los valores del índice cariométrico son estadísticamente mayores en la cortical que en la medular en todas las observaciones horarias.
- Las variaciones horarias dentro de cada región, medular o cortical, mantienen una trayectoria similar.

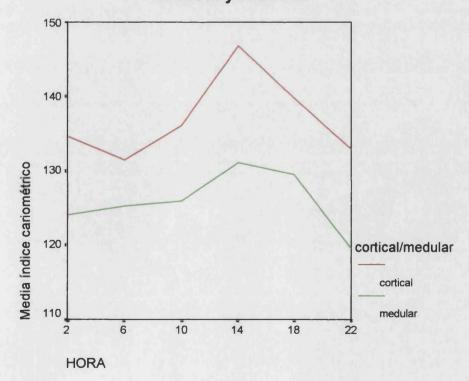
A continuación se analizó estación por estación:

- Invierno: Los picos máximos se localizan en las observaciones de las 18 horas y cabe destacar que en las observaciones de las 22 horas (sobre todo en la cortical) se recogen también valores importantes. Los valores mínimos se recogen a las 10 horas. Los valores de los índices cariométricos son los menores del conjunto de las estaciones.
- Primavera: En esta estación encontramos los valores máximos y la distribución de los mismos se asemeja a la comentada para el total de las observaciones, con valores máximos en las diurnas, superiores en la cortical y con el pico en las 14 horas.
- Verano: Los valores en esta estación también son altos, aunque no tanto como en la primavera. El agrupamiento de los valores también se asemeja a los de la esta estación, pero concentrando el pico máximo en las 10 horas.
- Otoño: El comportamiento es bastante similar al del invierno, con el pico a las 18 horas pero sin valores significativamente altos a las 22. Los valores son ligeramente superiores a los observados en invierno.

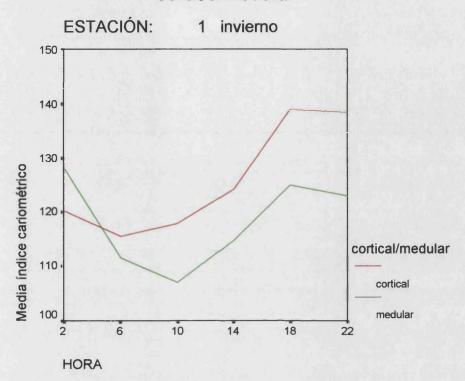
Las gráficas se presentan, además de con sus títulos indicativos correspondientes, manteniendo la designación numérica asignada a cada porción pineal (β o C), región cortico-medular y estación de recogida.

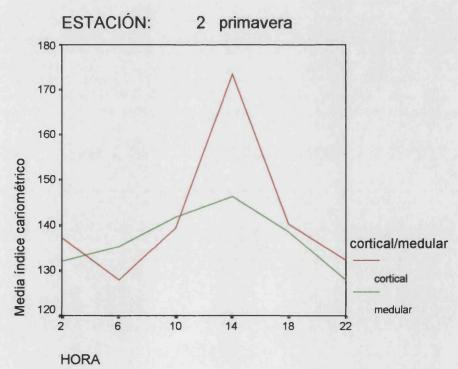

Así, la zona 1 es la pars distal y la 2 la intermedia.

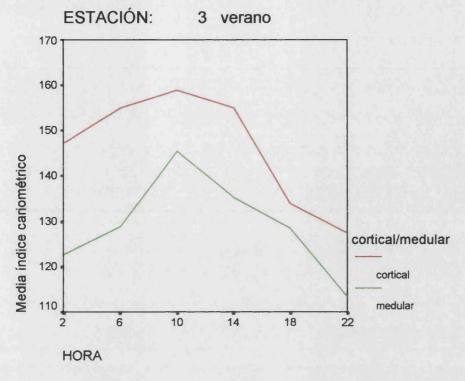
La región 1 corresponde a la cortical y la 2 a la medular.

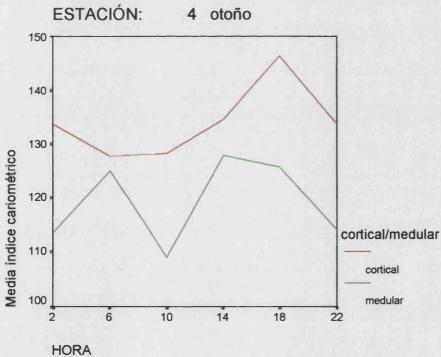

El orden de registro estacional es: 1 Invierno, 2 primavera, 3 verano y 4 otoño

Además, la fotofase queda expresada con el "binomio día/noche".


Variaciones del índice cariométrico Global (pars β y C)




Variaciones del índice cariométrico Global (pars β y C): cortical y medular

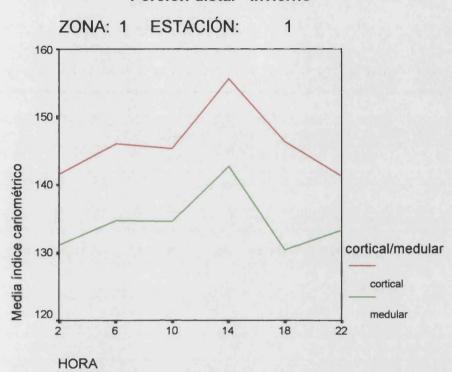


Variaciones estacionales del índice cariométrico global cortico-medular

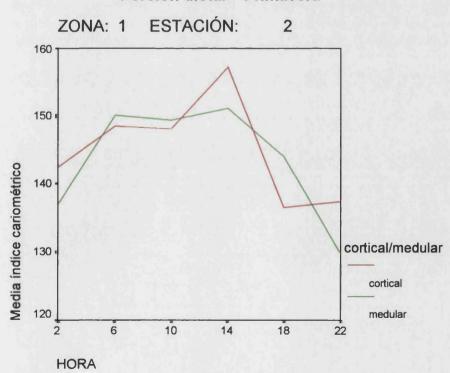
Posteriormente se analizaron las zonas C y β por separado.

En primer lugar observamos la zona C, analizando estación por estación y distinguiendo entre cortical y medular:

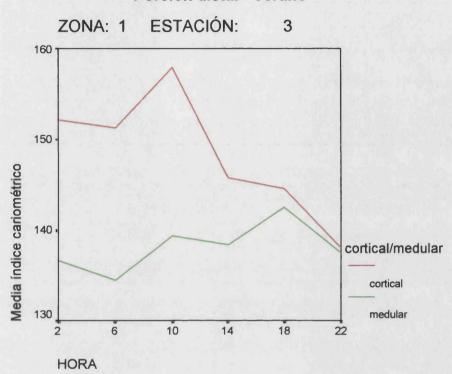
- En la zona C:

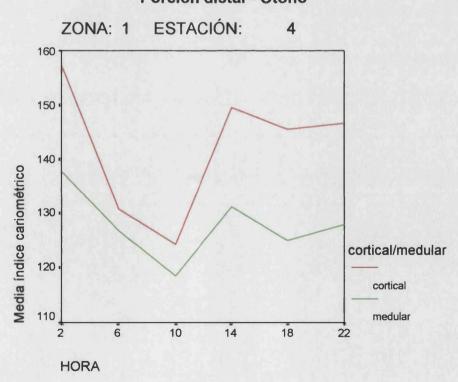

- Los picos máximos aparecen en las observaciones diurnas, a excepción del Otoño, donde los valores más altos se recogen en las observaciones de las 22 horas.
- O Los valores para la cortical superan a los de la medular en casi todas las observaciones, a excepción de la Primavera en la que, aunque el pico máximo coincide con la cortical a las 14 horas, las observaciones de la medular la superan, por poco, en las 6, 10 y 18 horas.
- A destacar los comportamientos prácticamente opuestos entre los valores obtenidos en Verano y Otoño, presentando como puntos máximos los valores que son los mínimos en la otra estación y viceversa.

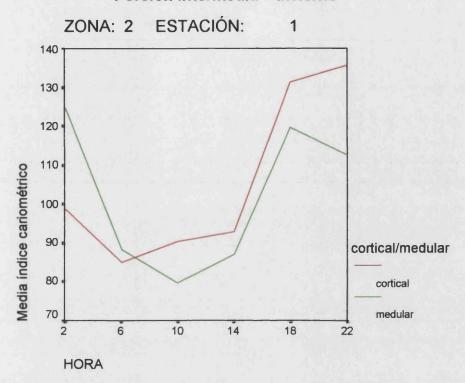
- En la zona β:

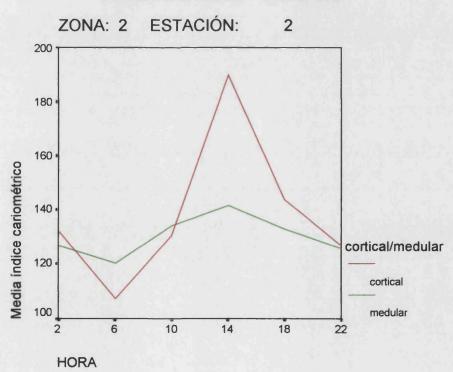

- O Los valores máximos se corresponden con las estaciones de Primavera y Verano, agrupándose los picos máximos en estas estaciones en las observaciones de las 14 y 10 horas.
- o Es muy significativo el comportamiento contrario en el Invierno, donde los valores máximos corresponden a las observaciones de las 22, 18 y 2 horas, con picos mínimos a las 6 y a las 10.
- o Hay que señalar, no obstante, que los valores máximos alcanzados en Invierno son inferiores a los valores mínimos de Primavera y Verano.

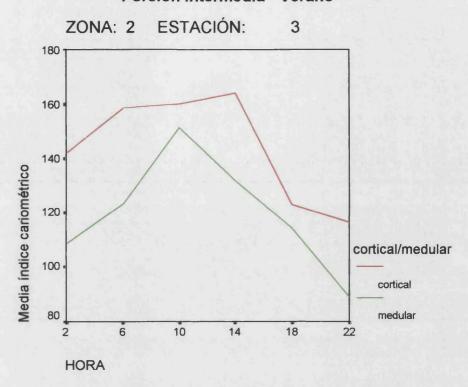
Evolución estacional del índice cariométrico cortico-medular de la porción distal (C) y de la porción intermedia (β)

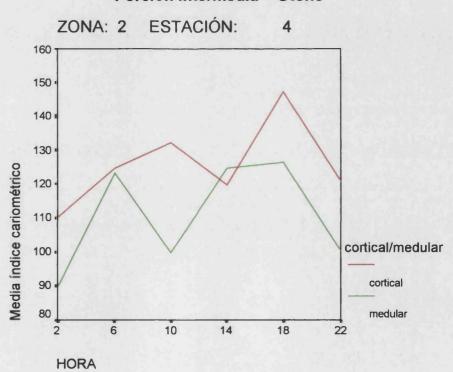

Porción distal - Invierno


Porción distal - Primavera


Porción distal - Verano


Porción distal - Otoño

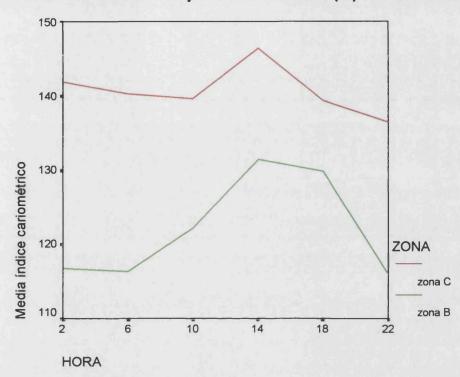

Porción intermedia - Invierno


Porción intermedia - Primavera

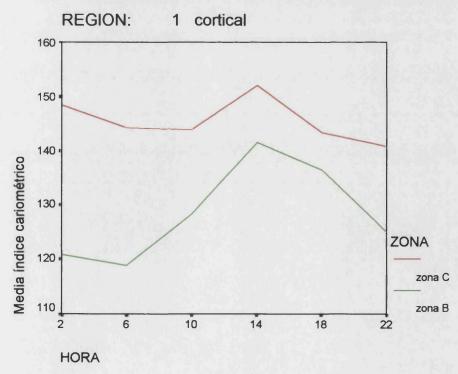
Porción intermedia - Verano

Porción intermedia - Otoño

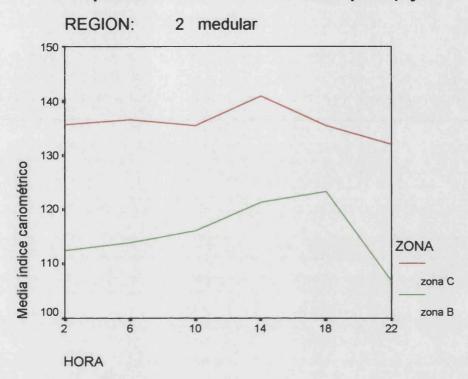
El siguiente paso fue realizar las comparaciones entre las dos zonas que se habían analizado previamente por separado.


Primeramente se compararon sin hacer distinciones entre las regiones cortical y medular de cada zona. A continuación, diferenciando las mismas.

La primera conclusión es que, tanto en conjunto, como en la diferenciación regional cortical / medular, los valores máximos obtenidos para los índices cariométricos corresponde a la zona C.


Así mismo, y al no hacer aquí distinción por estaciones, es de destacar que en ambos casos los picos corresponden con las observaciones diurnas: Siempre las 14 horas salvo en la medular de la zona β que pasa a ser las 18 horas (con escaso margen sobre la anterior).

Señalar también que, aunque en general, los picos máximos sean diurnos tanto en la cortical como en la medular, los valores mayores se observan en la cortical, pero diferencias entre valores máximos y mínimos son más importante en la medular de ambas zonas C y β , destacándose más la discrepancia día / noche en estas regiones medulares.


Comparación Global de las porciones distal (C) e intermedia (β)

Comparación de corticales entre pars β y C

Comparación de medulares entre pars β y C

A continuación se muestra, mediante diagramas de barras, las observaciones agrupadas estudiando el binomio día / noche.

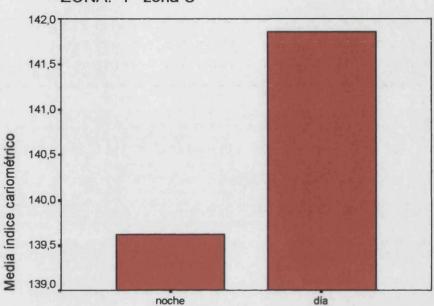
Para ello se agrupan en dos segmentos con tres observaciones en cada uno. Considerando como diurnas las de la 10, 14 y 18 horas, y como nocturnas las de las 22, 2 y 6 horas.

Primeramente observamos que tanto en la zona C como en la β , los valores máximos corresponden a las observaciones diurnas.

Es de señalar, que la diferencia entre los valores de los índices cariométricos diurnos y nocturnos es más significativa en la zona β (128 – 116) que en la C (141.5 – 139.5).

En el estudio diferenciado por regiones cortical y medular encontramos que se mantiene la tónica de valores máximos diurnos en ambos casos y tanto para C como para β.

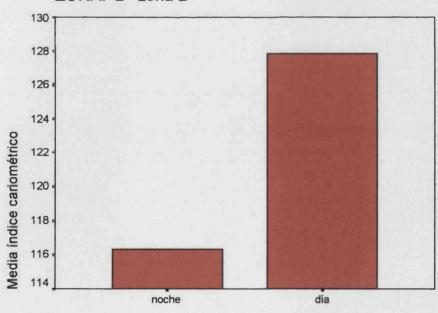
Este comportamiento se mantiene al realizar el estudio por separado de las estaciones, pero aquí hay que realizar las siguientes aclaraciones:


- En la gráfica de la zona C para la Primavera, diferenciando cortical y medular destaca el hecho de que la media de los índices cariométricos en las observaciones diurnas para la región medular supera ligeramente la de la cortical (como se vio en su momento, aunque el pico máximo era para la cortical, a las 14 horas, los valores de la medular eran ligeramente superiores para las otras dos observaciones diurnas).
- En las gráficas de la zona β para las estaciones de Invierno y Primavera se observa también que las medias de las observaciones nocturnas es superior en la medular que en la cortical.
- Las medias de los índices cariométricos de la zona β en invierno son mayores para las observaciones nocturnas, tanto en la cortical como en la medular.

A continuación se representan las comparaciones del binomio día / noche analizando únicamente las regiones cortical y medular, considerando juntas las zonas C y β . Es de señalar que se mantiene la tónica de lo referido hasta el momento, con el predominio de los valores de las observaciones diurnas con la excepción manifiesta de las invernales para la región medular, donde los valores máximos son los nocturnos.

COMPARACIONES DÍA / NOCHE Comparaciones fotofásicas globales por zonas

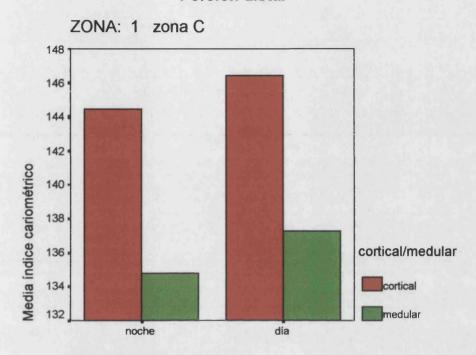
Porción distal



BINOMIO DÍA-NOCHE

Fotofase

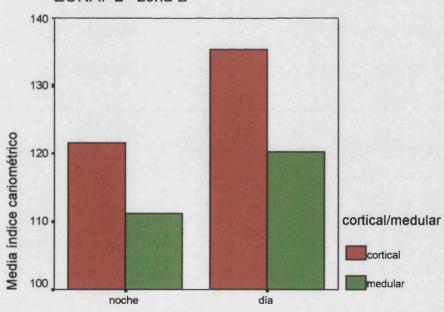
Porción intermedia


ZONA: 2 zona B

BINOMIO DÍA-NOCHE

Comparaciones fotofásicas cortico-medulares por zonas

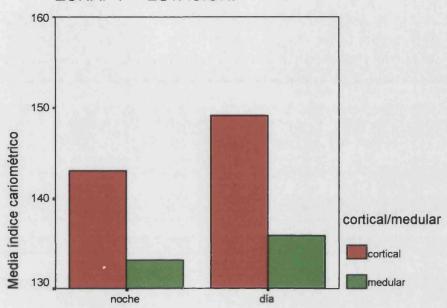
Porción distal



BINOMIO DÍA-NOCHE

Fotofase

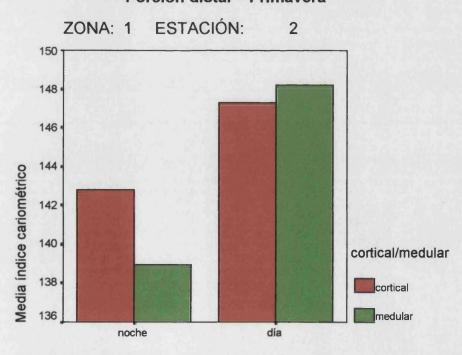
Porción intermedia



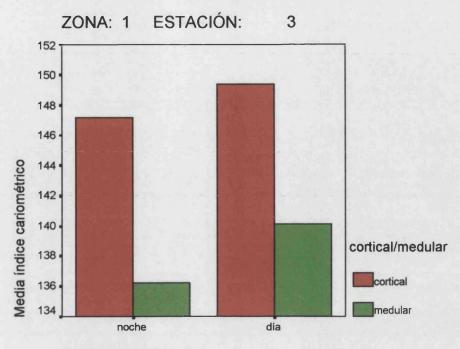
BINOMIO DÍA-NOCHE

Comparaciones fotofásicas y estacionales cortico-medulares por zonas

Porción distal - Invierno

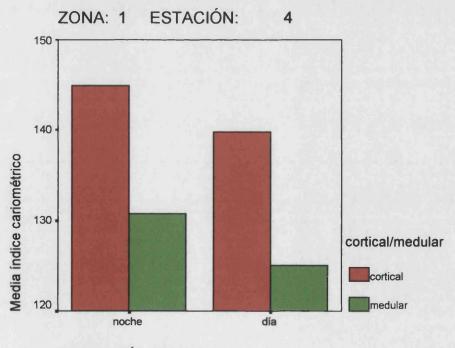

ZONA: 1 ESTACIÓN: 1

BINOMIO DÍA-NOCHE

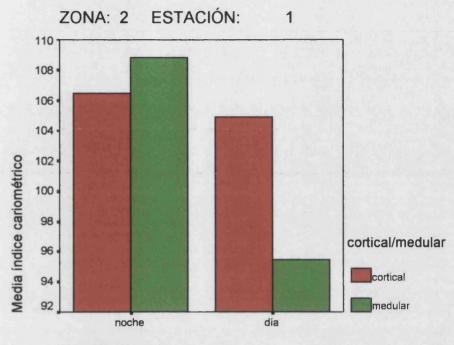

Fotofase

Porción distal - Primavera

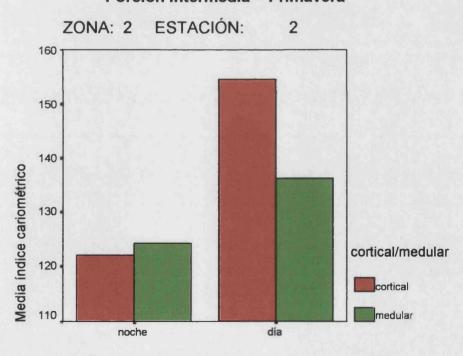
BINOMIO DÍA-NOCHE


Porción distal - Verano

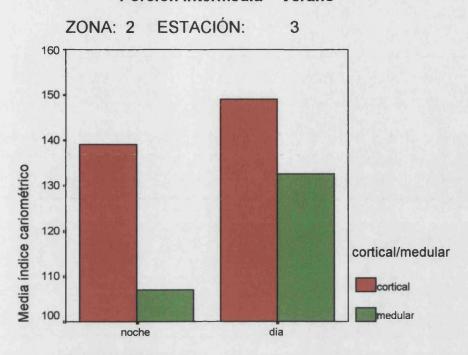
BINOMIO DÍA-NOCHE


Fotofase

Porción distal - Otoño

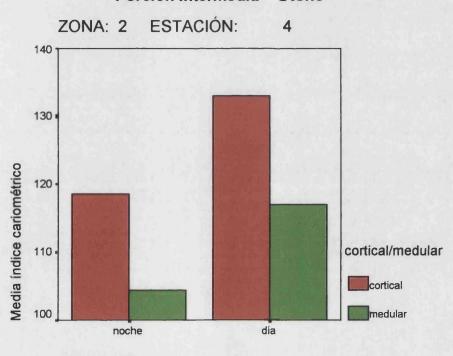

BINOMIO DÍA-NOCHE

Porción intermedia – Invierno

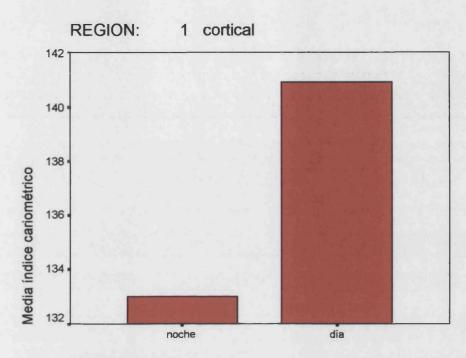

BINOMIO DÍA-NOCHE
Fotofase

Porción intermedia - Primavera

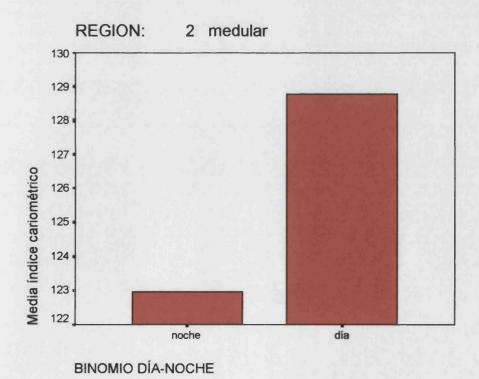
BINOMIO DÍA-NOCHE


Porción Intermedia - Verano

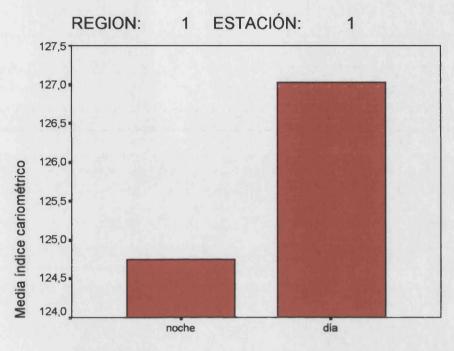
BINOMIO DÍA-NOCHE


Fotofase

Porción intermedia - Otoño

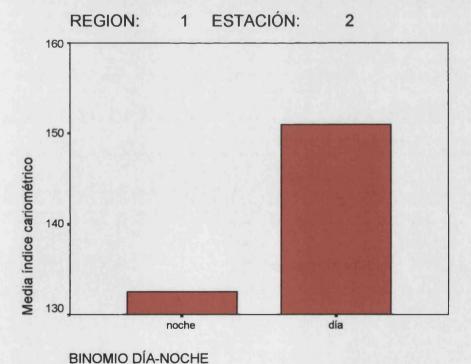

BINOMIO DÍA-NOCHE

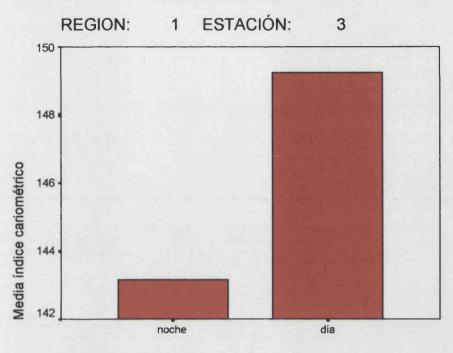
comparación fotofásica global en cortical y medular


BINOMIO DÍA-NOCHE

Fotofase

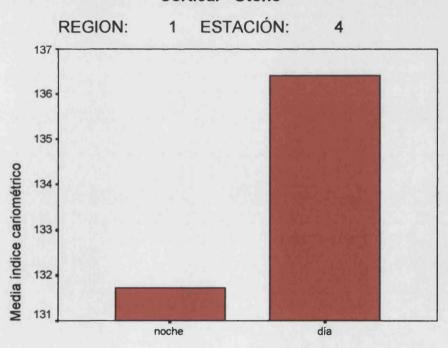
Comparación fotofásica estacional de la cortical




BINOMIO DÍA-NOCHE

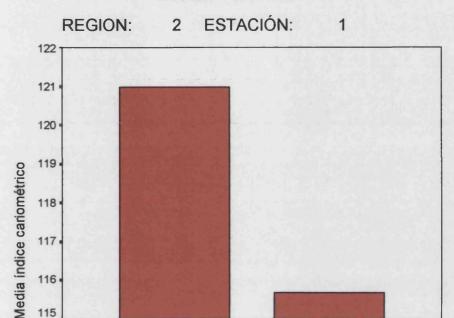
Fotofase

Cortical - Primavera


Cortical - Verano

BINOMIO DÍA-NOCHE

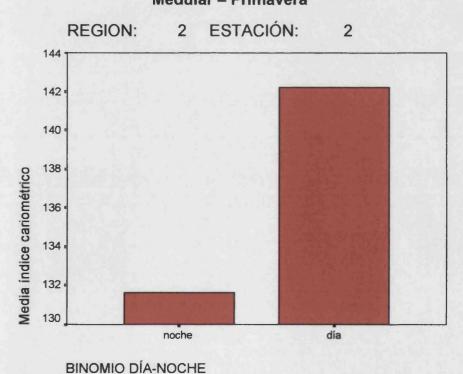
Fotofase


Cortical - Otoño

BINOMIO DÍA-NOCHE

Comparación fotofásica estacional de la medular

Medular - Invierno

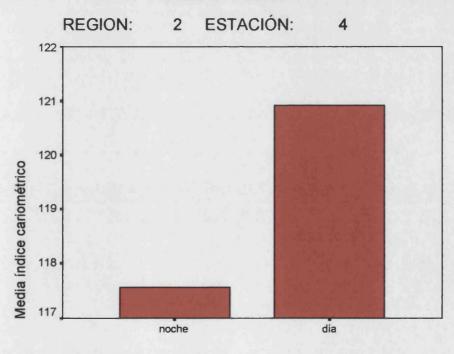

BINOMIO DÍA-NOCHE

noche

Fotofase

Medular – Primavera

día


Medular - Verano

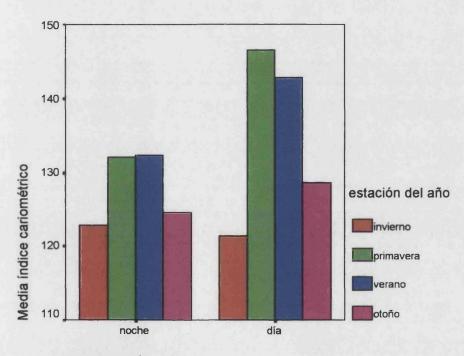
BINOMIO DÍA-NOCHE

Fotofase

Medular - Otoño

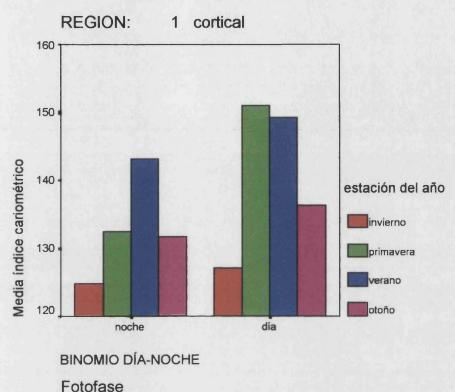
BINOMIO DÍA-NOCHE

Análisis de las variaciones circadianas y estacionales del índice cariométrico de los pinealocitos:	
Estudio morfológico comparativo de las porciones distal e intermedia en la glándula pineal del conejo)


71

Finalmente se muestran las representaciones gráficas en diagramas de barras de la evolución estacional agrupada del binomio día / noche:

- Considerando las zonas C y β en su conjunto y diferenciando las regiones cortical y medular.
- Comparando una zona con la otra sin distinguir cortical de medular.
- Comparando las zonas y distinguiendo las regiones.


Comparación fotofásica global a lo largo de las estaciones

(sin diferenciar cortical / medular)

BINOMIO DÍA-NOCHE

Comparación fotofásica estacional global de la cortical y la medular

REGION: 2 medular

150

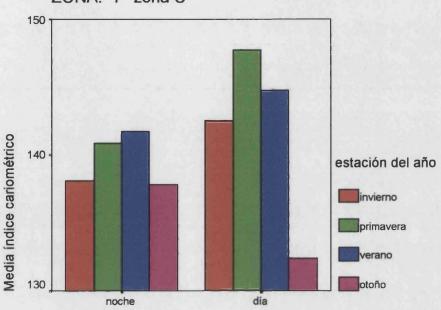
140

130

120

primavera

verano

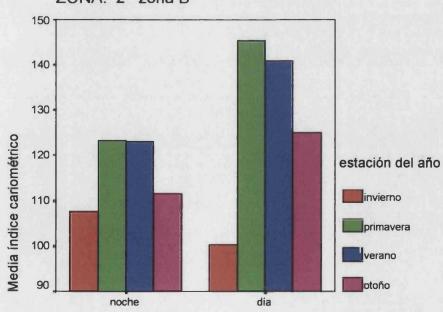

otoño

BINOMIO DÍA-NOCHE

Comparación fotofásica estacional global (sin diferenciar cortical / medular)

Porción distal

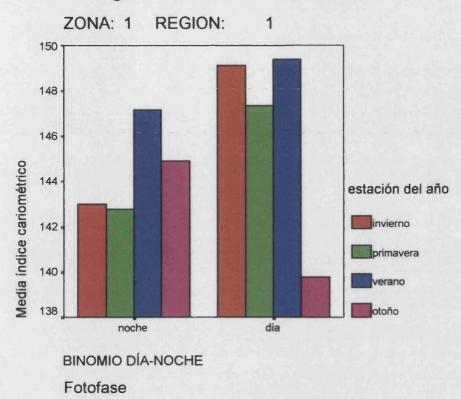
ZONA: 1 zona C

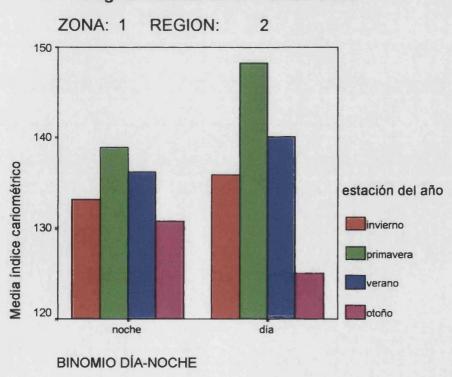


BINOMIO DÍA-NOCHE

Fotofase

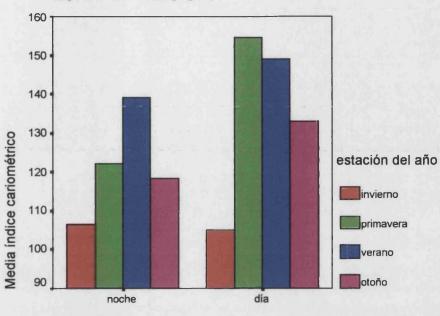
Porción Intermedia


ZONA: 2 zona B


BINOMIO DÍA-NOCHE

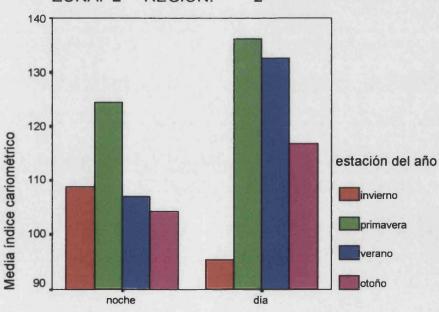
Comparación fotofásica estacional de la cortical y de la medular para cada zona (pars C y β)

Región cortical de la Porción distal



Región medular de la Porción distal

Región cortical de la Porción intermedia



BINOMIO DÍA-NOCHE

Fotofase

Región medular de la Porción intermedia

ZONA: 2 REGION: 2

BINOMIO DÍA-NOCHE

ANÁLISIS

ANÁLISIS DE LA VARIANZA DE LA MUESTRA CON CELDAS DE TAMAÑO 10

ESTIMACIÓN DE LOS EFECTOS PRINCIPALES Y DE LAS INTERACCIONES

GRÁFICAS DE LAS MEDIAS ESTIMADAS PARA TODAS LAS COMBINACIONES DE DOS FACTORES

ESTADÍSTICA DESCRIPTIVA DE LA MUESTRA DE TAMAÑO 10 POR CELDA Tal como se indicó en el inicio del capítulo, el análisis estadístico del estudio se llevó a cabo a partir de la selección de una muestra representativa del total de las observaciones.

Como se recordará, el número de observaciones ascendía a un total de 4800, las cuales se agrupaban en celdas de tamaño 50. Cada celda correspondía con una hora de observación de las 6 determinadas previamente, para cada estación, de cada región y de cada zona.

El número, tan elevado, de observaciones podía hacer suponer que las diferencias observadas entre las fuentes estudiadas, resultaran estadísticamente significativas debido exclusivamente al tamaño de la población.

Por ello se seleccionó una muestra que, siendo de menor tamaño, fuera representativa y mantuviera las mismas agrupaciones.

Para eso se obtuvo una muestra aleatoria de tamaño 10 para cada celda de 50, con un tamaño total de 960 índices cariométricos.

Sobre esta muestra se desarrolló el análisis estadístico descrito al inicio del capítulo, consistente en un análisis de la varianza, aplicando además un contraste de Levene sobre la igualdad de las varianzas de error.

Los resultados de este análisis, que se detallan numéricamente a continuación, junto a las estimaciones de los efectos principales y de las interacciones de orden 2, muestran que existen diferencias estadisticamente significativas (con un elevado nivel de significación: ,000) en todos los campos estudiados: zona C o β , región cortical o medular, hora del día en que se realiza la observación y estación del año de la misma.

Así mismo, las diferencias estadísticamente significativas se mantienen con el mismo nivel de significación para todas las interacciones dos a dos realizadas, con excepción de la que combina zona C o β y región cortical o medular en la que el nivel de significación, aunque importante, no es tan elevado como en el resto (0,054).

RESULTADOS DEL ANALISIS DE LA VARIANZA

Pruebas de los efectos inter-sujetos

Variable dependiente: Indice cariométrico

Fuente	Suma de cuadrados tipo III	gi	Media cuadrática	F	Significación
HORA	19931,269	5	3986,254	20,152	,000
ESTACIÓN	47598,321	3	15866,107	80,209	,000
ZONA	82736,780	1	82736,780	418,266	,000
REGION	30813,068	1	30813,068	155,772	,000
HORA * ESTACIÓN	53903,615	15	3593,574	18,167	,000
HORA * ZONA	9744,781	5	1948,956	9,853	,000
HORA * REGION	2652,987	5	530,597	2,682	,020
ESTACIÓN * ZONA	23806,684	3	7935,561	40,117	,000
ESTACIÓN * REGION	7395,282	3	2465,094	12,462	,000
ZONA * REGION	737,803	1	737,803	3,730	,054
Error	181390,924	917	197,809		
Total corregida	460711,515	959			

Contraste de Levene sobre la igualdad de las varianzas error

Variable dependiente: índice cariométrico

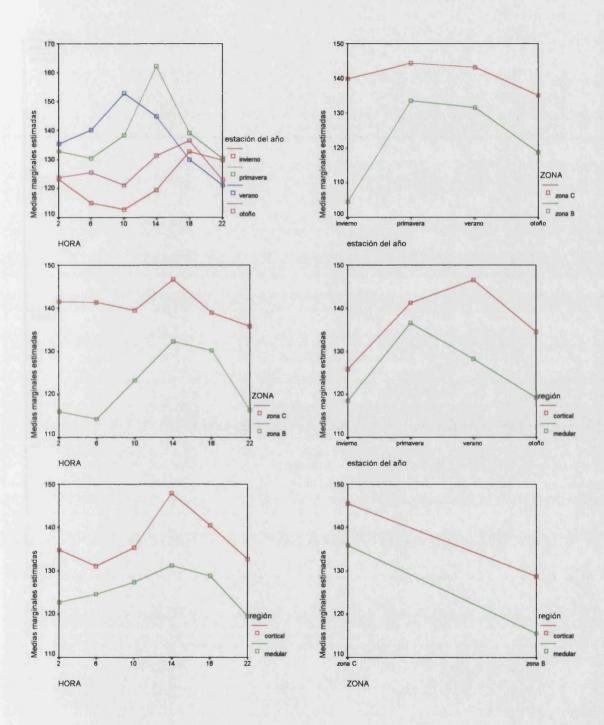
F	gl1	gl2	Significación
6,292	95	864	.000

Contrasta la hipótesis nula de que la varianza error de la variable dependiente es igual a lo largo de todos los grupos.

Estimaciones de los efectos principales y de las interacciones de orden 2

	В	Error tip.	t	Sign.	Intervalo de al 95	
Parámetro					Limite inferior	Limite superior
Intersección	105,020	2,977	35,282	,000	99,178	110,862
H=2	-1,846	3,852	-,479	,632	-9,405	5,713
H=6	1,847	3,852	,480	,632	-5,712	9,407
H=10	2,307	3,852	,599	,549	-5,252	9,867
H=14	9,176	3,852	2,382	,017	1,617	16,735
H=18	19,591	3,852	5,086	,000	12,032	27,150
H=22	0	,	,	,	,	,
E=1	1,315	3,631	,362	,717	-5,812	8,442
E=2	15,570	3,631	4,288	,000	8,443	22,697
E=3	-1,003	3,631	-,276	,782	-8,130	6,124
E=4	- 0					L - 1 - 1 -
Z=1	19,078	2,871	6,645	,000	13,444	24,713
Z=2	0	2,011		, 000	20,111	
R=1	18,600	2,871	6,479	,000	12,966	24,235
R=2	0	,	,	,	12,500	2.7200
H=2 * E=1	-7,425	4,448	-1,669	,095	-16,154	1,304
H=2 * E=2	1,663	4,448	,374	,709	-7,066	10,391
H=2 * E=3	13,695	4,448	3,079	,002	4,966	22,424
H=6 * E=1	-17,310	4,448	-3,892	,000	-26,039	-8,581
H=6 * E=2	-2,555	4,448	-,574	,566	-11,284	6,174
H=6 * E=3	16,673	4,448	3,749	,000	7,944	25,401
H=10 * E=1	-15,195	4,448	-3,416	,001	-23,924	-6,466
H=10 * E=2	9,853	4,448	2,215	,001	1,124	18,581
H=10 * E=3	33,593	4,448	7,553	,000	24,864	42,321
H=14 * E=1	-18,812	4,448	-4,230	,000	-27,541	-10,084
H=14 * E=2	23,305	4,448	5,240	,000	14,576	32,034
H=14 * E=3	15,385	4,448	3,459	,000	6,656	24,114
H=18 * E=1					-19,344	-1,886
H=18 * E=2	-10,615	4,448	-2,387 -1,073	,017	-13,501	3,956
H=18 * E=3			-1,050	,294		
H=2 * Z=1	-4,670	4,448			-13,399	4,059
H=6 * Z=1	6,029	3,145	1,917	,056	-,143 1,549	12,201
H=10 * Z=1	-3,207	3,145	2,455		-9,380	2,965
H=14 * Z=1		3,145	-1,020	,308		
H=18 * Z=1	-5,184 -10,739	3,145	-1,648 -3,415	,100	-11,356 -16,911	, 988 -4, 567
H=2 * R=1	-1,026			,001	-7,198	5,146
H=6 * R=1		3,145	-,326	,041	-12,608	-,264
H=10 * R=1	-6,436 -5,012	3,145	-2,047 -1,594	,111	-11,185	1,160
H=14 * R=1	3,726	3,145	1,185		-2,446	9,898
H=18 * R=1		3,145		,236		
E=1 * Z=1	-1,334 18,983	3,145	7,424	,672	-7,506	4,838
E=1 * Z=1 E=2 * Z=1		2,568	7,392	,000	13,943	24,022
	-5,646	2,568	-2,199	,028	-10,685	-,606
E=3 * Z=1	-4,782	2,568	-1,862	,063	-9,821	, 258
E=1 * R=1	-7,837	2,568	-3,052	,002	-12,877	-2,798
E=2 * R=1	-10,554	2,568	-4,110	,000	-15,594	-5,515
E=3 * R=1	3,048	2,568	1,187	,235	-1,991	8,088
Z=1 * R=1	-3,507	1,816	-1,931	,054	-7,070	5,677E-02

Se muestran también las gráficas de las medias de la muestra estimadas para todas las combinaciones de dos factores.


De ellas cabe destacar lo siguiente:

Los resultados de las representaciones gráficas de la muestra concuerdan con las conclusiones extraídas de las representaciones del total de las observaciones.

- Se mantiene que los valores mayores corresponden a la zona C
- Se mantiene que los valores máximos corresponden, en general a la cortical
- Se mantiene que los valores más altos se dan en las estaciones de Primavera y Verano, y que las diferencias estacionales son mucho más acusadas en la zona β que en la C.
- El comportamiento estacional que siguen las regiones cortical y medular es muy similar, aunque el pico cortical se da en Verano y el medular en Primavera.
- La comparación del comportamiento circadiano entre cortical y medular también mantiene un patrón semejante.

Finalmente se muestran los estadísticos descriptivos por celdas horarias correspondientes a la muestra analizada.

Gráficas de las medias estimadas para todas las combinaciones de dos factores

Estadística descriptiva por horas (muestra de tamaño 10 por celda)

HORA 2

estación del año	ZONA	región	Media	Varianza	Desv. típ.	N	Mínimo	Máximo
invierno	zona C	cortical	140,170	17,793	4,218	10	135,1	150,6
		medular	131,340	7,889	2,809	10	127,5	137,5
		Total	135,755	32,684	5,717	20	127,5	150,6
	zona B	cortical	99,690	66,670	8,165	10	89,9	115,3
		medular	121,200	64,560	8,035	10	100,3	125,2
	4	Total	110,445	183,919	13,562	20	89,9	125,2
	Total	cortical	119,930	471,227	21,708	20	89,9	150,6
		medular	126,270	61,376	7,834	20	100,3	137,5
		Total	123,100	269,780	16,425	40	89,9	150,6
primavera	zona C	cortical	140,750	16,221	4,027	10	135,6	150,6
		medular	134,900	28,529	5,341	10	127,6	141,2
		Total	137,825	30,203	5,496	20	127,6	150,6
	zona B	cortical	130,480	18,968	4,355	10	123,4	136,6
		medular	124,950	111,198	10,545	10	114,1	140,7
		Total	127,715	69,706	8,349	20	114,1	140,7
	Total	cortical	135,615	44,424	6,665	20	123,4	150,6
		medular	129,925	92,240	9,604	20	114,1	141,2
		Total	132,770	74,882	8,653	40	114,1	150,6
verano	zona C	cortical	154,000	8,596	2,932	10	149,5	158,5
		medular	135,510	10,881	3,299	10	130,6	143,3
		Total	144,755	99,194	9,960	20	130,6	158,5
	zona B	cortical	144,930	288,962	16,999	10	126,8	169,8
		medular	107,410	217,983	14,764	10	91,0	129,1
		Total	126,170	610,593	24,710	20	91,0	169,8
	Total	cortical	149,465	162,597	12,751	20	126,8	169.8
		medular	121,460	316,201	17,782	20	91,0	143,3
		Total	135,463	434,358	20,841	40	91,0	169,8
otoño	zona C	cortical	157,530	14,165	3,764	10	151,7	164,3
		medular	137,710	15,437	3,929	10	132,3	144,8
		Total	147,620	117,399	10,835	20	132,3	164,3
	zona B	cortical	110,330	13,627	3,691	10	102,2	115,3
		medular	88,980	23,897	4,888	10	80,2	99,1
		Total	99,655	137,728	11,736	20	80,2	115,3
	Total	cortical	133,930	599,438	24,483	20	102,2	164,3
		medular	113,345	643,530	25,368	20	80,2	144,8
		Total	123,637	714,200	26,725	40	80,2	164,3
Total	zona C	cortical	148,112	74,805	8,649	40	135,1	164,3
		medular	134,865	19,846	4,455	40	127,5	144,8
		Total	141,489	91,156	9,548	80	127,5	164,3
	zona B	cortical	121,358	404,968	20,124	40	89,9	169,8
	20,12	medular	110,635	300,450	17,333	40	80,2	140,7
		Total	115,996	377,351	19,426	80	80,2	169,8
	Total	cortical	134,735	418,072	20,447	80	89,9	169,8
	Total	medular				80	80,2	144,8
		Total	122,750	306,752	17,514			
		rotal	128,743	396,269	19,906	160	80,2	169,8

HORA 6

estación del año	ZONA	región	Media	Varianza	Desv. típ.	N	Mínimo	Máximo
invierno	zona C	cortical	148,210	35,848	5,987	10	139,7	159,8
		medular	135,190	2,534	1,592	10	133,3	137,3
		Total	141,700	62,792	7,924	20	133,3	159,8
	zona B	cortical	85,450	39,396	6,277	10	78,2	98,2
		medular	91,350	62,507	7,906	10	77,7	99,6
		Total	88,400	57,431	7,578	20	77,7	99,6
	Total	cortical	116,830	1072,173	32,744	20	78,2	159,8
		medular	113,270	536,584	23,164	20	77,7	137,3
		Total	115,050	787,003	28,054	40	77,7	159,8
primavera	zona C	cortical	150,310	25,921	5,091	10	140,7	159,4
		medular	151,880	10,908	3,303	10	144,9	155,3
		Total	151,095	18,094	4,254	20	140,7	159,4
	zona B	cortical	103,910	832,463	28,852	10	73,0	166,3
		medular	115,450	547,725	23,404	10	81,7	139,1
		Total	109,680	688,819	26,245	20	73,0	166,3
	Total	cortical	127,110	973,171	31,196	20	73,0	166,3
		medular	133,665	613,865	24,776	20	81,7	155,3
		Total	130,388	784,189	28,003	40	73,0	166,3
verano	zona C	cortical	152,150	11,769	3,431	10	146,8	158,5
Voluno		medular	135,460	21,538	4,641	10	130,3	143,7
		Total	143,805	89,082	9,438	20	130,3	158,5
	zona B	cortical	153,750	299,054	17,293	10	133,3	182,3
		medular	119,740	221,180	14,872	10	101,0	139,0
		Total	136,745	550,816	23,469	20	101,0	182,3
	Total	cortical	152,950	147,906	12,162	20	133,3	182,3
	· otal	medular	127,600	180,003	13,417	20	101,0	143,7
		Total	140,275	324,526	18,015	40	101,0	182,3
otoño	zona C	cortical	130,550	10,594	3,255	10	125,4	137,4
0.0110	Eona o	medular	127,360	28,405	5,330	10	120,5	135,1
		Total	128,955	21,151	4,599	20	120,5	137,4
	zona B	cortical	124,340	241,087	15,527	10	104,1	150,0
	20114	medular	119,640	85,878	9,267	10	106,2	138,4
		Total	121,990	160,691	12,676	20	104,1	150,0
	Total	cortical	127,445	129,366	11,374	20	104,1	150,0
	, otal	medular	123,500	69,818	8,356	20	106,2	138,4
		Total	125,472	101,029	10,051	40	104,1	150,0
Total	zona C	cortical	145,305	95,839	9,790	40	125,4	159,8
	20110	medular	137,472	96,448	9,821	40	120,5	155,3
		Total	141,389	110,457	10,510	80	120,5	159,8
	zona B	cortical	116,862	985,106	31,386	40	73,0	182,3
	Evila D	medular	111,545	354,189	18,820	40	73,0	139,1
		Total		668,329		80	77,7	7 19
	Total	cortical	114,204	-	25,852	80		182,3
	Total	medular	131,084	738,435	27,174		73,0	182,3
			124,509	392,652	19,815	80	77,7	155,3
		Total	127,796	572,862	23,935	160	73,0	182,3

HORA 10

estación del año	ZONA	región	Media	Varianza	Desv. tip.	N	Mínimo	Máximo
invierno	zona C	cortical	143,410	29,143	5,398	10	133,8	149,5
		medular	135,410	26,999	5,196	10	127,8	142,3
		Total	139,410	43,436	6,591	20	127,8	149,5
	zona B	cortical	92,060	29,863	5,465	10	85,0	102,2
		medular	80,610	69,765	8,353	10	70,7	93,4
		Total	86,335	81,693	9,038	20	70,7	102,2
	Total	cortical	117,735	721,851	26,867	20	85,0	149,5
		medular	108,010	836,109	28,916	20	70,7	142,3
		Total	112,873	783,256	27,987	40	70,7	149,5
primavera	zona C	cortical	147,590	13,665	3,697	10	139,1	153,5
		medular	148,810	10,910	3,303	10	142,3	153,1
		Total	148,200	12,033	3,469	20	139,1	153,5
	zona B	cortical	123,330	79,580	8,921	10	107,2	141,0
		medular	134,280	89,364	9,453	10	119,3	147,7
		Total	128,805	111,579	10,563	20	107,2	147,7
	Total	cortical	135,460	199,050	14,109	20	107,2	153,5
	-	medular	141,545	103,056	10,152	20	119,3	153,1
		Total	138,502	156,674	12,517	40	107,2	153,5
verano	zona C	cortical	157,540	15,400	3,924	10	150,8	163,6
Volume	Lond O	medular	139,130	15,311	3,913	10	133,8	145,4
		Total	148,335	103,739	10,185	20	133,8	163,6
	zona B	cortical	156,540	303,227	17,413	10	137,1	183,1
	Loriu D	medular	158,400	226,384	15,046	10	137,8	176,5
		Total	157,470	251,779	15,868	20	137,1	183,1
	Total	cortical	157,040	151,192	12,296	20	137,1	183,1
	TOLLI	medular	148,765	212,207	14,567	20	133,8	176,5
		Total	152,903	194,598	13,950	40	133,8	183,1
otoño	zona C	cortical	124,960	4,692	2,166	10	122,6	130,5
Otorio	ZONA C	medular		27,801	5,273	10	112,1	129,8
		Total	119,090	24,459	4,946	20	112,1	130,5
	zona B	cortical			+	10	110,5	195,9
	ZUIIA D	medular	137,480	653,457 140,225	25,563	10	84,4	120,1
		Total	103,190	685,377	11,842 26,180	20	84,4	195,9
	Total	cortical	120,335	353,005	18,788	20	110,5	195,9
	Total	medular				20	84,4	129,8
		Total	111,140	146,120	12,088	40		
Total	zona C	cortical	121,180	346,550	18,616		84,4	195,9
Total	ZONA C	medular	143,375	157,471	12,549	40	122,6	163,6
			135,610	136,538	11,685	40	112,1	153,1
	Topo P	Total	139,493	160,409	12,665	80	112,1	163,6
	zona B	cortical	127,353	814,290	28,536	40	85,0	195,9
		medular	119,120	1021,204	31,956	40	70,7	176,5
	T.A.I.	Total	123,236	923,288	30,386	80	70,7	195,9
	Total	cortical	135,364	544,723	23,339	80	85,0	195,9
		medular	127,365	640,384	25,306	80	70,7	176,5
		Total	131,364	604,922	24,595	160	70,7	195,9

HORA 14

estación del año	ZONA	región	Media	Varianza	Desv. tip.	N	Mínimo	Máximo
invierno	zona C	cortical	155,270	8,382	2,895	10	150,6	159,6
		medular	143,980	28,393	5,328	10	135,3	151,3
		Total	149,625	50,963	7,139	20	135,3	159,6
	zona B	cortical	90,130	79,222	8,901	10	77,6	104,5
		medular	88,640	16,163	4,020	10	84,8	96,8
		Total	89,385	45,767	6,765	20	77,6	104,5
	Total	cortical	122,700	1158,134	34,031	20	77,6	159,6
		medular	116,310	827,030	28,758	20	84,8	151,3
		Total	119,505	977,601	31,267	40	77,6	159,6
primavera	zona C	cortical	158,910	11,348	3,369	10	153,1	163,7
		medular	150,490	4,339	2,083	10	147,9	154,3
		Total	154,700	26,087	5,108	20	147,9	163,7
	zona B	cortical	194,770	240,951	15,523	10	180,6	226,8
		medular	144,650	237,618	15,415	10	112,3	165,5
		Total	169,710	887,747	29,795	20	112,3	226,8
	Total	cortical	176,840	457,915	21,399	20	153,1	226,8
		medular	147,570	123,586	11,117	20	112,3	165,5
		Total	162,205	502,971	22,427	40	112,3	226,8
verano	zona C	cortical	145,930	4,842	2,201	10	143,4	150,1
		medular	138,300	17,649	4,201	10	133,1	144,1
		Total	142,115	25,974	5,096	20	133,1	150,1
	zona B	cortical	167,190	135,532	11,642	10	141,8	180,2
		medular	128,360	211,938	14,558	10	112,5	151,7
		Total	147,775	561,372	23,693	20	112,5	180,2
	Total	cortical	156,560	185,437	13,618	20	141,8	180,2
		medular	133,330	134,753	11,608	20	112,5	151,7
		Total	144,945	294,357	17,157	40	112,5	180,2
otoño	zona C	cortical	149,560	4,307	2,075	10	145,3	153,2
		medular	130,850	13,043	3,611	10	128,3	139,4
		Total	140,205	100,341	10,017	20	128,3	153,2
	zona B	cortical	121,360	149,460	12,225	10	103,2	136,6
		medular	123,950	85,269	9,234	10	110,9	136,5
		Total	122,655	112,953	10,628	20	103,2	136,6
	Total	cortical	135,460	282,111	16,796	20	103,2	153,2
		medular	127,400	59,098	7,688	20	110,9	139,4
		Total	131,430	182,887	13,524	40	103,2	153,2
Total	zona C	cortical	152,417	32,445	5,696	40	143,4	163,7
		medular	140,905	68,282	8,263	40	128,3	154,3
		Total	146,661	83,279	9,126	80	128,3	163,7
	zona B	cortical	143,363	1813,574	42,586	40	77,6	226,8
	20110	medular	121,400	555,029	23,559	40	84,8	165,5
		Total	132,381	1291,425	35,936	80	77,6	226,8
	Total	cortical	147,890	932,083	30,530	80	77,6	226,8
	Total	medular				80		
		Total	131,153	404,026	20,100		84,8	165,5
	17-12	IOIAI	139,521	734,329	27,099	160	77,6	226,8

HORA 18

estación del año	ZONA	región	Media	Varianza	Desv. tip.	N	Mínimo	Máximo
invierno	zona C	cortical	145,090	13,985	3,740	10	139,1	150,8
		medular	129,920	13,264	3,642	10	125,8	138,6
		Total	137,505	73,468	8,571	20	125,8	150,8
	zona B	cortical	134,450	141,583	11,899	10	113,4	159,0
		medular	121,780	114,113	10,682	10	107,3	145,6
		Total	128,115	163,363	12,781	20	107,3	159,0
	Total	cortical	139,770	103,482	10,173	20	113,4	159,0
		medular	125,850	77,773	8,819	20	107,3	145,6
		Total	132,810	137,988	11,747	40	107,3	159,0
primavera	zona C	cortical	136,890	6,614	2,572	10	133,6	141,3
		medular	143,750	23,538	4,852	10	138,6	151,2
		Total	140,320	26,667	5,164	20	133,6	151,2
	zona B	cortical	144,310	137,914	11,744	10	123,3	162,3
		medular	131,990	312,730	17,684	10	104,9	162,7
		Total	138,150	253,406	15,919	20	104,9	162,7
	Total	cortical	140,600	82,949	9,108	20	123,3	162,3
		medular	137,870	195,679	13,989	20	104,9	162,7
		Total	139,235	137,653	11,733	40	104,9	162,7
verano	zona C	cortical	143,830	14,025	3,745	10	139,3	151,3
		medular	142,960	5,909	2,431	10	140,4	147,5
		Total	143,395	9,642	3,105	20	139,3	151,3
	zona B	cortical	125,500	83,276	9,126	10	106,1	141,1
		medular	107,700	44,127	6,643	10	97,2	115,1
		Total	116,600	143,727	11,989	20	97,2	141,1
	Total	cortical	134,665	134,508	11,598	20	106,1	151,3
		medular	125,330	350,877	18,732	20	97,2	147,5
		Total	129,998	258,814	16,088	40	97,2	151,3
otoño	zona C	cortical	146,560	14,203	3,769	10	140,3	151,6
		medular	123,060	44,016	6,634	10	112,5	132,5
		Total	134,810	172,906	13,149	20	112,5	151,6
	zona B	cortical	147,240	155,238	12,459	10	127,3	167,7
		medular	129,290	177,359	13,318	10	110,8	147,5
		Total	138,265	242,336	15,567	20	110,8	167,7
	Total	cortical	146,900	80,383	8,966	20	127,3	167,7
		medular	126,175	115,076	10,727	20	110,8	147,5
		Total	136,538	205,358	14,330	40	110,8	167,7
Total	zona C	cortical	143,092	25,378	5,038	40	133,6	151,6
		medular	134,922	99,058	9,953	40	112,5	151,2
		Total	139,007	78,329	8,850	80	112,5	151,6
	zona B	cortical	137,875	194,921	13,961	40	106,1	167,7
		medular	122,690	240,788	15,517	40	97,2	162,7
		Total	130,283	273,473	16,537	80	97,2	167,7
	Total	cortical	140,484	115,647	10,754	80	106,1	167,7
		medular	128,806	205,654	14,341	80	97,2	162,7
		Total	134,645	193,946	13,926	160	97,2	167,7

HORA 22

estación del año	ZONA	región	Media	Varianza	Desv. típ.	N	Mínimo	Máximo
invierno	zona C	cortical	140,660	21,989	4,689	10	132,4	148,1
		medular	130,230	83,678	9,148	10	119,6	146,8
		Total	135,445	78,681	8,870	20	119,6	148,1
	zona B	cortical	135,800	56,567	7,521	10	118,8	144,3
		medular	112,790	73,437	8,570	10	104,1	127,4
		Total	124,295	200,912	14,174	20	104,1	144,3
	Total	cortical	138,230	43,426	6,590	20	118,8	148,1
		medular	121,510	154,463	12,428	20	104,1	146,8
		Total	129,870	168,089	12,965	40	104,1	148,1
primavera	zona C	cortical	137,650	13,423	3,664	10	130,2	141,5
		medular	129,870	3,829	1,957	10	126,3	133,3
		Total	133,760	24,100	4,909	20	126,3	141,5
	zona B	cortical	125,880	136,037	11,664	10	105,7	146,5
		medular	128,410	151,892	12,324	10	109,0	145,8
		Total	127,145	138,072	11,750	20	105,7	146,5
	Total	cortical	131,765	107,253	10,356	20	105,7	146,5
		medular	129,140	74,324	8,621	20	109,0	145,8
		Total	130,452	90,227	9,499	40	105.7	146.5
verano	zona C	cortical	137,060	14,687	3,832	10	130,5	143,4
	20110	medular	137,400	30,691	5,540	10	128,3	148,5
		Total	137,230	21,525	4,640	20	128,3	148,5
	zona B	cortical	120,260	90,260	9,501	10	106,7	134,9
	Zona D	medular	89,730	123,900	11,131	10	74,6	104,9
		Total	104,995	346,729	18,621	20	74,6	134,9
	Total	cortical	128,660	123,986	11,135	20	106,7	143,4
	Total	medular	113,565	671,235	25,908	20	74,6	148,5
		Total	121,112	445,841	21,115	40	74,6	148,5
otoño	zona C	cortical	145,850	11,523	3,395	10	140,3	150,8
Otorio	ZONA C	medular	127,970	4,460	2,112	10	123,3	130,8
		Total	136,910	91,701	9,576	20	123,3	150,8
	zona B	cortical	117,720	163,404	12,783	10	101,0	134,5
	Zona D	medular	100,390	29,365	5,419	10	92,9	109,0
		Total	109,055	170,346	13,052	20	92,9	134,5
	Total	cortical	131,785	291,096	17,062	20	101,0	150,8
	Total	medular	114,180	216,195	14,704	20	92,9	130,8
		Total				40	92,9	150,8
Total	zona C	cortical	122,982	326,613	18,072	40		150,8
Otal	Zona C	medular	140,305	26,644	5,162	40	130,2	
			131,368	41,503	6,442		119,6	148,5
	zona B	Total	135,836	53,865	7,339	80	119,6	150,8
	zona B	cortical	124,915	152,434	12,346	40	101,0	146,5
		medular	107,830	300,471	17,334	40	74,6	145,8
	T	Total	116,373	297,484	17,248	80	74,6	146,5
	Total	cortical	132,610	148,368	12,181	80	101,0	150,8
		medular	119,599	309,079	17,581	80	74,6	148,5
45 3 3	Part I	Total	126,104	269,875	16,428	160	74,6	150,8

DISCUSIÓN

Discusión

La utilización de las variaciones del índice cariométrico como manifestación de la mayor o menor actividad de los pinealocitos, se fundamenta en estudios como los de Krantz (ya en 1947) o Jerusalem (1961) que destacan la importancia de las variaciones del volumen nuclear como indicador de la actividad celular.

Así pues, con los resultados obtenidos se pueden extrapolar comportamientos funcionales de los pinealocitos en función del mayor o menor tamaño de los índices cariométricos observados; y dado que las observaciones se han hecho agrupadas por horas, estaciones, zonas y regiones, se pueden trasladar a las mismas las variaciones en los mencionados comportamientos funcionales.

Considerando los resultados expuestos en el capítulo anterior y analizándolos globalmente, podemos observar que los índices cariométricos de la pineal del conejo presentan una evolución circadiana con un pico máximo a las 14 horas y mínimo a las 22 horas.

Este comportamiento es seguido en ambas capas cortical y medular de forma global, aunque es de destacar que los valores de la cortical son significativamente mayores que los de la medular a lo largo de todo el ciclo circadiano.

Esta evolución se mantiene en cada una de las distintas estaciones, aunque se observa claramente como se establecen diferencias de comportamiento entre una estación y otra (como puede verse en las gráficas).

Si observamos la evolución de cada una de las partes, vemos que también se establecen algunas diferencias entre las porciones β y C de la pineal del conejo.

En primer lugar los valores globales de la capa periférica o cortical de la porción C son significativamente mayores que los de la medular de la misma porción, en segundo lugar, las diferencias entre estas dos capas son mucho mayores durante las estaciones de invierno y otoño, es decir, las estaciones de fotoperiodo corto, que durante las de fotoperiodo largo, primavera y verano, en las que las diferencias observadas son más puntuales y pueden invertirse en puntos horarios concretos (ver gráficas), pudiendo incluso reflejar valores "en espejo" entre las curvas de las estaciones de transición de la fotofase corta a la fotofase larga, verano-otoño. De la misma manera se puede observar como los valores nucleares son máximos durante el periodo diurno tanto en la periferia como en la parte central (exceptuando una observación puntual a las 22 horas del otoño).

Estos datos muestran claramente que en la porción distal los valores de lo indices cariométricos son mayores en la zona cortical que en la medular, pero que esta diferencia es claramente manifiesta y significativa durante las estaciones de menor cantidad de luz.

En ese sentido es de destacar la fluctuación transicional que se produce entre el verano y el otoño, lo que junto con el dato descrito de una mayor actividad diurna que nocturna, sería indicativo de la existencia de un factor estacional y fotofásico de influencia en el comportamiento de la actividad nuclear, ya que, aunque se producen variaciones circadianas significativas de ambas capas, éstas mantienen un cierto paralelismo evolutivo, a excepción de la fase otoñal, que parece ser la estación que marcaría una diferencia de comportamiento en la circadianidad cariométrica.

En la porción β se siguen observando valores cariométricos mayores en la cortical que en la medular, pero existe una mayor fluctuación a lo largo de los diferentes puntos horarios que la obtenida en la porción distal. Los valores máximos se corresponden con las estaciones de Primavera y Verano, agrupándose los picos máximos en estas estaciones en las observaciones de las 14 y 10 horas. Es muy significativo el comportamiento contrario en el Invierno, donde los valores máximos corresponden a las observaciones de las 22, 18 y 2 horas, con picos mínimos a las 6 y a las 10, aunque hay que destacar que los valores máximos alcanzados en Invierno son inferiores a los valores mínimos de Primavera y Verano.

Todos estos datos son claramente indicativos de que existe una diferencia de comportamiento entre la capa periférica y central de la pineal del conejo, tanto en la parte distal como en la intermedia, y que esta diferencia de comportamiento está a su vez determinada por la estaciones, que son las que parecen condicionar y determinar la diferente respuesta de las porciones β y C de la pineal.

La posible existencia de diferencias estructurales y funcionales entre las zonas periférica o cortical y central o medular de la pineal de diferentes animales, entre ellos la rata, es algo que ha sido sugerido por algunos autores. El primero en señalar esta circunstancia fue Quay (1957, 1966) al señalar la existencia de una mayor densidad lipídica y de volumen sanguíneo en la parte periférica que en la central de la pineal de la rata, e indicar además, que los núcleos de la zona medular tenían un volumen mayor que los de la periférica, aunque algunos datos posteriores señalaban el hecho contrario, es decir, un mayor volumen nuclear cortical que medular (Miline 1966, Diehl 1984).

De la misma manera, Renzoni (1964) y Quay (1966) también sugirieron diferencias circadianas cortico-medulares, aunque estas diferencias no fueron admitidas por algunos (Welsh 1979, Heidbüchel 1983), sin embargo, sí fueron confirmadas por otros (Miline 1968, Blumfield 1970, Lopez-Iglesias 1987). Algunos autores, incluso señalaban la existencia de tales variaciones en la zona periférica pero no en la central (Becker 1983).

Cimas y colaboradores (1992) vinieron a poner un poco de orden en esta polémica al realizar un estudio circadiano y estacional en la parte distal de la pineal de la rata, demostrando que existía una fluctuación de valores a lo largo del día y de las estaciones que naturalmente podía condicionar los resultados si no era considerado. Más recientemente, Hira (1998) demuestra en la pineal de la rata la existencia de variaciones del tamaño del volumen nuclear de distal a proximal y de periférico a central.

En el conejo, fue Romijn (1975) el único en destacar la existencia de características citoplásmicas de diferente captación del azul de toluidina entre las células de la capa periférica y central de la pineal de este animal, sugiriendo la existencia de una "corteza" y una "médula" funcionalmete diferentes.

Los resultados del presente trabajo ponen de manifiesto esa diferencia sugerida por Romijn (1975) y estarían igualmente en concordancia con los resultados de Ferrando (1988) en el conejo, Cimas (1992) en la rata (aunque en este trabajo el predominio es mayor en la medular y los resultados aquí obtenidos muestran dicho predominio en la cortical), Doménech (1993) en el hamster, o Ballester (1993) también en el conejo.

Por otro lado, el análisis comparativo entre las diferentes estaciones en ambas porciones corrobora la existencia de diferencias evolutivas estacionales en ambas porciones pineales, destacando sobre todo la "influencia" que el otoño parece tener en el cambio de actividad de la parte distal, cosa que no ocurre en la porción intermedia, donde el cambio más "sorprendente" se da en el invierno. La explicación de esta circunstancia es dificil de establecer, aunque sin duda, la inervación puede jugar un papel decisivo en este tipo de comportamiento, así como la posible existencia de una diferente receptividad a la información de las longitudes de onda de los pinealocitos de una zona o de otra como ocurre en los vertebrados inferiores (Vollrath (1981), Martínez Soriano (1987)).

Las variaciones estacionales de los tamaños nucleares ya fueron referidas por algunos autores en diferentes especies. Plugfelder (1957) en el hamster; Nésic (1962) y Popova (1975) en ovejas; McNulty (1982) en peces; Bhatnagar (1992) en murciélagos. Los resultados obtenidos en el presente trabajo, vienen a confirmar la existencia de las mencionadas variaciones también en el conejo.

Finalmente, los resultados electrofisiológicos obtenidos en ratas, cobayas y hamsters, (Dafny (1975), Semm (1979 y 1980), Reuss (1984)) vendrían también a apoyar los resultados de este estudio al apuntar la existencia de zonas, e incluso pinealocitos, con diferencias funcionales en reposo y bajo el estímulo de sustancias hormonales y químicas.

Tal y como se planteó con anterioridad, cabría preguntarse cuál o cuáles serían los factores que podrían influir sobre estas variaciones. En principio, el factor lumínico parece ser el más evidente, sin embargo, en trabajos tales como los de Roth (1962), Quay (1963) o Vollrath (1981) a partir de largas exposiciones de luz u oscuridad a animales, no se conseguían grandes variaciones en el tamaño del núcleo.

Posiblemente, como sugieren Cimas y colaboradores (1992) el resultado de estas modificaciones pueda estar motivado por la suma de diferentes factores, entre los que destacan:

- La longitud de onda del espectro lumínico, tal como podría desprenderse de los cambios tan puntuales que se dan en determinadas estaciones de tránsito.
 - Las variaciones de tipo humoral.
- Las modificaciones de tipo *magnético* por la mayor o menor cercanía al sol que pueden derivarse de las modificaciones estacionales, ya que la pineal es también bastante susceptible de modificaciones por la acción del campo magnético (Cremer-Bartels (1983), Welker (1983)), especialmente en la actividad nuclear y enzimática (Giménez (1991), Martínez Soriano (1992)).

^	4
u	/I
"	┰

CONCLUSIONES

Conclusiones

Tras la descripción de los resultados y las consideraciones hechas a los mismos en el apartado de discusión, de los estudios realizados en el presente trabajo, se pueden extraer las siguientes conclusiones:

- 1°.- Globalmente, los índices cariométricos de la zona periférica (o cortical) de la pineal del conejo son mayores en la parte distal (C) e intermedia (β) que los de la zona central (medular).
- 2°.- Existen diferencias estadísticamente significativas circadianas y estacionales entre las zonas periférica y central tanto en la porción distal como en la intermedia de la pineal del conejo.
- 3°.- Existen diferencias estadísticamente significativas en el estudio comparativo de los índices cariométricos del binomio día/noche a nivel medular y cortical en ambas porciones estudiadas.
- 4°.- En virtud de las conclusiones anteriores se puede afirmar que las porciones intermedia y distal de la pineal del conejo son funcionalmente diferentes a lo largo del ciclo circadiano y estacional.

BIBLIOGRAFÍA

Bibliografía

ALLEVA, J.J. (1989)

Hom hamsters keep time: The 6 p.m. to 6 a.m. light – sensitive period Journal of pineal research 7: 265 – 280

AXELROD, J.; WURTMAN, R.J.; WINGET, C.M. (1964)

Melatonin synthesis in the hen pineal gland and its control by ligth Nature (London), 201: 1.134

BALLESTER, S. (1993)

Variaciones de los Indices Cariométricos de la Glándula pineal (Pars Intermedia) del Conejo. Estudio Circadiano y Circanual. Tesis Doctoral. Universitat de Valencia

BARGMAN, W. (1943)

Die epiphysis cerebri.

Handbuch der mikroskopischen Anatomie des Menschen. Vol. 4. Springer-Verlag, Berlin; pp. 309-505

BECKER, V.G.; VOLLRATH L. (1983)

Twenty-four hour variation of pineal gland volume, pinealocye nuclear volume and mitotic activity in male Sprague-Dauley rats.

J. Neural Transm. 56, 211-221

BHATNAGAR, (1992)

The ultrastructure of mammalian pinealocytes: a systematic investigation Microsc Res Tech. 21(2):85-115.

BLUMFIELD, M.G.; TAP, E. (1970)

Measurements of pineal parenchymal cells and their nuclei in the Albino rat of different ages.

Acta Morphol. Neerl. Escand 8, 1-8

BOSTELMAN, W. (1968)

Das ultrastrukturelle und enzymhistochemische verhalten der rattenzisbeldrüse nach funktionsphansenwechsel durch danerblenchtung und ständige dunkelheit.

Endokrinologie 53, 365-384

CIMAS, C.; MARTINEZ SORIANO, F.; RUIZ TORNER, A. (1987)

Circadian and photoperiodic correlation beetween the number of pineal gland synaptic ribbons and serum melatonin laveles in the rat. Acta Anat. 130: 228-231

CIMAS, C.; MARTINEZ SORIANO, F.; RUIZ TORNER, A. (1992)

Circadian and seasonal and cortico-medullary variations and pinealocyte nuclear size. A comparative analysis.

Histol. Hystopathology. 7: 679-687

CREMER-BARTELS, G, KRAUSE, K AND KHOLE, HJ. (1983)

Influence of low magnetic fields strength variations on the retina and pineal gland of quailand humans.

Arch. Clin. Exp. Ophtalmol. 220, 248-252.

DAFNY, N. et al. (1975)

Neurophysiological properties of the pineal body. Field potentials. Life Sci., 16, 611-620

DESCARTES

Citado por Martínez Soriano, F. (1987)

DIAZ, C. et al. (1990)

Circadian changes in synaptic ribbons and spherules in pinealocytes of the Sirian hamster (Mesocricetus Auratus)

Cell Tissue Res 262: 165-169

DIEHL, B.J.M. et al. (1984)

Day/night changes of pineal gland volumes and pinealocyte nuclear size. Assesses over 10 consecutive days.

J. Neural Transm. 60, 19-29

DOI, O., et al. (1985)

Histological and histochemical studies on the pineal gland of embrionic chikens exposed to continuos light and continuos darkness.

JPN.J. Zootech. Sci., 56 (7): 588-597

DOMENECH CLAR, R. (1993)

Variaciones morfológicas y funcionales de la glándula pineal del hamster chino (Cricetulus Griseus)

Tesis Doctoral. Universitat de València

FERRANDO PONS, A. (1988)

Variaciones circadianas y estacionales del parénquima pineal del conejo: Análisis morfológico y funcional

Tesis Doctoral. Universitat de Valencia

FOULKES, N.S.; et al. (1996)

Adaptative inducibility of CREM as transcriptional memory of circadian rhythms.

Nature 381:83-85

FOULKES, N.S.; et al. (1997)

Rhythmic transcription: the molecular basis of circadian melatonin synthesis.

Trends. Neurosci. 20:487-492,

GALENO

Citado por Martínez-Soriano, F. (1987)

GIMÉNEZ-GONZÁLEZ, M. et al. (1991)

Morphometric and structural study of the pineal gland of the Wistar rat subjected to the pulse action of a 52 Gauss (50 Hz) magnetic field. Evolutive analysis over 21 days.

J. Hirnforsch. 6, 769-786

GOZÁLEZ GONZÁLEZ, G.; VALLADOLID MARTÍN, M. (1994)

El tercer ojo y los ritmos biológicos de los vertebrados (incluida la especie humana).

Gráficas Summa. Madrid.

GRANDI, D. (1995)

The pineal body of the mink and horse with special reference to the reproductive cycle. An ultraestructural and inmunocytochemical study. Ital J Anat Embryol 1995; 100 Suppl 1: 231-242

HALDAR, C.; SARKAR, R. (2001)

Reproductive phase dependent circadian variation in the pineal biochemical constituents of Indian palm squirrel, Funanbulus pennanti. Acta Biol Hung 2001; 52 (1): 9-15

HEIDBÜCHEL, V.; VOLLRATH, L (1983)

Morphological findings relating to the problem of cortex and medulla in the pineal gland of rat and hamster.

J. Anal. 136, 723-734

HERÓFILO

Citado por Martínez Soriano, F. (1987)

HEUBNER, O. (1898)

Tumor der Glandula Pinealis Dtsch. Med. Wschr. 24: 214

HIRA, Y. et al. (1998)

Quantitative light microscopic study on the heterogeneity in te superficial pineal gland of the rat.

Anat. Rec. 250, 80-94

HOLMGREM, U. (1959)

On the structure of the pineal area of teleost fishes with special reference to a few deep sea fishes.

Göteborgs Kunge. Vetenks. Vitterhets-Samh. Handl. Ser. B-8, 1-66

JERUSALEM, CH.R. (1961)

Funktionell oder distrophis eine kerschwellung?

Anal. Anz. 122: 108-113

KAPPERS, J.A. (1976)

The mammalian pineal gland, a survey Acta Neurochir. (Wien), 43 (1-4): 109-149

KARASEK, M. et al. (1986)

Effects of long and short photoperiod on the ultrastrusture of Pinealocytes of the Cotton Rat (Sigmodon Hispidus)
J. Pineal Res., 3 (4): 323-330

KARASEK, M. (1987)

Functional Ultrastructure of the mammalian pinealocyte Adv. Pineal Res., 2: 19-33

KARASEK, M. et al. (1988)

Influence a short light pulse and night on the ultrastrusture of the rat Pinealocyte: a quantitative study. Cell Tissue Res., 254: 247-249

KLEIN, D.C. (1985)

Photoneural regulation of the mammalian pineal gland. In Photoperiodism, Melatonin and Pineal Gland. Ciba Foundation Symposium 117, Pitman, London pp38-56

KLEIN, D.C.; et al. (1996)

New light is shining on the melatonin rhythm enzime —the first postcloning view.

Trends Endocrinol. Metabol 7:106-112

KRANTZ, C. (1947)

Die kerngrösse und ihre abhängigkeit with äusseren und inneren faktoren Z. Zellforsch, 35: 425-475

LERNER, A.B. et al. (1958)

Isolation of Melatonin: the pineal gland factors that lighten melanocytes J. Amer. Chem. Soc. 80: 2587

LIN, H.S. (1973)

Effects of blinding and superior cervical ganglionectomy on fine structure of the hamster pineal gland and adenohypophysis. Anat. Rec., 175: 508-509

LOPEZ-IGLESIAS, C. et al. (1987)

The rat pinealocyte during the estrous cycle. A morphometric study. Arch. Anat. Microosc. Morphol. Exper. 75, 19-27

LUES, G. (1971)

Die Feinstrukture er Zirbeldrüsse normaler, trächtiger und experimentell beeinflusster, Meerschweinchen Z.Zellforch., 114: 38-60

KLEIN, D.C. (1985)

Photoneural regulation of the mammalian pineal gland. In Photoperiodism, Melatonin and Pineal Gland. Ciba Foundation Symposium 117, Pitman, London pp38-56

KOCSARD-VARO G. (2000)

Role in the pineal gland in hibernators: a concept proposed to clarify why hibernators have to leave torpor and sleep Med Hypotheses 2000 Apr, 54 (4) . 645-647

MARTÍNEZ SORIANO, F.et al. (1982)

Aspectos morfofuncionales de la adenohipófisis tras la pinealectomía de la rata albina.

Morf. Norm Patol., 6 (1): 43-52

MARTÍNEZ SORIANO, F.et al. (1984)

Variaciones morfológicas del parénquima pineal tras estimulación con luz láser.

Invest. Clin. Láser, 1 (4): 21-24

MARTÍNEZ SORIANO, F.et al. (1984)

Normale und experimentalle Aspekte von Zirbeldrüssenkanälen Verh. Anat. Ges., 78: 583-585

MARTÍNEZ SORIANO, F. (1987)

Glándula pineal: estructura y función (consideraciones fisiopatológicas) Ed. Gregori – Valencia

MARTÍNEZ SORIANO, F. et al. (1991)

Circadian and seasonal variations in pineal gland intercellular canaliculi In the white rat.

Histol. Histopathol., 6: 378-393

MARTÍNEZ SORIANO, F. et al. (1992)

Pineal synaptic ribbons and serum melatonin levels in the rat following the pulse action of 52-Gs (50-Hz) magnetic fields: An evolutive analisis over 21 days.

Acta Anat. 143, 289-293.

MARTÍNEZ SORIANO, F. et al. (1999)

Circadian and seasonal changes of synaptic bodies in different parts of the rabbit pineal gland.

Histol. Histopathol. (14): 1079-1091

MATSUSHIMA, S. et al. (1979)

Diurnal variations in large granulated vesicles in sympathetic nerve fiber of the mouse pineal quantitative electron microscopic observations.

J. Neural Transmm., 45 (1): 63-73

MATSUSHIMA, S. et al. (1983)

Circadian variations in pinealocytes of the the chinese hamster

(Cricetulus Griseus)

Cell Tissue Res., 228: 231-244

MATSUSHIMA, S. et al. (1990)

Effects of photoperiod on pineal gland volume and pinealocytes size in the chinese hamster (Cricetulus Griseus)

The American Journal of Anatomy. 187: 32-38

McCORD, C.P.; ALLEN, F.P.(1917)

Evidences associating pineal gland function with alterations in pigmentation.

J. Exp. Zool., 23: 207-224

McNULTY, J.A. (1982)

Morphologic evidence for seasonal changes in the pineal organ of the goldfish, Carassius Curatus: a cuantitative study.

Reprod. Nutr. Develop., 22 (6): 1061-1072

MILINE, R. (1957)

La part de l'epiphyse dans le síndrome adaptation Bull. Sci. Cons. Acad. R.P.F. Yougosl. 3:113

MILINE, R. et al. (1966)

Les modiphications epiphysaires dans le stress et en particulier dans les nevróses experiméntales d'effroi.

Probl. Acta Endoc. Nutr. Ser., 10, 229-256

MILINE, R. et al. (1968)

Sur le compartament de la glande pineale dans les conditions de stress Acta Anat. (Bassel) 71, 352-402

MILINE, R. et al. (1969)

Corpus pineale-glande de nature senso-neuroendocrine.

Akad. Nauke Umjet . Bosnia-Herzegovina, 37: 69-84

MILINE, R. et al. (1970)

Pineal glan behaviour as affected by cold.

Hormones, 1: 321-331

MOLLER, M. et al. (1974)

The ultrastructure of the human fetal pineal gland. I. Cell Types and blood vessels.

Cell Tissue Res., 152 (1): 13-30

MOLLER, M. et al. (1983)

The origin of central pinealopeptal nerve fibers in the mongolian gerbil as demostrated by the retrograde transport of horseradish peroxidase Cell Tissue Res., 230: 273-287

NESIC, L.J. (1962)

Contribution à l'étude du rythme saisonnier de la glande pineal de brebis. Acta Anat. (Basel.) 49: 376-377

OLSON, L. et al. (1973)

Histochemical demostration and mapping of 5-Hydroxytriptamine and Catecholamine-containing neuron system in the human fetal Brain. Z. Anat. Enwickl. Gesch, 139: 259-282

POPOVA, N.K. et al (1975)

State of the pineal gland during hibernation Bull. Exp. Biol. Med. 79, 467-468

PFLUGFELDER, O. (1957)

Physiologie der epiphyse Zool Anz., suppl 20: 53-75

QUAY, W.B. (1957)

Cytochemistry of pineal lipids in rat and man and their changes with age Anat. Ref. 127: 351

QUAY, W.B. (1961)

Reduction of mammalian pineal weight and lipid during continous light Gen. Comp. Endocr., 1: 211-217

QUAY, W.B. (1963)

Citologic and metabolic parameters of pineal inhibition by continous light in the rat, Ratus Norvegicus.

Z. Zellforsch, 60: 479-490

QUAY, W.B. (1963)

Circadian rhythm in rat pineal serotonin and its modifications by estrous cycle and photoperiod.

Gen. Comp. Endocrinol., 3: 473-479

QUAY, W.B.; RENZONI, A. (1966)

Twenty-four hour rythms in the pineal mitotic activity and nuclear and nucleolar dimensions.

Growth 30, 315-327.

REITER, R.J. et al. (1966)

Regulation of endocrine function of black rats by light and the pineal gland.

AMER. Zoologist., 6: 313

REITER, R.J.; SORRENTINO, S. (1971)

Factors influential in indetermining the gonad-inhibiting activity of the pineal gland.

The pineal gland. Ed. Wolstenholme, G.E.W. and Knight, I pp. 329-344

REITER, R.J. (1984)

The pineal Gland. Series Comprehensive Endocrinology. Raven Press.

RENZONI, A.; QUAY, W.B. (1964)

Daily Karyometric and mitotic rhythm of pineal parenchymal cells in the rat.

Am. Zoologist 4, 416-417

REUSS, S.; VOLLRATH, L. (1984)

Electrophysiological properties of rat pinealocytes. Evidence for circadian and ultradian rhythms.

Exp. Brain Res. 55, 455-461

ROMIJN, H.J. (1973)

Structure and innervation of the pineal gland of the rabbit (Oryctolugus Cuniculus). And electron microscopic investigations of the pinealocytes. Z. Zellforsch. Mikrosk. Anat., 139: 473-485

ROMIJN, H.J. (1975)

The ultrastructure of the rabbit pineal gland after sympathectomy, parasympathectomy, continous illumination, and continous darkness. J. Neurral. Transm., 36 (3-4): 83-94

ROTH, W.D. et al. (1962)

Morphologic changes in the pineal parenchyma cells of rat esposed to continuons light or darkness.

Endocrinology, 72: 888-892

SEMM, P.; VOLLRATH, L. (1979)

Electrophysiology of the guina-pig pineal organ. Sympathetic influence and different reactions to light and darkness.

En: Progress in Brain research. Vol 52..
Elsevier North- Holland Biomedical Press. 107-111

SEMM, P.; VOLLRATH, L. (1980)

Electrophysiological evidence for circadian rhythmcity in a mammalian pineal organ.

J. Neural Trans. 47, 181-190

SHIOTANI, Y et al. (1985)

Changes in the pineal gland, LHRH system and pituitary-gonadal axis in the golden hamsters under artificial winter conditions.

Biomed. Res. 6 (5): 297-306

STHELE, J.H.; et al. (1993)

Adrenergic signals direct rhythmic expression of transcriptional repressor CREM in the pineal gland.

Nature 365:314-321

STUDNICKA, F.K. (1905)

Die Parietalorgane

Oppel (Ed.). Lerhbuch der verfeichenden Mikroskopischen Anatomie, vol. V Springer-Jena

SWIATKIEWICZ, G. (2000)

The presence of acetylcolinesterase-positive nerve fibres in the deep pineal gland and the pineal stalk but not in the superficial part of adult albino rats.

Folia Biol Krakow; 48 (3-4): 97-103

URRY, R.L. et al. (1976)

Factors other than light affecting the pineal gland: Hipophysectomy, testosterone, dihydrotestosterone, estradiol, crytorchism and stress Amer. Zool. 16: 79-91

VOLLRATH, L. (1973)

Synaptic ribbons of a mammalian pineal gland. Circadian changes. Z. Zellforsch. Mikrosk. Anat. 145: 171-183

VOLLRATH, L. (1981)

The pineal organ, vol. VI.

Handbuch der mikroskopischen Anatomie des Menschen Springer-Verlag, Berlin-Heidelberg-New-York.

VOLLRATH, L. et al. (1981)

Rhythmic changes in the rat pineal gland.

Pineal function. De. Matthews, C.D. pp. 217-222

VOLLRATH, L.; MAITRA S.K. (1986)

Interspecies differences in the response of pineal "synaptic ribbons" to continuous illumination.

Neuroendocrinol. Lett 8, 135-140

WEINBERG, U. et al. (1979)

Circulating melatonin in man: Episodic secretion through the light-dark Cycle.

J. Clin. Endocr., 48: 114-118

WELKER, H.A. (1983)

Effects of an artificial magnetic field on serotonin N-acetyltransferase. Activity and melatonin content of the rat pineal gland. Exp. Brain Res. 50, 426-432

WELSH, M.G. et al. (1979)

The pineal gland of the Gerbil, Medionis unguiculatus.II. Morphometric Analysis over 24-hour period.
Cell Tissue Res., 204 (1): 95-109

WURTMAN, R.J.; AXELROD, J.; PHILIPS, L. (1963)

Melatonin synthesis in the pineal gland. Control by light Science, 141: 277-278

WURTMAN, R.J.; AXELROD, J.; FISCHER, J.A. (1964)

Melatonin synthesis in the pineal gland. Effect of light mediated by the Sympathetic nervous system.

Science, 142: 1328-1330