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Abstract

The rare decays B0
s,d → `+`− are analyzed within the general framework of the aligned

two-Higgs doublet model. We present a complete one-loop calculation of the relevant

short-distance Wilson coefficients, giving a detailed technical summary of our results and

comparing them with previous calculations performed in particular limits or approxima-

tions. We investigate the impact of various model parameters on the branching ratios and

study the phenomenological constraints imposed by present data.
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1 Introduction

The recent discovery of a Higgs-like boson [1,2], with properties compatible with the Standard

Model (SM) expectations [3–5], is one of the greatest achievements in the past decades in

particle physics and represents a major confirmation of our present theoretical paradigm. The

LHC data suggest that the electroweak symmetry breaking (EWSB) is probably realized in the

most elegant and simple way, i.e., via the Higgs mechanism implemented through one scalar

SU(2)L doublet. An obvious question we are now facing is whether the discovered 126 GeV

state corresponds to the unique Higgs boson incorporated in the SM, or it is just the first signal

of a much richer scenario of EWSB. None of the fundamental principles of the SM forbids the

possibility of an enlarged scalar sector associated with the EWSB.

Among the many possible scenarios for new physics (NP) beyond the SM, the two-Higgs

doublet model (2HDM) [6] provides a minimal extension of the scalar sector that naturally

accommodates the electroweak (EW) precision tests, giving rise at the same time to a large

variety of interesting phenomenological effects [7]. The scalar spectrum of the model consists

of two charged fields, H±, and three neutral ones, h, H and A, one of which is to be identified

with the Higgs-like boson found at the LHC. The direct search for these additional scalar states

at high-energy collisions, or through indirect constraints via precision flavour experiments, is

an important task for the next years. This will also be helpful to gain further insights into the

scalar sector of supersymmetry (SUSY) and other models with similar scalar contents.

Within the SM, flavour-changing neutral current (FCNC) interactions are forbidden at tree

level, and highly suppressed at higher orders, due to the Glashow–Iliopoulos–Maiani (GIM)

mechanism [8]. In a generic 2HDM, however, tree-level FCNC interactions generally exist,

through non-diagonal couplings of neutral scalars to fermions. The unwanted FCNCs can

be eliminated, imposing on the Lagrangian an ad-hoc discrete Z2 symmetry; depending on

the different possible Z2 charge assignments, this results in four types of 2HDMs (I, II, X

and Y) [7], all satisfying the hypothesis of natural flavour conservation (NFC) [9]. A more

general alternative is to assume the alignment in flavour space of the Yukawa matrices for each

type of right-handed fermions [10]. The so-called aligned two-Higgs doublet model (A2HDM)

results in a very specific structure, with all fermion-scalar interactions being proportional to

the corresponding fermion masses. It also contains as particular cases the different versions of

2



the 2HDM with NFC, while at the same time introduces new sources of CP violation beyond

the Cabibbo–Kobayashi–Maskawa (CKM) phase [11]. These features make the A2HDM a very

interesting theoretical framework, which leads to a rich and viable phenomenology, both in

high-energy collider experiments [12,13], as well as in low-energy flavour physics [14,15].

In the field of rare B-meson decays, the purely leptonic processes B0
s,d → `+`−, with ` = e,

µ or τ , play an outstanding role in testing the SM and probing physics beyond it, because they

are very sensitive to the mechanism of quark-flavour mixing. Within the SM, the FCNC tran-

sition is mediated by a one-loop amplitude, suffers from a helicity-suppression factor m`/mb,

and is characterized by a purely leptonic final state. The first two features result in a double

suppression mechanism, responsible for the extremely rare nature of these decays. The third

feature implies that these processes are theoretically very clean, with the only hadronic uncer-

tainty coming from the B-meson decay constants fBs,d
. All these considerations make the rare

leptonic decays B0
s,d → `+`− a formidable probe of physics beyond the SM, especially of models

with a non-standard Higgs sector like multi-Higgs doublet models [16–20] as well as various

SUSY scenarios [17,18,20–22].

As far as the experimental side is concerned, the decay modes with ` = µ are especially

interesting because the corresponding final state can be easily tagged. Over the last decade the

upper bounds for the branching ratios of these decays have been improving continuously, thanks

to the CDF and DØ collaborations at the Tevatron and, more recently, the ATLAS, CMS and

LHCb experiments at the LHC [23]. In November 2012, the LHCb experiment reported the

first evidence of the decay B0
s → µ+µ−, at the 3.5σ level [24]. The signal significance has

been raised, respectively, to 4.0σ and 4.3σ by LHCb and CMS, after analyzing the currently

available data set, with the averaged time-integrated branching ratio given by

B(B0
s → µ+µ−) =


(
2.9 +1.1
−1.0(stat.) +0.3

−0.1(syst.)
)
× 10−9 LHCb [25](

3.0 +1.0
−0.9

)
× 10−9 CMS [26]

, (1)

where the CMS uncertainty includes both the statistical and systematic components, but is

dominated by the statistical uncertainties. The two measurements lead to the weighted world

average [27]

B(B0
s → µ+µ−)exp. = (2.9± 0.7)× 10−9 . (2)
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At the same time, the branching fraction of B0
d → µ+µ− has also been determined with a signal

significance of 2σ by the two experiments:

B(B0
d → µ+µ−) =


(
3.7 +2.4
−2.1(stat.) +0.6

−0.4(syst.)
)
× 10−10 LHCb [25](

3.5 +2.1
−1.8

)
× 10−10 CMS [26]

. (3)

The corresponding combined result reads [27]

B(B0
d → µ+µ−)exp. =

(
3.6 +1.6
−1.4

)
× 10−10 . (4)

These measurements are in remarkable agreement with the latest updated predictions within

the SM [28]:

B(B0
s → µ+µ−) = (3.65± 0.23)× 10−9 , B(B0

d → µ+µ−) = (1.06± 0.09)× 10−10 , (5)

where the next-to-leading order (NLO) corrections of EW origin [29], as well as the QCD cor-

rections up to the next-to-next-to-leading order (NNLO) [30], have been taken into account.

Although the experimental uncertainties are still quite large, they are expected to get signifi-

cantly reduced within the next few years [31]. All these experimental and theoretical progresses

will lead to new stringent constraints on physics beyond the SM.

Motivated by the above considerations, in this work we shall perform a study of the rare

leptonic decays B0
s,d → `+`− within the A2HDM. Our paper is organized as follows. In section 2

we give a brief overview of the A2HDM Lagrangian, especially of its Yukawa and scalar sectors.

In section 3 we summarize the SM results and describe the full one-loop calculation of the

relevant Feynman diagrams in the A2HDM. We have performed the calculation in two different

gauges, Feynman (ξ = 1) and unitary (ξ = ∞), in order to check the gauge-independence of

our results. In section 4 we discuss the impact of the model parameters on the branching ratios

of these decays, taking into account the latest implications from the LHC Higgs data. Our

conclusions are made in section 5. Finally, the appendix contains the explicit results for the

individual Higgs-penguin diagrams.

2 The aligned two-Higgs doublet model

The 2HDM extends the SM with the addition of a second scalar doublet of hypercharge

Y = 1
2

[6]. In the so-called “Higgs basis”, in which only one doublet gets a nonzero vacuum
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expectation value, the two doublets can be parametrized as

Φ1 =

 G+

1√
2

(v + S1 + iG0)

 , Φ2 =

 H+

1√
2

(S2 + iS3)

 , (6)

where G± and G0 denote the Goldstone fields, and v = (
√

2GF )−1/2 ' 246 GeV. The five

physical scalar degrees of freedom are given by the two charged fields H±(x) and three neu-

tral scalars ϕ0
i (x) = {h(x), H(x), A(x)}. The latter are related with the Si fields through an

orthogonal transformation, which is fixed by the scalar potential:

V = µ1

(
Φ†1Φ1

)
+ µ2

(
Φ†2Φ2

)
+
[
µ3

(
Φ†1Φ2

)
+ µ∗3

(
Φ†2Φ1

)]
+ λ1

(
Φ†1Φ1

)2

+ λ2

(
Φ†2Φ2

)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

[(
λ5 Φ†1Φ2 + λ6 Φ†1Φ1 + λ7 Φ†2Φ2

)(
Φ†1Φ2

)
+ h.c.

]
. (7)

The Hermiticity of the potential requires all parameters to be real except µ3, λ5, λ6 and

λ7; thus, there are 14 real parameters. The minimization conditions 〈0|ΦT
1 (x)|0〉 = (0, v/

√
2)

and 〈0|ΦT
2 (x)|0〉 = (0, 0) impose the relations µ1 = −λ1v

2 and µ3 = −1
2
λ6 v

2, which allow us to

trade the parameters µ1 and µ3 by v and λ6, respectively. The freedom to rephase the field Φ2

implies, moreover, that only the relative phases among λ5, λ6 and λ7 are physical. Therefore,

we can fully characterize the potential with 11 parameters: v, µ2, λ1,2,3,4, |λ5,6,7|, arg(λ5λ
∗
6) and

arg(λ5λ
∗
7). Four of these parameters can be determined through the physical scalar masses.

Inserting Eq. (6) into Eq. (7), expanding out the resulting expression and imposing the

minimization conditions, one can decompose the potential into a quadratic mass term plus

cubic and quartic interactions (up to an irrelevant constant). The mass term takes the form:

V2 = M2
H± H

+H− +
1

2
(S1, S2, S3) M

 S1

S2

S3


= M2

H± H
+H− +

1

2

3∑
i=1

M2
ϕ0
i

(
ϕ0
i

)2
, (8)

with M2
H± = µ2 + 1

2
λ3v

2 and

M =


2λ1v

2 v2 λR
6 −v2 λI

6

v2 λR
6 M2

H± + v2
(
λ4
2

+ λR
5

)
−v2 λI

5

−v2 λI
6 −v2 λI

5 M2
H± + v2

(
λ4
2
− λR

5

)
 , (9)
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where λR
i ≡ Re(λi) and λI

i ≡ Im(λi). The symmetric mass matrix M is diagonalized by an

orthogonal matrix R, which defines the neutral mass eigenstates:

RMRT = diag
(
M2

h ,M
2
H ,M

2
A

)
, ϕ0

i = Rij Sj . (10)

In a generic case, the three mass-eigenstates ϕ0
i (x) do not have definite CP quantum numbers.

In the CP-conserving limit, λI
5 = λI

6 = λI
7 = 0 and S3 does not mix with the other two

neutral fields. The scalar spectrum contains then a CP-odd field A = S3 and two CP-even

scalars h and H which mix through the two-dimensional rotation matrix:1 h

H

 =

 cos α̃ sin α̃

− sin α̃ cos α̃

  S1

S2

 . (11)

We shall adopt the conventions Mh ≤MH and 0 ≤ α̃ ≤ π, so that sin α̃ is always positive. The

masses of the three physical neutral scalars are given in this case by

M2
h =

1

2
(Σ−∆) , M2

H =
1

2
(Σ + ∆) , M2

A = M2
H± + v2

(
λ4

2
− λR

5

)
, (12)

where

Σ = M2
H± + v2

(
2λ1 +

λ4

2
+ λR

5

)
, (13)

∆ =

√[
M2

H± + v2

(
−2λ1 +

λ4

2
+ λR

5

)]2

+ 4v4(λR
6 )2 = − 2v2λR

6

sin (2α̃)
, (14)

and the mixing angle is determined through

tan α̃ =
M2

h − 2λ1v
2

v2λR
6

=
v2λR

6

2λ1v2 −M2
H

. (15)

The cubic and quartic self-couplings among the physical scalars and their interactions with

the gauge bosons can be derived straightforwardly. Their explicit form could be found, for

example, in Refs. [7, 13,32].

2.1 Yukawa sector

In the Higgs basis, the most generic Yukawa Lagrangian of the 2HDM is given by

LY = −
√

2

v

[
Q̄′L(M ′

dΦ1 +Y ′dΦ2)d′R + Q̄′L(M ′
uΦ̃1 +Y ′uΦ̃2)u′R + L̄′L(M ′

`Φ1 +Y ′`Φ2)`′R

]
+ h.c. , (16)

1The scalar mixing is often parametrized in terms of α′ = α̃ + π/2, so that the SM limit corresponds to

α′ = π/2 [7]. We prefer to describe small deviations from the SM limit with α̃ ' 0.
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where Φ̃i(x) = iτ2Φ∗i (x) are the charge-conjugated scalar doublets with hypercharge Y = −1
2
,

Q′L and L′L denote the SM left-handed quark and lepton doublets, respectively, and u′R, d′R and

`′R are the corresponding right-handed singlets, in the weak interaction basis. All fermionic fields

are written as 3-vectors in flavour space and, accordingly, the couplings M ′
f and Y ′f (f = u, d, `)

are 3× 3 complex matrices.

In general, the Yukawa matrices M ′
f and Y ′f cannot be simultaneously diagonalized in flavour

space. Thus, in the fermion mass-eigenstate basis with diagonal mass matrices Mf , the corre-

sponding Yukawa matrices Yf remain non-diagonal, giving rise to tree-level FCNC interactions.

In the A2HDM, the tree-level FCNCs are eliminated by requiring the alignment in flavour space

of the two Yukawa matrices coupling to a given type of right-handed fermions [10]

Yd,` = ςd,`Md,` , Yu = ς∗uMu , (17)

where the three proportionality parameters ςf (f = d, u, `) are arbitrary complex numbers and

introduce new sources of CP violation. The Yukawa interactions of the physical scalars with

the fermion mass-eigenstate fields then read [10]

LY = −
√

2

v
H+

{
ū
[
ςd VMdPR − ςuM †

uV PL
]
d+ ς` ν̄M`PR`

}
− 1

v

∑
ϕ0
i ,f

y
ϕ0
i

f ϕ0
i

[
f̄MfPRf

]
+ h.c. , (18)

where PR,L ≡ 1±γ5
2

are the right-handed and left-handed chirality projectors, Mf the diagonal

fermion mass matrices, and V the CKM quark-mixing matrix [11]. The couplings of the neutral

scalar fields to fermion pairs are given by

y
ϕ0
i

d,` = Ri1 + (Ri2 + iRi3) ςd,` , y
ϕ0
i

u = Ri1 + (Ri2 − iRi3) ς∗u . (19)

In the A2HDM, all fermionic couplings to scalars are proportional to the corresponding

fermion masses, and the only source of flavour-changing interactions is the CKM quark-mixing

matrix V , while all leptonic couplings and the quark neutral-current interactions are diagonal

in flavour. All possible freedom allowed by the alignment conditions is encoded by the three

family-universal complex parameters ςf , which provide new sources of CP violation without

tree-level FCNCs [10]. The usual models with NFC, based on discrete Z2 symmetries, are

recovered for particular values of the couplings ςf , as indicated in Table 1. Explicit examples of

7



Model ςd ςu ςl

Type I cot β cot β cot β

Type II − tan β cot β − tan β

Type X (lepton-specific) cot β cot β − tan β

Type Y (flipped) − tan β cot β cot β

Inert 0 0 0

Table 1: The one-to-one correspondence between different specific choices of the couplings ςf and

the 2HDMs based on discrete Z2 symmetries.

symmetry-protected underlying theories leading to a low-energy A2HDM structure have been

discussed in Ref. [33].

The alignment conditions in Eq. (17) presumably hold at some high-energy scale ΛA and

are spoiled by radiative corrections. These higher-order contributions induce a misalignment

of the Yukawa matrices, generating small FCNC effects suppressed by the corresponding loop

factors [10, 14, 34, 35]. However, the flavour symmetries of the A2HDM tightly constrain the

possible FCNC structures, keeping their effects well below the present experimental bounds [14,

15]. Using the renormalization-group equations (RGEs) [35], one can check that the only FCNC

local structures induced at one loop take the form [14,34]

LFCNC =
C

4π2v3
(1 + ς∗u ςd)

∑
i

ϕ0
i

{
(Ri2 + iRi3) (ςd − ςu)

[
d̄L V

†MuM
†
uVMd dR

]
− (Ri2 − iRi3) (ς∗d − ς∗u)

[
ūL VMdM

†
dV
†Mu uR

]}
+ h.c. , (20)

which vanishes identically when ςd = ςu (Z2 models of types I, X and inert) or ςd = −1/ς∗u (types

II and Y), as it should be.

Although the numerical effect of the local term in Eq. (20) is suppressed by mqm
2
q′/v

3 and

quark-mixing factors, its tree-level contribution is needed to render finite the contribution from

one-loop Higgs-penguin diagrams to B0
s,d → `+`−, as will be detailed later. The renormalization

of the coupling constant C is determined to be

C = CR(µ) +
1

2

{
2µD−4

D − 4
+ γE − ln (4π)

}
, (21)

where D is the space-time dimension. Thus, the renormalized coupling satisfies

CR(µ) = CR(µ0)− ln (µ/µ0) . (22)
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Assuming the alignment to be exact at the scale ΛA, i.e., CR(ΛA) = 0, this implies CR(µ) =

ln (ΛA/µ).

3 Calculation of B(B0
s,d → `+`−)

3.1 Effective Hamiltonian

The rare leptonic B0
s,d → `+`− decays proceed through loop diagrams in both the SM and the

A2HDM. After decoupling the heavy degrees of freedom, including the top quark, the weak

gauge bosons, as well as the charged and neutral Higgs bosons, these decays are described by

a low-energy effective Hamiltonian [36–38]

Heff = − GF α√
2πs2

W

[
VtbV

∗
tq

10,S,P∑
i

(CiOi + C ′iO′i) + h.c.

]
, (23)

where GF is the Fermi coupling constant, α = e2/4π the QED fine-structure constant, and sW =

sin θW the sine of the weak angle. The effective four-fermion operators are given, respectively,

as

O10 = (q̄γµPLb) (¯̀γµγ5`) , O′10 = (q̄γµPRb) (¯̀γµγ5`) ,

OS =
m`mb

M2
W

(q̄PRb) (¯̀̀ ) , O′S =
m`mb

M2
W

(q̄PLb) (¯̀̀ ) ,

OP =
m`mb

M2
W

(q̄PRb) (¯̀γ5`) , O′P =
m`mb

M2
W

(q̄PLb) (¯̀γ5`) , (24)

where ` = e, µ, τ ; q = d, s, and mb = mb(µ) denotes the b-quark running mass in the modified

minimal subtraction (MS) scheme. In this paper, we shall neglect the operatorsO′i, because they

only give contributions proportional to the light-quark mass mq. Operators involving the vector

current ¯̀γµ` do not contribute to B0
s,d → `+`− because the conserved vector current vanishes

when contracted with the B0
q momentum. Since the matrix element 〈0|q̄σµνb|B̄0

q (p)〉 = 0, there

is also no contribution from the tensor operators. Thus, only the operators O10, OS and OP
survive in our approximation.

As there are highly separated mass scales in the decays B0
s,d → `+`−, short-distance QCD

corrections can contain large logarithms like ln (µb/MW ) with µb ∼ O(mb), which must be
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summed up to all orders in perturbation theory with the help of renormalization-group tech-

niques. The evolution of the Wilson coefficients from the scale O(MW ) down to O(µb) requires

the solution of the RGEs of the corresponding operators O10, OS and OP . However, the oper-

ator O10 has zero anomalous dimension due to the conservation of the (V − A) quark current

in the limit of vanishing quark masses. The operators OS and OP have also zero anomalous

dimension, because the anomalous dimensions of the b-quark mass mb(µ) and the scalar current

(q̄PRb)(µ) cancel each other. Thus, with the operators defined by Eq. (24), the corresponding

Wilson coefficients do not receive additional renormalization due to QCD corrections.

In the SM, the contributions from the scalar and pseudoscalar operators are quite suppressed

and, therefore, are usually neglected in phenomenological analyses. However, they can be

much more sizeable in models with enlarged Higgs sectors, such as the A2HDM, especially

when the Yukawa and/or scalar-potential couplings are large. Therefore, the B0
s,d → `+`−

data provide useful constraints on the model parameters. To get the theoretical predictions for

B(B0
s,d → `+`−), the main task is then to calculate the three Wilson coefficients C10,S,P in both

the SM and the A2HDM, details of which will be presented in the next few subsections.

3.2 Computational method

The standard way to find the Wilson coefficients is to require equality of one-particle irre-

ducible amputated Green functions calculated in the full and in the effective theory [39]. The

former requires the calculation of various box, penguin and self-energy diagrams. We firstly

use the program FeynArts [40], with the model files provided by the package FeynRules [41],

to generate all the Feynman diagrams contributing to the decays B0
s,d → `+`−, as well as the

corresponding amplitudes, which can then be evaluated straightforwardly.

Throughout the whole calculation, we set the light-quark masses md,s to zero; while for mb,

we keep it up to linear order. As the external momenta are much smaller than the masses

of internal top-quark, gauge bosons, as well as charged and neutral scalars, the Feynman

integrands are expanded in external momenta before performing the loop integration [42]

1

(k + l)2 −M2
=

1

k2 −M2

[
1− l2 + 2(k · l)

k2 −M2
+

4(k · l)2

(k2 −M2)2

]
+O(l4/M4) , (25)

where k denotes the loop momentum, M a heavy mass and l an arbitrary external momentum.

In addition, we employ the naive dimensional regularization scheme with an anti-commuting γ5
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to regularize the divergences appearing in Feynman integrals. After the Taylor expansion and

factorizing out the external momenta, the integrals remain dependent only on the loop momen-

tum and the heavy masses M . Subsequently, we apply the partial fraction decomposition [43]

1

(q2 −m2
1)(q2 −m2

2)
=

1

m2
1 −m2

2

[
1

q2 −m2
1

− 1

q2 −m2
2

]
, (26)

which allows a reduction of all the Feynman integrals to those in which only a single mass

parameter occurs in the propagator denominators. Finally, after reduction of tensor integrals

to scalar ones, the only non-vanishing one-loop integrals take the form [44]∫
dDk

(2π)D
1

(k2 −m2)n
=

(−1)ni

(4π)D/2
Γ(n−D/2)

Γ(n)

(
1

m2

)n−D/2
, (27)

with an arbitrary integer power n and with m 6= 0.

The computational procedure has also been checked through an independent analytic cal-

culation of the Feynman diagrams, using more standard techniques such as the Feynman

parametrization to combine propagators. We found full agreement between the results ob-

tained with these two methods.

It should be noted that, in deriving the effective Hamiltonian in Eq. (23), the limit mu,c → 0

and the unitarity of the CKM matrix,

V ∗uqVub + V ∗cqVcb + V ∗tqVtb = 0 , (28)

have been implicitly exploited. In general, the Wilson coefficients Ci are functions of the internal

up-type quark masses, together with the corresponding CKM factors [39]:

Ci =
∑
j=u,c,t

V ∗jqVjb Fi(xj) , (29)

where xj = m2
j/M

2
W , and Fi(xj) denote the loop functions. The unitarity relation in Eq. (28)

implies vanishing coefficients Ci if the internal quark masses are set to be equal, i.e., xu =

xc = xt. For this reason, we need only to calculate explicitly the contributions from internal

top quarks, while those from up and charm quarks are taken into account by means of simply

omitting the mass-independent terms in the basic functions Fi(xt). For simplicity, we also

introduce the following mass ratios:

xt =
m2
t

M2
W

, xH+ =
M2

H±

M2
W

, xϕ0
i

=
M2

ϕ0
i

M2
W

, xhSM =
M2

hSM

M2
W

, (30)
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where mt = mt(µ) is the top-quark running mass in the MS scheme, and hSM the SM Higgs

boson.

In order to make a detailed presentation of our results, we shall split the different contribu-

tions to the Wilson coefficients into the form:

C10 = CSM
10 + CZ penguin,A2HDM

10 , (31)

CS = Cbox, SM
S + Cbox,A2HDM

S + C
ϕ0
i ,A2HDM

S , (32)

CP = Cbox, SM
P + CZ penguin, SM

P + CGB penguin, SM
P + Cbox,A2HDM

P

+ CZ penguin,A2HDM
P + CGB penguin,A2HDM

P + C
ϕ0
i ,A2HDM

P . (33)

The pieces labeled with “SM” only involve SM fields (without the Higgs), while those denoted

by “A2HDM” contain the scalar contributions. We have calculated all the individual diagrams

in both the Feynman (ξ = 1) and the unitary (ξ = ∞) gauges. Goldstone boson (GB) con-

tributions are of course absent in the unitary gauge. While the contributions of the box and

penguin diagrams to the Wilson coefficients are separately gauge dependent, their sum is indeed

independent of the EW gauge fixing [45,46]. Note that photonic penguin diagrams, in both the

SM and the A2HDM, do not contribute to the decays B0
s,d → `+`− because of the pure vector

nature of the electromagnetic leptonic coupling.

In B0
s,d → `+`− the external momenta are small compared to the EW scale MW . One can

then set all external momenta to zero when evaluating C10. However, the external momenta

must be taken into account to evaluate the scalar Wilson coefficients CS and CP , otherwise

some contributions would be missed.

3.3 Wilson coefficients in the SM

In the SM, the dominant contributions to the decays B0
s,d → `+`− come from the W -box and

Z-penguin diagrams shown in Figs. 1 and 2, respectively, which generate the Wilson coefficient:

CSM
10 = −ηEW

Y ηQCD
Y Y0(xt) , (34)

where

Y0(xt) =
xt
8

[
xt − 4

xt − 1
+

3xt
(xt − 1)2

lnxt

]
(35)
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Figure 1: SM W -box diagrams contributing to B̄0
s → `+`−. Diagrams involving Goldstone bosons

G± are absent in the unitary gauge.
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Figure 2: SM Z-penguin diagrams contributing to B̄0
s → `+`−. Diagrams involving Goldstone bosons

G± are absent in the unitary gauge.

is the one-loop function that was calculated for the first time in Ref. [47]. The factor ηEW
Y

accounts for both the NLO EW matching corrections [29], as well as the logarithmically en-

hanced QED corrections that originate from the renormalization group evolution [28,30], while

the coefficient ηQCD
Y stands for the NLO [48,49] and NNLO [30] QCD corrections.

When the small external momenta are taken into account, the SM W -box and Z-penguin

diagrams also generate contributions to the Wilson coefficients CS and CP . The contribu-

tion from diagram 1.2 can be neglected, because it contains two leptonic Goldstone couplings

which generate a suppression factor m2
`/M

2
W . The scalar contribution from the remaining box

13
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Figure 3: SM Higgs-penguin diagrams contributing to B̄0
s → `+`−. Contributions with Goldstone

bosons G± are absent in the unitary gauge.

diagrams is given by:

Cbox, SM
S,Feynman = − xt(xt − 2)

12(xt − 1)2
+

(xt − 2)(3xt − 1)

24(xt − 1)3
lnxt , (36)

Cbox,SM
S,Unitary = − xt(xt + 1)

48(xt − 1)2
− (xt − 2)(3x2

t − 3xt + 1)

24(xt − 1)3
lnxt , (37)

where the two different expressions correspond to the results obtained in the Feynman and

unitary gauges, respectively.

In the SM there is an additional contribution to the scalar Wilson coefficient CS from the

Higgs-penguin diagrams shown in Fig. 3, which is by itself gauge dependent [46, 50, 51] and

should cancel the gauge dependence of the W -box contribution. We find the result:

Ch penguin, SM
S,Feynman = −xt

8

[
3

xhSM
− xt − 3

2(xt − 1)2
+
xt(xt − 2)

(xt − 1)3
lnxt

]
, (38)

Ch penguin, SM
S,Unitary = − 3xt

8xhSM
. (39)

The sum of the two contributions to CS is indeed gauge independent:

CSM
S = Cbox, SM

S,Feynman + Ch penguin, SM
S,Feynman = Cbox, SM

S,Unitary + Ch penguin, SM
S,Unitary

= − 3xt
8xhSM

− xt(xt + 1)

48(xt − 1)2
− (xt − 2)(3x2

t − 3xt + 1)

24(xt − 1)3
lnxt . (40)
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Figure 4: SM Goldstone-penguin diagrams contributing to B̄0
s → `+`−. These contributions are

absent in the unitary gauge.

The contribution from the SM W -box diagrams (Fig. 1) to the pseudoscalar Wilson coeffi-

cient CP is given by:

Cbox, SM
P,Feynman =

xt(35x2
t − 82xt − 1)

72(xt − 1)3
− 9x3

t − 28x2
t + xt + 2

24(xt − 1)4
lnxt , (41)

Cbox, SM
P,Unitary =

xt(71x2
t − 172xt − 19)

144(xt − 1)3
+
x4
t − 12x3

t + 34x2
t − xt − 2

24(xt − 1)4
lnxt . (42)

Additional contributions to CP are generated by the Z- and Goldstone-penguin diagrams

shown in Figs. 2 and 4, respectively. The contributions from diagrams 4.6, 4.7 and 4.8 are

proportional to the light-quark mass and can be therefore neglected. We find:

CZ penguin, SM
P,Feynman =

xt(5x
2
t + 16xt + 3)

48(xt − 1)3
− x4

t + x3
t + 18x2

t − 12xt + 4

24(xt − 1)4
lnxt

− s2
W

[
xt(5x

2
t + 40xt − 21)

72(xt − 1)3
− 3x4

t − 3x3
t + 36x2

t − 32xt + 8

36(xt − 1)4
lnxt

]
, (43)

CGB penguin, SM
P,Feynman =

(
1− s2

W

) xt
4

[
xt − 6

xt − 1
+

3xt + 2

(xt − 1)2
lnxt

]
, (44)

and

CZ penguin, SM
P,Unitary =

1

12

[
xt(18x3

t − 137x2
t + 262xt − 95)

6(xt − 1)3
+

8x4
t − 11x3

t − 15x2
t + 12xt − 2

(xt − 1)4
lnxt

]
− s2

W

36

[
xt(18x3

t − 139x2
t + 274xt − 129)

2(xt − 1)3
+

24x4
t − 33x3

t − 45x2
t + 50xt − 8

(xt − 1)4
lnxt

]
.(45)

Using the above results, one can easily check that the SM contribution to CP is also gauge
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Figure 5: Z-penguin diagrams involving H± exchanges in the A2HDM.

independent:

CSM
P = Cbox,SM

P,Feynman + CZ penguin,SM
P,Feynman + CGB penguin, SM

P,Feynman = Cbox, SM
P,Unitary + CZ penguin, SM

P,Unitary

=
1

24

[
xt(36x3

t − 203x2
t + 352xt − 209)

6(xt − 1)3
+

17x4
t − 34x3

t + 4x2
t + 23xt − 6

(xt − 1)4
lnxt

]
− s2

W

36

[
xt(18x3

t − 139x2
t + 274xt − 129)

2(xt − 1)3
+

24x4
t − 33x3

t − 45x2
t + 50xt − 8

(xt − 1)4
lnxt

]
. (46)

The GIM mechanism has eliminated those contributions which are independent of the virtual

top-quark mass. However, the lnxt terms in the Wilson coefficients CSM
S and CSM

P do not vanish

in the massless limit: at xt � 1, CSM
S ∼ − 1

12
lnxt and CSM

P ∼ −1
4

(
1− 8

9
s2
W

)
lnxt. These

infrared-sensitive terms arise from diagrams 1.1 and 2.1 in both gauges. The corresponding

contributions from virtual up and charm quarks cancel in the matching process with the low-

energy effective theory, which has the same infrared behaviour.2

3.4 Wilson coefficients in the A2HDM

In the A2HDM, the only new contribution to C10 comes from the Z-penguin diagrams shown

in Fig. 5. The result is gauge independent and given by

CA2HDM
10 = CZ penguin,A2HDM

10 = |ςu|2
x2
t

8

[
1

xH+ − xt
+

xH+

(xH+ − xt)2
(lnxt − lnxH+)

]
. (47)

In the particular case of the type-II 2HDM (or MSSM), ςu = 1/ tan β, this result agrees with

the one calculated in Ref. [20].

The box diagrams shown in Fig. 6 involve charged scalar exchanges and contribute to the

Wilson coefficients CA2HDM
S and CA2HDM

P . The contributions from diagrams 6.3 and 6.4 can be

2 In the low-energy effective theory the same lnxc (lnxu) terms appear from analogous diagrams with a c ν̄`

(u ν̄`) or c c̄ (u ū) loop connecting two four-fermion operators.

16



H±

W±

(6.1)

t t t t

H±

(6.3)

H±/G±
W±

H±

(6.2)

H±

G±/H±

(6.4)
s

b

s

�

�

ν�

b

s

�

�

ν�

b

s

�

�

ν�

b

s

�

�

ν�

Figure 6: Box diagrams involving H± exchanges in the A2HDM. Diagrams with Goldstone bosons

are absent in the unitary gauge.

neglected, since they are proportional to m2
`/M

2
W . For the scalar coefficients we find the results:

Cbox,A2HDM
S,Feynman =

xt
8(xH+ − xt)

{
ς` ς
∗
u

[
xt − xH+

(xH+ − 1)(xt − 1)
+

xt
(xt − 1)2

lnxt −
xH+

(xH+ − 1)2
lnxH+

]

− ςu ς∗`
[

1

xH+ − 1
+

xH+

(xH+ − xt)(xt − 1)
lnxt −

xH+(2xH+ − xt − 1)

(xH+ − xt)(xH+ − 1)2
lnxH+

]

+ 2 ςd ς
∗
`

[
1

xH+ − 1
lnxH+ − 1

xt − 1
lnxt

]}
, (48)

Cbox,A2HDM
S,Unitary =

xt
8(xH+ − xt)

{
ς` ς
∗
u

[
xt

xt − 1
lnxt −

xH+

xH+ − 1
lnxH+

]

+ ςu ς
∗
`

[
1− xH+ − x2

t

(xH+ − xt)(xt − 1)
lnxt −

xH+(xt − 1)

(xH+ − xt)(xH+ − 1)
lnxH+

]

+ 2 ςd ς
∗
`

[
lnxt − lnxH+

]}
, (49)

while the pseudoscalar contributions are given by:

Cbox,A2HDM
P,Feynman = −Cbox,A2HDM

S,Feynman

∣∣∣
ς` ς∗u→−ς` ς∗u

, (50)

Cbox,A2HDM
P,Unitary = −Cbox,A2HDM

S,Unitary

∣∣∣
ς` ς∗u→−ς` ς∗u

. (51)

Most of the previous calculations in the literature focused on the type-II 2HDM in the large

tan β limit; i.e., only those contributions proportional to tan2 β were kept, which correspond

to the ςd ς
∗
` terms in Eqs. (48)–(51). For this specific case, our results agree with Ref. [16].

Similarly to the SM case, the coefficient CA2HDM
P receives additional contributions from Z-

and Goldstone-penguin diagrams shown in Figs. 5 and 7, respectively. They are given by:

CZ penguin,A2HDM
P,Feynman =

xt
4(xH+ − xt)2

{
ςd ς
∗
u

[
−xt + xH+

2
+

xtxH+

xH+ − xt
(lnxH+ − lnxt)

]
17
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Figure 7: Goldstone-boson penguin diagrams involving H± exchanges in the A2HDM. These contri-

butions are absent in the unitary gauge.

+ |ςu|2
1

6(xH+ − xt)

[
x2
H+ − 8xH+xt − 17x2

t

6
+
x2
t (3xH+ + xt)

xH+ − xt
(lnxH+ − lnxt)

]}

+ s2
W

xt
6(xH+ − xt)2

{
ςd ς
∗
u

[
5xt − 3xH+

2
+
xH+(2xH+ − 3xt)

xH+ − xt
(lnxH+ − lnxt)

]

− |ςu|2
1

6(xH+ − xt)

[
4x3

H+ − 12x2
H+xt + 9xH+x2

t + 3x3
t

xH+ − xt
(lnxH+ − lnxt)

−
17x2

H+ − 64xH+xt + 71x2
t

6

]}
, (52)

CGB penguin,A2HDM
P,Feynman = |ςu|2 (1− s2

W )
x2
t

4(xH+ − xt)2

[
xH+ (lnxH+ − lnxt) + xt − xH+

]
. (53)

The gauge dependence of these two contributions compensates each other. Since there is no

contribution from Goldstone-penguin topologies in the unitary gauge, the Z-penguin result

should satisfy in this case:

CZ penguin,A2HDM
P,Unitay = CZ penguin,A2HDM

P,Feynman + CGB penguin,A2HDM
P,Feynman . (54)

This relation has been validated by the actual calculation.

3.4.1 Neutral scalar exchange

The Wilson coefficients CA2HDM
S and CA2HDM

P receive a direct tree-level contribution from the

scalar-exchange diagram shown in Fig. 8, where the FCNC vertex ϕ0
i s̄b is generated by the local

operator in Eq. (20). This contribution must be combined together with the scalar penguin

diagrams shown in Fig. 9. The structure of the common ϕ0
i
¯̀̀ vertex relates the resulting scalar
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Figure 8: Tree-level FCNC diagram mediated by the neutral scalars ϕ0
i = {h,H,A}.

and pseudoscalar Wilson coefficients, which take the form:

C
ϕ0
i ,A2HDM

S =
∑
ϕ0
i

Re(y
ϕ0
i

` ) Ĉϕ0
i , C

ϕ0
i ,A2HDM

P = i
∑
ϕ0
i

Im(y
ϕ0
i

` ) Ĉϕ0
i . (55)

The contributions from diagrams 9.4, 9.7, 9.8 and 9.14 are proportional to the light-quark

mass mq and, therefore, vanish in our massless approximation. Diagrams 9.1, 9.3, 9.11 and

9.13 in Feynman gauge and diagrams 9.1, 9.3, 9.5, 9.6, 9.9 and 9.10 in unitary gauge generate

a divergent contribution, which is not eliminated by the GIM mechanism; i.e., it remains even

after summing over contributions of the three virtual up-type quarks. This divergence matches

exactly the expected behaviour predicted through the RGEs, which originated in the local term

LFCNC. Thus, the one-loop divergence is cancelled by the renormalization of the coupling C

in Eq. (21) which, moreover, reabsorbs the µ dependence of the loops into the combination

CR(MW ) = CR(µ)− ln (MW/µ).

The scalar penguin diagrams 9.2, 9.12, 9.15 and 9.16 involve the cubic couplings ϕ0
iH

+H−,

ϕ0
iG

+G−, ϕ0
iH

+G− and ϕ0
iG

+H−, respectively, which are functions of the scalar-potential pa-

rameters. Since the last three couplings can be fully determined in terms of the vacuum ex-

pectation value v and the scalar masses and mixings, we can express the total scalar-exchange

(tree-level plus one-loop penguin) contribution in the form:

Ĉϕ0
i = xt

{
1

2xϕ0
i

(ςu − ςd) (1 + ς∗uςd) (Ri2 + iRi3) CR(MW ) +
v2

M2
ϕ0
i

λ
ϕ0
i

H+H− g0 (xt, xH+ , ςu, ςd)

+
3∑
j=1

Rij ξj

[
1

2xϕ0
i

g
(a)
j (xt, xH+ , ςu, ςd) + g

(b)
j (xt, xH+ , ςu, ςd)

]}
, (56)

where λ
ϕ0
i

H+H− = λ3Ri1+λR7Ri2−λI7Ri3, ξ1 = ξ2 = 1 and ξ3 = i. The functions g0 (xt, xH+ , ςu, ςd),

g
(a)
j (xt, xH+ , ςu, ςd) and g

(b)
j (xt, xH+ , ςu, ςd) are given in the appendix, both in the Feynman and

unitary gauges, together with the separate contributions from each diagram in Fig. 9. In the

19



ϕ0
i

t

t

b

s

H±

(9.1)

�

ϕ0
i

t

t

�b

s

W±

(9.5)

(9.2)

H±

H±

W±

W±

(9.6)

ϕ0
i

�

�

t

b

s

ϕ0
i

�

�

t

b

s

ϕ0
i

b

s

bt

H±

(9.3)

ϕ0
i

b

s

bt

W±

(9.7)

ϕ0
i

�

�s

t

W±b

ϕ0
i

�

�

t

b

s
(9.9)

W±

H±

(9.10)

t

b

s

H±

W± ϕ0
i

�

�

�

�

�

�

�

�
(9.8)

ϕ0
i

t

t

b

s

G±

(9.11)
(9.12)

G±

G± ϕ0
i

�

�

t

b

s

(9.15)

G±

H± ϕ0
i

�

�

t

b

s
(9.16)

H±

G± ϕ0
i

�

�

t

b

s

ϕ0
i

�

�

t

b

s

ϕ0
i

b

s

bt

G±
(9.13)

(9.17)

W±

G±

(9.18)

t

b

s

G±

W± ϕ0
i

�

�

�

�

�

�

(9.4)

s

ϕ0
i

�

�s

t

H±b

(9.14)

s

ϕ0
i

�

�s

t

G±b

Figure 9: Scalar penguin diagrams in the A2HDM, where ϕ0
i = {h,H,A}. Diagrams 9.11 to 9.18 are

absent in the unitary gauge.

limit ςu,d → 0, xH,A → ∞, xh → xhSM , Ri2,i3 → 0, R11 → 1, this result reduces to the SM

expression in Eqs. (38) and (39).

The orthogonality relation [13]

3∑
i=1

y
ϕ0
i

` Rij = δj1 + (δj2 + i δj3) ς` (57)

allows us to separate the total contribution from the functions g
(b)
j (xt, xH+ , ςu, ςd), which does

not depend on the neutral scalar masses:

C
ϕ0
i ,A2HDM

S

∣∣∣
g(b)

= xt

[
g

(b)
1 + Re(ς`) g

(b)
2 − i Im(ς`) g

(b)
3

]
, (58)
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C
ϕ0
i ,A2HDM

P

∣∣∣
g(b)

= xt

[
i Im(ς`) g

(b)
2 − Re(ς`) g

(b)
3

]
. (59)

It is also noted that the functions g
(b)
j (xt, xH+ , ςu, ςd) only receive contributions in the Feynman

gauge, because they arise from the scalar penguin diagrams involving the Goldstone bosons.

Actually, the gauge dependent pieces from the box diagrams shown in Figs. 1 and 6 are exactly

cancelled by these terms:

Cbox, SM
S,Unitary − Cbox, SM

S,Feynman = xt g
(b)
1 , (60)

Cbox,A2HDM
S,Unitary − Cbox,A2HDM

S,Feynman = xt

[
Re(ς`) g

(b)
2 − i Im(ς`) g

(b)
3

]
, (61)

Cbox,A2HDM
P,Unitary − Cbox,A2HDM

P,Feynman = xt

[
i Im(ς`) g

(b)
2 − Re(ς`) g

(b)
3

]
. (62)

The remaining contributions in Eq. (56), which are all proportional to 1/M2
ϕ0
i
, are gauge

independent but are sensitive to the scalar mixing parameters. Nevertheless, a naive mixing-

independent estimate can be obtained in the limit of degenerate neutral-scalar masses:

C
ϕ0
i ,A2HDM

S

∣∣∣xh=xH=xA

C+g0 +g(a)
=

xt
2xh

{
(ςu − ςd) (1 + ς∗uςd) CR(MW )

[
Re(ς`)− i Im(ς`)

]
+

2v2

M2
W

g0

[
λ3 + λR7 Re(ς`) + λI7 Im(ς`)

]
+ g

(a)
1 + Re(ς`) g

(a)
2 − i Im(ς`) g

(a)
3

}
, (63)

C
ϕ0
i ,A2HDM

P

∣∣∣xh=xH=xA

C+g0 +g(a)
=

xt
2xh

{
(ςu − ςd) (1 + ς∗uςd) CR(MW )

[
i Im(ς`)− Re(ς`)

]
+

2v2

M2
W

g0 i
[
λR7 Im(ς`)− λI7 Re(ς`)

]
+ i Im(ς`) g

(a)
2 − Re(ς`) g

(a)
3

}
. (64)

We shall perform our phenomenological analyses in the CP-conserving limit, with real potential

and alignment parameters, where A = S3 is a CP-odd state while H and h are two CP-even

states defined by the rotation in Eq. (11). The 1/xϕ0
i

contributions take then the form:

C
ϕ0
i ,A2HDM

S

∣∣∣CP con.

C+g0 +g(a)
=

xt
2xh

(cα̃ + sα̃ ς`)

{
sα̃ (ςu − ςd) (1 + ςu ςd) CR(MW )

+ (cα̃ λ3 + sα̃ λ7)
2v2

M2
W

g0 + cα̃ g
(a)
1 + sα̃ g

(a)
2

}
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+
xt

2xH
(cα̃ ς` − sα̃)

{
cα̃ (ςu − ςd) (1 + ςu ςd) CR(MW ) (65)

− (sα̃ λ3 − cα̃ λ7)
2v2

M2
W

g0 − sα̃ g
(a)
1 + cα̃ g

(a)
2

}
,

C
ϕ0
i ,A2HDM

P

∣∣∣CP con.

C+g0 +g(a)
= −ς`

xt
2xA

[
(ςu − ςd) (1 + ςu ςd) CR(MW ) + g

(a)
3

]
, (66)

where cα̃ = cos α̃ and sα̃ = sin α̃. For degenerate neutral scalars, this reproduces the results in

Eqs. (63) and (64) (in the CP-conserving limit).

The terms proportional to CR(MW ) in Eqs. (65) and (66) are absent in Z2-symmetric

models, because the alignment conditions are protected by the Z2 symmetry at any scale. In

the particular case of the type-II 2HDM at large tan β, the only terms enhanced by a factor

tan2 β originate from the ς`g
(a)
2 (for CS) and ς`g

(a)
3 (for CP ) contributions, due to the factors

ς2
d ς
∗
u and ςd in the definitions for g

(a)
2 and g

(a)
3 (see Eqs. (112) and (113)). In this specific case,

our results agree with the ones calculated in Ref. [16]. Especially, we confirmed the observation

that the dependence on the masses of the neutral Higgs bosons from the penguin and fermion

self-energy diagrams drops out in their sum without invoking any relation between the mixing

angle and the Higgs masses [16].

3.5 B0
s,d → `+`− branching ratio

Due to the pseudoscalar nature of the Bq meson, only the following two hadronic matrix

elements are involved in B0
s,d → `+`− decays:

〈
0|q̄ γµγ5 b|B̄q(p)

〉
= ifBqpµ ,〈

0|q̄ γ5 b|B̄q(p)
〉

= −ifBq

M2
Bq

mb +mq

, (67)

where fBq and MBq are the Bq-meson decay constant and mass, respectively. The second

equation follows from the first one by using the QCD equation of motion for the quark fields.

Starting with Eq. (23) and using Eq. (67), we can express the branching ratio of B0
s,d → `+`−

decays as

B(B0
q → `+`−) =

τBq G
4
F M

4
W

8π5

∣∣Vtb V ∗tq CSM
10

∣∣2 f 2
Bq
MBqm

2
`

√
1− 4m2

`

M2
Bq

[
|P |2 + |S|2

]
,
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= B(B0
q → `+`−)SM

[
|P |2 + |S|2

]
, (68)

where τBq is the Bq-meson mean lifetime, and P and S are defined, respectively, as [36, 37]

P ≡ C10

CSM
10

+
M2

Bq

2M2
W

(
mb

mb +mq

)
CP − CSM

P

CSM
10

≡ |P | eiφP , (69)

S ≡

√
1− 4m2

`

M2
Bq

M2
Bq

2M2
W

(
mb

mb +mq

)
CS − CSM

S

CSM
10

≡ |S| eiφS . (70)

We have approximated the negligibly small (and usually neglected) SM scalar/pseudoscalar

contributions3 CSM
S and CSM

P to first order in M2
Bq
/M2

W . In the SM, P = 1 and S = 0. In

a generic case, however, P and S can carry nontrivial CP-violating phases φP and φS. It is

also noted that, even in models with comparable Wilson coefficients, the contributions from OS
and OP are suppressed by a factor M2

Bq
/M2

W with respect to that from O10. Therefore, unless

there were large enhancements for CS and CP , the coefficient C10 still provides the dominant

contribution to the branching ratio.

In order to compare with the experimental measurement, the effect of B0
q − B̄0

q oscillations

should be taken into account, and the resulting averaged time-integrated branching ratio is

given by [36,37]

B(B0
q → `+`−) =

[
1 +A``∆Γ yq

1− y2
q

]
B(B0

q → `+`−) , (71)

where A``∆Γ is a time-dependent observable introduced firstly in Ref. [37], and yq is related to

the decay width difference ∆Γq between the two Bq-meson mass eigenstates,

yq ≡
ΓqL − ΓqH
ΓqL + ΓqH

=
∆Γq
2Γq

, (72)

with ΓqH(L) denoting the heavier (lighter) eigenstate decay width and Γq = τ−1
Bq

the average

Bq-meson width. Within the SM, A``∆Γ = 1 and the averaged time-integrated branching ratio

is given by

B(B0
q → `+`−)SM =

1

1− yq
B(B0

q → `+`−)SM ,

=
G4
F M

4
W

8π5 ΓqH

∣∣Vtb V ∗tq CSM
10

∣∣2 f 2
Bq
MBqm

2
`

√
1− 4m2

`

M2
Bq

. (73)

3Here, CSM
S and CSM

P denote the full SM contribution, including the Higgs-penguin terms.
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GF = 1.1663787× 10−5 GeV−2 [52] fBs = 227.7± 4.5 MeV [54]

αs(MZ) = 0.1185± 0.0006 [52] fBd
= 190.5± 4.2 MeV [54]

∆αhadr(MZ) = 0.02772± 0.00010 [52] τBs = 1.516± 0.011 ps [55]

MZ = 91.1876± 0.0021 GeV [52] τBd
= 1.519± 0.007 ps [55]

Mt = 173.34± 0.27± 1.71 GeV [53] 1/ΓsH = 1.615± 0.021 ps [55]

MhSM = 125.9± 0.4 GeV [52] 1/ΓsL = 1.428± 0.013 ps [55]

MBs = 5366.77± 0.24 MeV [52] ∆Γs = 0.081± 0.011 ps−1 [55]

MBd
= 5279.58± 0.17 MeV [52] |Vcb| = (42.42± 0.86)× 10−3 [56]

mb(mb) = 4.18± 0.03 GeV [52] |V ∗tbVts/Vcb| = 0.980± 0.001 [57,58]

ms(2 GeV) = 95± 5 MeV [52] |V ∗tbVtd| = 0.0088± 0.0003 [57,58]

mµ = 105.65837 MeV [52]

Table 2: Relevant input parameters used in our numerical analysis.

By exploiting Eqs. (68) and (73), we can rewrite Eq. (71) as

B(B0
q → `+`−) =

[
1 +A``∆Γ yq

1 + yq

] [
|P |2 + |S|2

]
B(B0

q → `+`−)SM ,

=̇ B(B0
q → `+`−)SM

[
|P |2 +

(
1− ∆Γq

ΓqL

)
|S|2

]
, (74)

where the second line is valid only in the absence of beyond-SM sources of CP violation, which

will be assumed in the following.4

4 Numerical results

4.1 Input parameters

To evaluate numerically the branching ratios in Eqs. (73) and (74), we need several input

parameters collected in Table 2. For the matching scale µ0 ∼ O(MW ) and the low-energy

scale µb ∼ O(mb), we fix them to µ0 = 160 GeV and µb = 5 GeV [28]. In addition, the on-

shell scheme is adopted for the EW parameters, which means that the Z-boson and top-quark

masses coincide with their pole masses, and the weak angle is given by s2
W ≡ 1 −M2

W/M
2
Z ,

4The explicit formulae in a generic case with new CP-violating phases could be found in Refs. [30, 36,37].
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where MW = 80.359 ± 0.012 GeV is the W -boson on-shell mass obtained according to the fit

formulae in Eqs. (6) and (9) of Ref. [59].

For the top-quark mass, we assume that the combined measurement of Tevatron and

LHC [53] corresponds to the pole mass, but increase its systematic error by 1 GeV to account for

the intrinsic ambiguity in the mt definition; i.e. we shall take Mt = (173.34±0.27±1.71) GeV.

With the aid of the Mathematica package RunDec [60], four-loop QCD RGEs are applied to

evolve the strong coupling αs(µ) as well as the MS renormalized masses mt(µ) and mb,s(µ)

between different scales, and a three-loop relation has been used to convert the pole mass Mt

to the scale-invariant mass mt(mt), which gives mt(mt) ' 163.30 GeV.

The decay constants fBq are taken from the updated FLAG [54] average of Nf = 2+1 lattice

determinations, which are consistent with the naive weighted average of Nf = 2 + 1 [61–63]

and Nf = 2 + 1 + 1 [64, 65] results. For the Bq-meson lifetimes, while a sizable decay width

difference ∆Γs has been established [55], the approximation 1/ΓdH ' 1/ΓdL ≡ τBd
can be safely

set, given the tiny SM expectation for ∆Γd/Γd [66].

For the CKM matrix element |Vcb|, we adopt the recent inclusive fit performed by taking into

account both the semileptonic data and the precise quark mass determinations from flavour-

conserving processes [56]. However, one should be aware of the present disagreement between

inclusive and exclusive determinations [54]. With |Vcb| fixed in this way, the needed CKM

factors are then obtained (within the SM) from the accurately known ratio |V ∗tbVts/Vcb| [57,58].

4.2 SM predictions

Within the SM, only the Wilson coefficient CSM
10 is relevant and, using the fitting formula in

Eq. (4) of Ref. [28] (which has been transformed to our convention for the effective Hamiltonian),

CSM
10 = −0.9604

[
Mt

173.1 GeV

]1.52 [
αs(MZ)

0.1184

]−0.09

+ 0.0224

[
Mt

173.1 GeV

]0.89 [
αs(MZ)

0.1184

]−0.09

,

= −0.9380

[
Mt

173.1 GeV

]1.53 [
αs(MZ)

0.1184

]−0.09

. (75)

The EW and QCD factors introduced in Eq. (34) are extracted as:

ηEW
Y = 0.977 , ηQCD

Y = 1.010 . (76)
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With the input parameters collected in Table 2, the SM predictions for the branching ratios

of B0
s,d → `+`− decays are:

B(Bs → e+e−) = (8.58± 0.59)× 10−14 ,

B(Bs → µ+µ−) = (3.67± 0.25)× 10−9 ,

B(Bs → τ+τ−) = (7.77± 0.53)× 10−7 ,

B(Bd → e+e−) = (2.49± 0.22)× 10−15 ,

B(Bd → µ+µ−) = (1.06± 0.10)× 10−10 ,

B(Bd → τ+τ−) = (2.23± 0.20)× 10−8 , (77)

where a 1.5% nonparametric uncertainty has been set to the branching ratios, and the main

parametric uncertainties come from fBq and the CKM matrix elements [28]. The small dif-

ferences with respect to the results given in Ref. [28] are due to our slightly different (more

conservative) input value for the top-quark mass Mt.

In order to explore constraints on the model parameters, it is convenient to introduce the

ratio [36, 37]

Rq` ≡
B(B0

q → `+`−)

B(B0
q → `+`−)SM

=

[
|P |2 +

(
1− ∆Γq

ΓqL

)
|S|2

]
, (78)

where the hadronic factors and CKM matrix elements cancel out. Combining the theoretical

SM predictions in Eq. (77) with the experimental results in Eqs. (2) and (4), we get

Rsµ = 0.79± 0.20 , Rdµ = 3.38+1.53
−1.35 , (79)

to be compared with the SM expectation R
SM

sµ = R
SM

dµ = 1.

Since only the Bs → µ+µ− branching ratio is currently measured with a signal significance

of ∼ 4.0σ [27], we shall investigate the allowed parameter space of the A2HDM under the

constraint from Rsµ given in Eq. (79). Although the experimental uncertainty is still quite

large, it has already started to put stringent constraints on many models beyond the SM [36].

Notice that, in addition to modifying the ratios Rq`, the scalar contributions to B0
q–B̄

0
q

mixings also change the fitted values of the relevant CKM parameters and, therefore, the

normalization B(B0
q → `+`−)SM. This should be taken into account, once more precise B0

q →

`+`− data becomes available, through a combined global fit.
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4.3 Results in the A2HDM

4.3.1 Choice of model parameters

In the following we assume that the Lagrangian of the scalar sector preserves the CP symmetry

i.e., that the only source of CP violation is still due to the CKM matrix. This makes all

the alignment and scalar-potential parameters real. Assuming further that the lightest CP-

even scalar h corresponds to the observed neutral boson with Mh ' 126 GeV, there are ten

free parameters in our calculation: three alignment parameters ςf , three scalar masses (MH ,

MA, MH±), one mixing angle α̃, two scalar-potential couplings (λ3, λ7), and the misalignment

parameter CR(MW ).

In order to gain insight into the parameter space allowed by B0
s,d → `+`− decays, it is

necessary to take into account information about the h(126) collider data and flavour physics

constraints, as well as EW precision observables, which will be crucial for making simplifying

assumptions and reducing the number of relevant variables. Explicitly, the following constraints

and assumptions on the model parameters are taken into account:

• Firstly, the mixing angle α̃ is constrained at | cos α̃| > 0.90 (68% CL) through a global fit

to the latest LHC and Tevatron data for the h(126) boson [13], which is very close to the

SM limit; i.e., the lightest CP-even scalar h behaves like the SM Higgs boson.

• To assure the validity of perturbative unitarity in the scalar-scalar scattering amplitudes,

upper bounds on the quartic Higgs self-couplings are usually imposed by requiring them

to be smaller than 8π [7]; i.e., |λ3,7| . 8π.

• With our convention, the lower bound on the heavier CP-even scalar mass is MH ≥Mh '

126 GeV. Much lower values of MA are still allowed experimentally. There are, however,

no stringent upper limits on these masses. Here we limit them at MH ∈ [130, 500] GeV

and MA ∈ [80, 500] GeV.

• The charged Higgs mass is assumed to lie in the range MH± ∈ [80, 500] GeV, which would

require |ςu| ≤ 2 to be compatible with the present data on loop-induced processes, such

as Z → b̄b, b→ sγ and B0
s,d − B̄0

s,d mixing, as well as the h(126) decays [13,15].
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• The alignment parameters ςd and ς` are only mildly constrained through phenomenological

requirements involving other model parameters. As in our previous works, we restrict

them at |ςd,`| ≤ 50 [15].

• At present, there are no useful constraints on the misalignment parameter CR(MW ). For

simplicity, it is assumed to be zero.

Numerically, it is found that the ratio Rsµ is less sensitive to the scalar-potential couplings

λ3 and λ7 than to the other model parameters, especially when the alignment parameters are

small and/or the neutral scalar masses are large. The mixing angle α̃, when constrained in the

range cos α̃ ∈ [0.9, 1], is also found to have only a marginal impact on Rsµ. Thus, for simplicity,

we shall assign the following values to these parameters:

λ3 = λ7 = 1, cos α̃ = 0.95 . (80)

As can be seen from Eqs. (69) and (70), the Wilson coefficients CS and CP are always ac-

companied with the power-suppressed factor M2
Bq
/M2

W compared to C10. The NP contribution

to C10 is, however, proportional to |ςu|2 and depends only on the charged-scalar mass. It is,

therefore, interesting to discuss the following two special cases with respect to the choice of

the alignment parameters: The first one is when |ςd,`| . |ςu| ≤ 2, where the NP contribution is

dominated by C10 while CS and CP are negligible. The second one is when |ςd,`| � |ςu|, which

means that CS and CP play a significant role.

4.3.2 Small ςd,`

When the alignment parameters ςd,` are of the same size as (or smaller than) ςu, the NP

contributions from CS and CP are negligible. In this case, we need only to focus on the

Wilson coefficient C10, which is the sum of the SM contribution CSM
10 and the charged-Higgs

contribution CA2HDM
10 due to Z-penguin diagrams shown in Fig. 5. The latter involves only two

free parameters, ςu and MH± , and goes to zero when ςu → 0 and/or MH± →∞.

The dependence of R̄sµ on the alignment parameter ςu with three typical charged-Higgs

masses (80, 200 and 500 GeV) is shown in Fig. 10. One can see that, with the contributions

from CS and CP ignored, the observable R̄sµ puts a strong constraint on the parameter ςu.

For MH± = 80 (500) GeV, a 95% CL upper bound |ςu| ≤ 0.49 (0.97) is obtained, with the
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Figure 10: Dependence of R̄sµ on ςu (left), for |ςd,`| . |ςu| ≤ 2 and MH± = 80, 200 and 500

GeV (upper, middle and lower curves, respectively). The shaded horizontal bands denote the allowed

experimental region at 1σ (dark green), 2σ (green), and 3σ (light green), respectively. The right panel

shows the resulting upper bounds on ςu, as function of MH± .

assumption |ςd,`| . |ςu|, which is stronger than the constraint from Rb [14]. Since CA2HDM
10 ∼

|ςu|2, this constraint is independent of any assumption about CP and, therefore, applies in the

most general case.5 For larger charged-Higgs masses, the constraint becomes weaker as the NP

effect starts to decouple, reflected by lim
xH+→∞

CA2HDM
10 = 0.

4.3.3 Large ςd,`

When ςd and ς` are large, the scalar and pseudoscalar operators can induce a significant en-

hancement of the branching ratio. To see this explicitly, we vary ςd and ς` within the range

[−50, 50], and choose three representative values of ςu, ςu = 0,±1. We also take three different

representative sets of scalar masses:

Mass1 : MH± = MA = 80 GeV, MH = 130 GeV ,

5Actually, the explicit correction factor given at the end of Eq. (74) is valid only in the absence of new

sources of CP violation beyond the SM. Taking the correct general relation into account, the upper-bounded

parameter is |ςu|
{[

1 + ys cos (2φP − φNP
s )
]
/(1 + ys)

}1/4 ≈ |ςu|, where the phase φNP
s denotes the CP-violating

NP contribution to B0
s–B̄0

s mixing.
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Figure 11: Allowed regions (at 1σ, 2σ and 3σ) in the ςd–ς` plane under the constraint from R̄sµ, with

three different assignments of the scalar masses and ςu = 0,±1.

Mass2 : MH± = MA = MH = 200 GeV ,

Mass3 : MH± = MA = MH = 500 GeV , (81)

which cover the lower, intermediate, and upper range, respectively, of the allowed scalar spec-

trum.
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With the above specification, we show in Fig. 11 the allowed regions in the ςd–ς` plane under

the constraint from R̄sµ. One can see that, irrespective of the scalar masses, regions with large

ςd and ς` are already excluded, especially when they have the same sign. The impact of ςu, even

when varied within the small range [−1, 1], is found to be significant: a nonzero ςu will exclude

most of the regions allowed in the case with ςu = 0, and changing the sign of ςu will also flip

that of ς`. This is mainly due to the factors ς2
d ς
∗
u appearing in the functions g

(a)
2 and g

(a)
3 defined,

respectively, by Eqs. (112) and (113). It is also observed that the allowed regions expand with

increasing scalar masses, as expected, since larger scalar masses make the NP contributions

gradually decouple from the SM.

4.4 Z2 symmetric models

The five types of Z2-symmetric models listed in Table 1 are particular cases of the CP-conserving

A2HDM, with the three alignment factors ςf reduced to a single parameter tan β = v2/v1 ≥ 0.

In the particular scalar basis where the discrete Z2 symmetry is implemented, the scalar-

potential couplings µ′i and λ′i must be real, and µ′3 = λ′6 = λ′7 = 0; however, the rotation

into the Higgs basis generates non-zero values of µ3 = −1
2
λ6v

2 and λ7. Furthermore, the

alignment condition is protected by the Z2 symmetry at any energy scale, which means that

the misalignment parameter CR(MW ) does not contribute and the Higgs-penguin diagrams are

free of divergences. Thus, for Z2-symmetric models, the ratio R̄sµ only involves seven free

parameters: MH± , MH , MA, λ3, λ7, cos α̃, and tan β.

A much more constrained case is the inert 2HDM, where the Z2 symmetry is imposed in

the Higgs basis: all SM fields and Φ1 are even while Φ2 → −Φ2 under the Z2 transformation.

This implies that there is no mixing between the CP-even neutral states h and H, and the

scalars H, A and H± decouple from the fermions: cos α̃ = 1, λ6 = λ7 = 0, ςf = 0. Moreover,

the couplings of h to fermions and vector bosons are identical to the SM ones. Therefore, in

the inert model R̄inert
sµ = 1.

For the other four types of Z2-symmetric models, we continue to use the assignments cos α̃ =

0.95 and λ3 = λ7 = 1. One can easily check that the effects of MH and MA on R̄sµ are tiny,

unless tan β is extremely small which is excluded by the flavour constraint |ςu| ≤ 2. For

simplicity, we fix them to be MH = MA = 500 GeV in the following analysis.
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Figure 12: Dependence of R̄sµ on tanβ for the 2HDMs of types I, II, X and Y. The upper, middle and

lower curves correspond to MH± = 80, 200 and 500 GeV, respectively. The horizontal bands denote

the allowed experimental region at 1σ (dark green), 2σ (green), and 3σ (light green), respectively.

Fig. 12 shows the dependence of R̄sµ on the parameter tan β, for three representative values

of the charged-Higgs mass: MH± = 80, 200 and 500 GeV. The four different panels correspond

to the Z2-symmetric models of types I, II, X and Y, respectively. A lower bound tan β > 1.6

is obtained at 95% CL under the constraint from the current experimental data on R̄sµ. This

implies ςu = cot β < 0.63, which is stronger than the bounds obtained previously from other

sources [14, 15].

One can see that the predicted R̄sµ in the type-I, type-X and type-Y models are almost

indistinguishable from each other and, in the large tan β region, approach the SM prediction,

irrespective of the choices of scalar masses. For the type-II model, on the other hand, an

enhancement of R̄sµ is still possible in the large tan β region. This can be understood since the

Wilson coefficients in the type-II model contain the factor tan2 β arising from the product of

alignment parameters ςf , while in the other three models they contain at most one power of
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tan β. So only the type-II model can receive a large tan β enhancement, which has been studied

intensively in the literature [16–18]. It is also interesting to note that in the type-II 2HDM

with large tan β the B0
s,d → `+`− branching ratios depend only on the charged-Higgs mass and

tan β [16].

5 Conclusions

In this paper, we have performed a detailed analysis of the rare decays B0
s,d → `+`− within

the general framework of the A2HDM. Firstly, we presented a complete one-loop calculation

of the short-distance Wilson coefficients C10, CS and CP , which arise from various box and

penguin diagrams, and made a detailed technical summary of our results and a comparison

with previous calculations performed in particular limits or approximations. In order to make

sure our results are gauge independent, the calculations were carried out in both the Feynman

and the unitary gauges.

With the current data on B(B0
s → µ+µ−) taken into account, we have also investigated the

impact of various model parameters on the branching ratios and studied the phenomenological

constraints imposed by present data. The resulting information about the model parameters

will be crucial for the model building and is complementary to the collider searches for new

scalar resonances in the near future.

When |ςd,`| . |ςu|, the contributions to B(B0
s → µ+µ−) from the scalar and pseudoscalar

operators are negligible compared to the leading Wilson coefficient C10. Since CA2HDM
10 ∼ |ςu|2,

the measured B(B0
s → µ+µ−) branching ratio implies then an upper bound on the up-family

alignment parameter, which only depends on the charged Higgs mass. At 95% CL, we obtain:

|ςu| ≤ 0.49 (0.97) , for MH± = 80 (500) GeV and |ςd,`| . |ςu| . (82)

This bound is stronger than the constraints obtained previously from other sources [14, 15].

The role of the scalar and pseudoscalar operators becomes much more important for large

values of |ςd,`|. This region of parameter space was previously explored within the context of the

type-II 2HDM, where these contributions are enhanced by a factor tan2 β. Our analysis agrees

with previous results in the type-II case and shows, moreover, that this tan2 β enhancement

is absent in the Z2-symmetric models of types I, X and Y, which approach the SM prediction
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for large values of tan β. From the current experimental data on R̄sµ, we derive the 95% CL

bound:

tan β > 1.6 , for 2HDMs of types I, II, X and Y. (83)

This implies ςu = cot β < 0.63, which is also stronger than the bounds obtained previously

from other sources [14,15].

The enhancement of the scalar and pseudoscalar contributions at large values of |ςd,`| is

present in the most general A2HDM scenario and could give rise to interesting phenomenological

signals. To exemplify this possibility, we have analyzed the ratio R̄sµ in the simpler CP-

conserving case, showing the important impact of the A2HDM corrections whenever enhanced

Yukawa couplings to leptons and down-type quarks are present. The resulting constraints on

the alignment parameters are given in Fig. 11.

It would be interesting to analyze the possible impact of the new CP-violating phases present

within the A2HDM framework, at large values of |ςd,`|. They could generate sizeable phases φP

and φS in Eqs. (69) and (70), which could manifest themselves in the time-dependence of the

B0
s → µ+µ− decay amplitude [36]. To quantify the possible size of this effect requires a more

careful assessment of the allowed parameter space of the A2HDM, which we plan to further

investigate in future works.
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Appendix: Scalar-penguin results within the A2HDM

The coefficients Ĉϕ0
i , defined in Eq. (55), are given by

Ĉϕ0
i =

m2
t

M2
ϕ0
i

{
18∑
k=1

Ck, ϕ0
i +

1

2
(ςu − ςd) (1 + ς∗uςd) (Ri2 + iRi3) C

}
, (84)

where the last term is the tree-level contribution from the local operator in Eq. (20). We detail

next the contributions Ck, ϕ0
i from the separate diagrams (k = 1, · · · , 18) shown in Fig. 9.

The gauge-independent coefficients are:

C1, ϕ0
i =

y
ϕ0
i

u

4

{
ςd ς
∗
u

xt
xH+ − xt

[
1− xH+

xH+ − xt
(lnxH+ − lnxt)

]

+ |ςu|2
xt

2(xH+ − xt)2

[
3xt − xH+

2
+
xH+(xH+ − 2xt)

xH+ − xt
(lnxH+ − lnxt)

]}

+
y
ϕ0
i ∗

u

4

{
ςd ς
∗
u

[
Λ +

xt
xH+ − xt

−
x2
H+

(xH+ − xt)2
lnxH+ +

xt(2xH+ − xt)
(xH+ − xt)2

lnxt

]

+ |ςu|2
xt

2(xH+ − xt)2

[
3xH+ − xt

2
−

x2
H+

xH+ − xt
(lnxH+ − lnxt)

]}
, (85)

C2, ϕ0
i =

s2
Wλ

ϕ0
i

H+H−

4πα(xH+ − xt)

{
ςd ς
∗
u

[
xt

xH+ − xt
(lnxH+ − lnxt)− 1

]

+ |ςu|2
[

x2
t

2(xH+ − xt)2
(lnxH+ − lnxt) +

xH+ − 3xt
4(xH+ − xt)

]}
, (86)

C3, ϕ0
i =

y
ϕ0
i

d

4
ςd ς
∗
u

[
−Λ +

xH+

xH+ − xt
lnxH+ − xt

xH+ − xt
lnxt

]
, (87)

C4, ϕ0
i = C7, ϕ0

i = C8, ϕ0
i = 0 . (88)

In the unitary gauge, we find:

C
5, ϕ0

i
Unitary =

1

4

{
y
ϕ0
i ∗

u

[
Λ− 5x2

t − 13xt + 2

4(xt − 1)2
− 2x3

t − 6x2
t + 9xt − 2

2(xt − 1)3
lnxt

]

+ y
ϕ0
i

u

[
Λ

2
− 2x2

t − xt − 7

4(xt − 1)2
− x3

t − 3x2
t + 3xt + 2

2(xt − 1)2
lnxt

]}
, (89)
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C
6, ϕ0

i
Unitary =

λ
ϕ0
i

W+W−

8

[
−3Λ +

x2
t − 2xt − 11

2(xt − 1)2
+

3xt(x
2
t − 3xt + 4)

(xt − 1)3
lnxt

]
, (90)

C
9, ϕ0

i
Unitary =

λ
ϕ0
i

H+W−

8
ς∗u

[
1

2
− Λ +

xH+(xH+ + 2) lnxH+

(xH+ − 1)(xH+ − xt)
− xt(xt + 2) lnxt

(xt − 1)(xH+ − xt)

]
, (91)

C
10, ϕ0

i
Unitary =

λ
ϕ0
i ∗
H+W−

4

{
ςd

[
−Λ +

xH+ lnxH+

xH+ − xt
− xt lnxt
xH+ − xt

]
− ςu

2

[
xt(xH+xt − 4xH+ + 3xt)

(xt − 1)(xH+ − xt)2
lnxt

+
xH+

xH+ − xt
− xH+(xH+xt − 3xH+ + 2xt)

(xH+ − 1)(xH+ − xt)2
lnxH+

]}
. (92)

In the Feynman gauge the results are:

C
5, ϕ0

i
Feynman =

1

8(xt − 1)2

{
y
ϕ0
i ∗

u

[
3xt − 1 +

2(1− 2xt) lnxt
xt − 1

]
+ y

ϕ0
i

u

[
3− xt −

2 lnxt
xt − 1

]}
, (93)

C
6, ϕ0

i
Feynman =

λ
ϕ0
i

W+W−

4(xt − 1)2

[
2xt
xt − 1

lnxt − xt − 1

]
, (94)

C
9, ϕ0

i
Feynman =

ς∗u λ
ϕ0
i

H+W−

8(xH+ − xt)

[
xH+ − xt

(xH+ − 1)(xt − 1)
+
xH+(3xH+ − 2) lnxH+

(xH+ − 1)2
− xt(3xt − 2) lnxt

(xt − 1)2

]
,

(95)

C
10, ϕ0

i
Feynman =

λ
ϕ0
i ∗
H+W−

4(xH+ − xt)

{
ςd

[
xt lnxt
xt − 1

− xH+ lnxH+

xH+ − 1

]
+
ςu
2

[
xH+

xH+ − 1
+
xt(4xH+ − 3xt) lnxt
(xt − 1)(xH+ − xt)

−
xH+(4x2

H+ − 3xH+xt − 3xH+ + 2xt)

(xH+ − 1)2(xH+ − xt)
lnxH+

]}
, (96)

C
11, ϕ0

i
Feynman =

1

4

{
y
ϕ0
i ∗

u

[
Λ− xt(5xt − 7)

4(xt − 1)2
− xt(2x

2
t − 6xt + 5)

2(xt − 1)3
lnxt

]

− y
ϕ0
i

u

2

[
xt(xt − 3)

2(xt − 1)2
+

xt
(xt − 1)3

lnxt

]}
, (97)

C
12, ϕ0

i
Feynman =

s2
Wλ

ϕ0
i

G+G−

16πα(xt − 1)2

[
xt − 3− 2xt(xt − 2)

xt − 1
lnxt

]
, (98)

C
13, ϕ0

i
Feynman =

y
ϕ0
i

d

4

[
−Λ +

xt
xt − 1

lnxt

]
, (99)

C
14, ϕ0

i
Feynman = 0 , (100)
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C
15, ϕ0

i
Feynman =

s2
W ς
∗
u λ

ϕ0
i

H+G−

8πα(xH+ − xt)

[
xH+ − xt

(xH+ − 1)(xt − 1)
+
xt(xt − 2)

(xt − 1)2
lnxt −

xH+(xH+ − 2)

(xH+ − 1)2
lnxH+

]
,

(101)

C
16, ϕ0

i
Feynman =

s2
Wλ

ϕ0
i ∗
H+G−

8πα(xH+ − xt)

{
2 ςd

[
xt

xt − 1
lnxt −

xH+

xH+ − 1
lnxH+

]
+ ςu

[
x2
t lnxt

(xt − 1)(xH+ − xt)

+
xH+

xH+ − 1
− xH+(xH+xt + xH+ − 2xt)

(xH+ − 1)2(xH+ − xt)
lnxH+

]}
, (102)

C
17, ϕ0

i
Feynman =

λ
ϕ0
i

G+W−

8(xt − 1)2

[
5− 7xt

2
+
xt(3xt − 2)

xt − 1
lnxt

]
, (103)

C
18, ϕ0

i
Feynman =

λ
ϕ0
i

G+W−

8(xt − 1)2

[
9xt − 11

2
− xt(5xt − 6)

xt − 1
lnxt

]
. (104)

Here Λ = −2µD−4

D−4
− γE + ln (4π) − ln

(
M2

W

µ2

)
+ 1, and the (rescaled) cubic coupling constants

are defined, respectively, as

λ
ϕ0
i

W+W− = λ
ϕ0
i

G+W− = Ri1 , (105)

λ
ϕ0
i

H+W− = Ri2 − iRi3 , (106)

λ
ϕ0
i

H+H− = λ3Ri1 + λR7 Ri2 − λI7Ri3 , (107)

λ
ϕ0
i

G+G− = 2λ1Ri1 + λR6 Ri2 − λI6Ri3 =
M2

ϕ0
i

v2
Ri1 , (108)

λ
ϕ0
i

H+G− = λ6Ri1 +
1

2
(λ4 + 2λ5)Ri2 −

i

2
(λ4 − 2λ5)Ri3 =

M2
ϕ0
i
−M2

H+

v2
(Ri2 − iRi3) .

(109)

The functions g0 (xt, xH+ , ςu, ςd) and g
(a)
j (xt, xH+ , ςu, ςd) introduced in Eq. (56) are gauge

independent. For g0 (xt, xH+ , ςu, ςd) we find

g0 (xt, xH+ , ςu, ςd) =
παC2, ϕ0

i

s2
W λ

ϕ0
i

H+H−

, (110)

while the functions g
(a)
j (xt, xH+ , ςu, ςd) are given, respectively, as:

g
(a)
1 (xt, xH+ , ςu, ςd) = −3

4
+ ςd ς

∗
u

xt
xH+ − xt

[
1− xH+

xH+ − xt
(lnxH+ − lnxt)

]

37



+|ςu|2
xt

2(xH+ − xt)2

[
xH+ + xt

2
− xH+xt
xH+ − xt

(lnxH+ − lnxt)

]
, (111)

g
(a)
2 (xt, xH+ , ςu, ςd) = ς2

d ς
∗
uf1(xt, xH+) + ςd(ς

∗
u)2f2(xt, xH+)

+ςd|ςu|2f3(xt, xH+) + ςu|ςu|2f4(xt, xH+)− ς∗u|ςu|2f5(xt, xH+)

+ςuf6(xt, xH+)− ς∗uf7(xt, xH+) + ςdf1(xt, xH+) , (112)

g
(a)
3 (xt, xH+ , ςu, ςd) = ς2

d ς
∗
uf1(xt, xH+)− ςd(ς∗u)2f2(xt, xH+)

+ςd|ςu|2f3(xt, xH+) + ςu|ςu|2f4(xt, xH+) + ς∗u|ςu|2f5(xt, xH+)

+ςuf6(xt, xH+) + ς∗uf7(xt, xH+) + ςdf1(xt, xH+) . (113)

The functions g
(b)
j (xt, xH+ , ςu, ςd) are zero in the unitary gauge, because they are all related to

Goldstone boson vertices. In the Feynman gauge, they are given, respectively, as

g
(b)
1,Feynman(xt, xH+ , ςu, ςd) =

1

8(xt − 1)2

[
xt − 3

2
− xt(xt − 2)

xt − 1
lnxt

]
, (114)

g
(b)
2,Feynman(xt, xH+ , ςu, ςd) = ςdf8(xt, xH+) + ςu f9(xt, xH+) + ς∗u f10(xt, xH+) , (115)

g
(b)
3,Feynman(xt, xH+ , ςu, ςd) = ςdf8(xt, xH+) + ςu f9(xt, xH+)− ς∗u f10(xt, xH+) . (116)

Here the functions fj(xt, xH+) are defined, respectively, as

f1(xt, xH+) =
1

2(xH+ − xt)
[−xH+ + xt + xH+ lnxH+ − xt lnxt] , (117)

f2(xt, xH+) =
1

2(xH+ − xt)

[
xt −

xH+xt
xH+ − xt

(lnxH+ − lnxt)

]
, (118)

f3(xt, xH+) =
1

2(xH+ − xt)

[
xH+ −

x2
H+ lnxH+

xH+ − xt
+
xt(2xH+ − xt) lnxt

xH+ − xt

]
, (119)

f4(xt, xH+) =
1

4(xH+ − xt)2

[
xt (3xH+ − xt)

2
−

x2
H+xt

xH+ − xt
(lnxH+ − lnxt)

]
, (120)

f5(xt, xH+) =
1

4(xH+ − xt)2

[
xt(xH+ − 3xt)

2
− xH+xt(xH+ − 2xt)

xH+ − xt
(lnxH+ − lnxt)

]
, (121)

f6(xt, xH+) =
1

2(xH+ − xt)

[
xt (x2

t − 3xH+xt + 9xH+ − 5xt − 2)

4(xt − 1)2

+
xH+ (xH+xt − 3xH+ + 2xt)

2(xH+ − 1)(xH+ − xt)
lnxH+
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+
x2
H+ (−2x3

t + 6x2
t − 9xt + 2) + 3xH+x2

t (x
2
t − 2xt + 3)− x2

t (2x3
t − 3x2

t + 3xt + 1)

2(xt − 1)3(xH+ − xt)
lnxt

]
,

(122)

f7(xt, xH+) =
1

2(xH+ − xt)

[
(x2

t + xt − 8) (xH+ − xt)
4(xt − 1)2

− xH+(xH+ + 2)

2(xH+ − 1)
lnxH+

+
xH+ (x3

t − 3x2
t + 3xt + 2) + 3 (xt − 2)x2

t

2(xt − 1)3
lnxt

]
, (123)

f8(xt, xH+) =
1

4(xH+ − xt)

[
xt lnxt
xt − 1

− xH+ lnxH+

xH+ − 1

]
,

f9(xt, xH+) =
1

8(xH+ − xt)

[
xH+

xH+ − 1
+

x2
t lnxt

(xt − 1)(xH+ − xt)
− xH+(xH+xt + xH+ − 2xt)

(xH+ − 1)2(xH+ − xt)
lnxH+

]
,

(124)

f10(xt, xH+) =
1

8(xH+ − xt)

[
xH+ − xt

(xH+ − 1)(xt − 1)
+
xt(xt − 2)

(xt − 1)2
lnxt −

xH+(xH+ − 2)

(xH+ − 1)2
lnxH+

]
.

(125)
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[hep-ph]]; L. Duarte, G. A. González-Sprinberg and J. Vidal, JHEP 1311 (2013) 114

[arXiv:1308.3652 [hep-ph]]; M. Jung and A. Pich, JHEP 1404 (2014) 076 [arXiv:1308.6283

[hep-ph]].

[16] H. E. Logan and U. Nierste, Nucl. Phys. B 586 (2000) 39 [hep-ph/0004139].

[17] C. -S. Huang, W. Liao, Q. -S. Yan and S. -H. Zhu, Phys. Rev. D 63 (2001) 114021

[Erratum-ibid. D 64 (2001) 059902] [hep-ph/0006250].

40

http://arxiv.org/abs/1106.0034
http://arxiv.org/abs/0908.1554
http://arxiv.org/abs/1210.2465
http://arxiv.org/abs/1210.4922
http://arxiv.org/abs/1308.0052
http://arxiv.org/abs/1308.1979
http://arxiv.org/abs/1312.4759
http://arxiv.org/abs/1302.4022
http://arxiv.org/abs/1310.7941
http://arxiv.org/abs/1006.0470
http://arxiv.org/abs/1011.5154
http://arxiv.org/abs/1208.1251
http://arxiv.org/abs/1210.8443
http://arxiv.org/abs/1308.3652
http://arxiv.org/abs/1308.6283
http://arxiv.org/abs/hep-ph/0004139
http://arxiv.org/abs/hep-ph/0006250


[18] C. Bobeth, T. Ewerth, F. Kruger and J. Urban, Phys. Rev. D 64 (2001) 074014 [hep-

ph/0104284].

[19] X. G. He, T. D. Nguyen and R. R. Volkas, Phys. Rev. D 38 (1988) 814; M. J. Savage,

Phys. Lett. B 266 (1991) 135; W. Skiba and J. Kalinowski, Nucl. Phys. B 404 (1993)

3; E. O. Iltan and G. Turan, JHEP 0211 (2002) 031 [hep-ph/0011005]; Y. -B. Dai,

C. -S. Huang, J. -T. Li and W. -J. Li, Phys. Rev. D 67 (2003) 096007 [hep-ph/0301082].

[20] P. H. Chankowski and L. Slawianowska, Phys. Rev. D 63 (2001) 054012 [hep-ph/0008046].

[21] H. Dreiner, K. Nickel, W. Porod and F. Staub, Comput. Phys. Commun. 184 (2013) 2604

[arXiv:1212.5074 [hep-ph]].

[22] S. R. Choudhury and N. Gaur, Phys. Lett. B 451 (1999) 86 [hep-ph/9810307]; K. S. Babu

and C. F. Kolda, Phys. Rev. Lett. 84 (2000) 228 [hep-ph/9909476]; C. Bobeth,

A. J. Buras, F. Kruger and J. Urban, Nucl. Phys. B 630 (2002) 87 [hep-ph/0112305];

C. Bobeth, T. Ewerth, F. Kruger and J. Urban, Phys. Rev. D 66 (2002) 074021 [hep-

ph/0204225]; A. J. Buras, P. H. Chankowski, J. Rosiek and L. Slawianowska, Phys. Lett. B

546 (2002) 96 [hep-ph/0207241]; Nucl. Phys. B 659 (2003) 3 [hep-ph/0210145]; G. Isidori

and A. Retico, JHEP 0209 (2002) 063 [hep-ph/0208159]; C. -S. Huang and X. -H. Wu,

Nucl. Phys. B 657 (2003) 304 [hep-ph/0212220]; A. Freitas, E. Gasser and U. Haisch,

Phys. Rev. D 76 (2007) 014016 [hep-ph/0702267 [HEP-PH]]; A. Dedes, J. Rosiek and

P. Tanedo, Phys. Rev. D 79 (2009) 055006 [arXiv:0812.4320 [hep-ph]]; A. G. Akeroyd,

F. Mahmoudi and D. M. Santos, JHEP 1112 (2011) 088 [arXiv:1108.3018 [hep-ph]];

A. Arbey, M. Battaglia, F. Mahmoudi and D. Martinez Santos, Phys. Rev. D 87 (2013)

035026 [arXiv:1212.4887 [hep-ph]].

[23] For a review on previous upper limits, see for example: J. Albrecht, Mod. Phys. Lett. A

27 (2012) 1230028 [arXiv:1207.4287 [hep-ex]].

[24] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674

[hep-ex]].

[25] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 111 (2013) 101805 [arXiv:1307.5024

[hep-ex]].

41

http://arxiv.org/abs/hep-ph/0104284
http://arxiv.org/abs/hep-ph/0104284
http://arxiv.org/abs/hep-ph/0011005
http://arxiv.org/abs/hep-ph/0301082
http://arxiv.org/abs/hep-ph/0008046
http://arxiv.org/abs/1212.5074
http://arxiv.org/abs/hep-ph/9810307
http://arxiv.org/abs/hep-ph/9909476
http://arxiv.org/abs/hep-ph/0112305
http://arxiv.org/abs/hep-ph/0204225
http://arxiv.org/abs/hep-ph/0204225
http://arxiv.org/abs/hep-ph/0207241
http://arxiv.org/abs/hep-ph/0210145
http://arxiv.org/abs/hep-ph/0208159
http://arxiv.org/abs/hep-ph/0212220
http://arxiv.org/abs/hep-ph/0702267
http://arxiv.org/abs/0812.4320
http://arxiv.org/abs/1108.3018
http://arxiv.org/abs/1212.4887
http://arxiv.org/abs/1207.4287
http://arxiv.org/abs/1211.2674
http://arxiv.org/abs/1307.5024


[26] S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. Lett. 111 (2013) 101804

[arXiv:1307.5025 [hep-ex]].

[27] CMS and LHCb Collaborations [CMS and LHCb Collaboration], CMS-PAS-BPH-13-007.

[28] C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou and M. Steinhauser, Phys.

Rev. Lett. 112 (2014) 101801 [arXiv:1311.0903 [hep-ph]].

[29] C. Bobeth, M. Gorbahn and E. Stamou, Phys. Rev. D 89 (2014) 034023 [arXiv:1311.1348

[hep-ph]].

[30] T. Hermann, M. Misiak and M. Steinhauser, JHEP 1312 (2013) 097 [arXiv:1311.1347

[hep-ph]].

[31] R. Aaij et al. [LHCb Collaboration], Eur. Phys. J. C 73 (2013) 2373 [arXiv:1208.3355

[hep-ex]].

[32] S. Davidson and H. E. Haber, Phys. Rev. D 72 (2005) 035004 [Erratum-ibid. D 72 (2005)

099902] [hep-ph/0504050]; H. E. Haber and D. O’Neil, Phys. Rev. D 74 (2006) 015018

[hep-ph/0602242]; Phys. Rev. D 83 (2011) 055017 [arXiv:1011.6188 [hep-ph]]; D. O’Neil,

arXiv:0908.1363 [hep-ph].

[33] H. Serodio, Phys. Lett. B 700 (2011) 133 [arXiv:1104.2545 [hep-ph]]; I. de Medeiros

Varzielas, Phys. Lett. B 701 (2011) 597 [arXiv:1104.2601 [hep-ph]]; G. Cree and H. E. Lo-

gan, Phys. Rev. D 84 (2011) 055021 [arXiv:1106.4039 [hep-ph]].

[34] A. Pich, Nucl. Phys. Proc. Suppl. 209 (2010) 182 [arXiv:1010.5217 [hep-ph]].

[35] G. Cvetic, C. S. Kim and S. S. Hwang, Phys. Rev. D 58 (1998) 116003 [hep-ph/9806282];

P. M. Ferreira, L. Lavoura and J. P. Silva, Phys. Lett. B 688 (2010) 341 [arXiv:1001.2561

[hep-ph]]; C. B. Braeuninger, A. Ibarra and C. Simonetto, Phys. Lett. B 692 (2010) 189

[arXiv:1005.5706 [hep-ph]]; J. Bijnens, J. Lu and J. Rathsman, JHEP 1205 (2012) 118

[arXiv:1111.5760 [hep-ph]].

[36] A. J. Buras, R. Fleischer, J. Girrbach and R. Knegjens, JHEP 1307 (2013) 77

[arXiv:1303.3820 [hep-ph]].

42

http://arxiv.org/abs/1307.5025
http://arxiv.org/abs/1311.0903
http://arxiv.org/abs/1311.1348
http://arxiv.org/abs/1311.1347
http://arxiv.org/abs/1208.3355
http://arxiv.org/abs/hep-ph/0504050
http://arxiv.org/abs/hep-ph/0602242
http://arxiv.org/abs/1011.6188
http://arxiv.org/abs/0908.1363
http://arxiv.org/abs/1104.2545
http://arxiv.org/abs/1104.2601
http://arxiv.org/abs/1106.4039
http://arxiv.org/abs/1010.5217
http://arxiv.org/abs/hep-ph/9806282
http://arxiv.org/abs/1001.2561
http://arxiv.org/abs/1005.5706
http://arxiv.org/abs/1111.5760
http://arxiv.org/abs/1303.3820


[37] K. De Bruyn, R. Fleischer, R. Knegjens, P. Koppenburg, M. Merk, A. Pellegrino and

N. Tuning, Phys. Rev. Lett. 109 (2012) 041801 [arXiv:1204.1737 [hep-ph]]; R. Fleischer,

Nucl. Phys. Proc. Suppl. 241-242 (2013) 135 [arXiv:1208.2843 [hep-ph]].

[38] W. Altmannshofer, P. Paradisi and D. M. Straub, JHEP 1204 (2012) 008

[arXiv:1111.1257 [hep-ph]].

[39] G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68 (1996) 1125

[hep-ph/9512380]; A. J. Buras, hep-ph/9806471.

[40] T. Hahn, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260].

[41] N. D. Christensen and C. Duhr, Comput. Phys. Commun. 180 (2009) 1614

[arXiv:0806.4194 [hep-ph]]; A. Alloul, J. D’Hondt, K. De Causmaecker, B. Fuks and

M. Rausch de Traubenberg, Eur. Phys. J. C 73 (2013) 2325 [arXiv:1301.5932 [hep-ph]];

A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks, arXiv:1310.1921 [hep-

ph].

[42] V. A. Smirnov, Mod. Phys. Lett. A 10 (1995) 1485 [hep-th/9412063]; Springer Tracts

Mod. Phys. 177 (2002) 1.

[43] C. Bobeth, M. Misiak and J. Urban, Nucl. Phys. B 574 (2000) 291 [hep-ph/9910220].

[44] M. E. Peskin and D. V. Schroeder, Reading, USA: Addison-Wesley (1995) 842 p

[45] G. Buchalla, A. J. Buras and M. K. Harlander, Nucl. Phys. B 349 (1991) 1.

[46] F. J. Botella and C. S. Lim, Phys. Rev. Lett. 56 (1986) 1651.

[47] T. Inami and C. S. Lim, Prog. Theor. Phys. 65 (1981) 297 [Erratum-ibid. 65 (1981)

1772].

[48] G. Buchalla and A. J. Buras, Nucl. Phys. B 548 (1999) 309 [hep-ph/9901288]; Nucl.

Phys. B 400 (1993) 225; Nucl. Phys. B 398 (1993) 285.

[49] M. Misiak and J. Urban, Phys. Lett. B 451 (1999) 161 [hep-ph/9901278].

[50] B. Grzadkowski and P. Krawczyk, Z. Phys. C 18 (1983) 43.

43

http://arxiv.org/abs/1204.1737
http://arxiv.org/abs/1208.2843
http://arxiv.org/abs/1111.1257
http://arxiv.org/abs/hep-ph/9512380
http://arxiv.org/abs/hep-ph/9806471
http://arxiv.org/abs/hep-ph/0012260
http://arxiv.org/abs/0806.4194
http://arxiv.org/abs/1301.5932
http://arxiv.org/abs/1310.1921
http://arxiv.org/abs/hep-th/9412063
http://arxiv.org/abs/hep-ph/9910220
http://arxiv.org/abs/hep-ph/9901288
http://arxiv.org/abs/hep-ph/9901278


[51] P. Krawczyk, Z. Phys. C 44 (1989) 509.

[52] J. Beringer et al. [Particle Data Group Collaboration], Phys. Rev. D 86 (2012) 010001

and 2013 partial update for the 2014 edition.

[53] The ATLAS, CDF, CMS and D0 Collaborations, arXiv:1403.4427 [hep-ex].

[54] S. Aoki, Y. Aoki, C. Bernard, T. Blum, G. Colangelo, M. Della Morte, S. Drr and

A. X. E. Khadra et al., arXiv:1310.8555 [hep-lat], updates at http://itpwiki.unibe.ch/flag.

[55] Y. Amhis et al. [Heavy Flavor Averaging Group Collaboration], arXiv:1207.1158 [hep-ex].

[56] P. Gambino and C. Schwanda, Phys. Rev. D 89 (2014) 014022 [arXiv:1307.4551 [hep-ph]].

[57] J. Charles et al. [CKMfitter Group Collaboration], Eur. Phys. J. C 41 (2005) 1 [hep-

ph/0406184], updated results and plots available at: http://ckmfitter.in2p3.fr.

[58] M. Ciuchini, G. D’Agostini, E. Franco, V. Lubicz, G. Martinelli, F. Parodi, P. Roudeau

and A. Stocchi, JHEP 0107 (2001) 013 [hep-ph/0012308], updated results and plots

available at: http://www.utfit.org.

[59] M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Phys. Rev. D 69 (2004) 053006

[hep-ph/0311148].

[60] K. G. Chetyrkin, J. H. Kuhn and M. Steinhauser, Comput. Phys. Commun. 133 (2000)

43 [hep-ph/0004189].

[61] C. McNeile, C. T. H. Davies, E. Follana, K. Hornbostel and G. P. Lepage, Phys. Rev. D

85 (2012) 031503 [arXiv:1110.4510 [hep-lat]].

[62] A. Bazavov et al. [Fermilab Lattice and MILC Collaborations], Phys. Rev. D 85 (2012)

114506 [arXiv:1112.3051 [hep-lat]].

[63] N. H. Christ, J. M. Flynn, T. Izubuchi, T. Kawanai, C. Lehner, A. Soni, R. S. Van de

Water and O. Witzel, arXiv:1404.4670 [hep-lat].

[64] R. J. Dowdall et al. [HPQCD Collaboration], Phys. Rev. Lett. 110 (2013) 222003

[arXiv:1302.2644 [hep-lat]].

44

http://arxiv.org/abs/1403.4427
http://arxiv.org/abs/1310.8555
http://itpwiki.unibe.ch/flag
http://arxiv.org/abs/1207.1158
http://arxiv.org/abs/1307.4551
http://arxiv.org/abs/hep-ph/0406184
http://arxiv.org/abs/hep-ph/0406184
http://ckmfitter.in2p3.fr
http://arxiv.org/abs/hep-ph/0012308
http://www.utfit.org
http://arxiv.org/abs/hep-ph/0311148
http://arxiv.org/abs/hep-ph/0004189
http://arxiv.org/abs/1110.4510
http://arxiv.org/abs/1112.3051
http://arxiv.org/abs/1404.4670
http://arxiv.org/abs/1302.2644


[65] N. Carrasco, P. Dimopoulos, R. Frezzotti, V. Gimnez, P. Lami, V. Lubicz, E. Picca and

L. Riggio et al., arXiv:1311.2837 [hep-lat].

[66] A. Lenz and U. Nierste, arXiv:1102.4274 [hep-ph].

45

http://arxiv.org/abs/1311.2837
http://arxiv.org/abs/1102.4274

	1 Introduction
	2 The aligned two-Higgs doublet model
	2.1 Yukawa sector

	3 Calculation of bold0mu mumu B(Bs,d0 +-)B(Bs,d0 +-)B(Bs,d0 +-)B(Bs,d0 +-)B(Bs,d0 +-)B(Bs,d0 +-)
	3.1 Effective Hamiltonian
	3.2 Computational method
	3.3 Wilson coefficients in the SM
	3.4 Wilson coefficients in the A2HDM
	3.4.1 Neutral scalar exchange

	3.5 bold0mu mumu Bs,d0 +-Bs,d0 +-Bs,d0 +-Bs,d0 +-Bs,d0 +-Bs,d0 +- branching ratio

	4 Numerical results
	4.1 Input parameters
	4.2 SM predictions
	4.3 Results in the A2HDM
	4.3.1 Choice of model parameters
	4.3.2 Small bold0mu mumu d,d,d,d,d,d,
	4.3.3 Large bold0mu mumu d,d,d,d,d,d,

	4.4 Z2 symmetric models

	5 Conclusions

