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Abstract
From a picture of the X(3872) where the resonance is a bound state of D̄D∗ − c.c., we evaluate

the decay width into the J/ψγ channel, which is sensitive to the internal structure of this state.

For this purpose we evaluate the loops through which the X(3872) decays into its components,

and the J/ψ and the photon are radiated from these components. We use the local hidden gauge

approach extrapolated to SU(4) with a particular SU(4) breaking. The radiative decay involves

anomalous couplings and we obtain acceptable values which are compared to experiments and

results of other calculations.

Simultaneusly, we evaluate the decay rate for the X(3872) into J/ψω and J/ψρ, and the results

obtained for the ratio of these decay widths are compatible with the experiment.

We also show the grossly unacceptable results that come from taking only the D̄0D∗0 + c.c.

component.
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I. INTRODUCTION

The first observation of the X(3872) decay into J/ψγ was reported by the BELLE col-
laboration in [1]. Later on this decay mode was confirmed by the BABAR collaboration in
[2] and more recently again in BELLE in [3]. Theoretically this decay mode had already
some early attention and was studied in [4–7] assuming either a charmonium state or a
molecular state. A thorough discussion of the different models used and the results can
be seen in [8], which has also been updated recently in [9]. A recent work assuming the
X(3872) to be a charmonium state is presented in [10] and assuming it to be a tretaquark
in [11]. In [12] it is assumed to be a mixture of a charmonium and a molecular component,
and uscing QCD sum rules a good rate is obtained for the J/ψγ decay mode versus the
J/ψπ+π− one, which is evaluated in [13]. In [8] the authors consider, like in the work of
[5], the X(3872) resonance to be a molecule of D0D̄∗0 − c.c. and, in addition, they include
the possibility of a cc̄ admixture. In [8] an effective Lagrangian is postulated to provide the
coupling of the X(3872) to the D0D̄∗0 components, with an unknown wave function. The
effective coupling needed in the loops for radiative decay of the X(3872) is obtained using
the Weinberg compositness condition [14, 15], reformulated in [16] as g2 = −( ∂

∂s
G)−1, where

G is the loop function of the D0 and D̄∗0 propagators. The procedure has been shown to
provide a fair description of the molecular states in other works [17–19]. The results of [8]
are tied to unknowns on the regularization of the loop functions, the ΛM parameter used in
[8], and the binding. The results obtained for the X(3872) decay into the J/ψγ channel are
of about 125-250 KeV taking reasonable values for the ΛM parameter between 2 and 3 GeV.

In [9] the authors include the charge components of D+D∗− − c.c., which were found
necessary to explain the ratio of X(3872) to J/ψρ and J/ψω in [16, 20]. The novelty with
respect to the previous work of [8] is that the authors use a smaller ΛM cut off, of the order
of 0.5 GeV to regularize the loop function, such that the wave function of the D0D̄∗0−c.c. is
much more extended in space. The final results of the new evaluations differ quantitatively
from those of [8] and are now in the range of 2-17 KeV. It is then clear that a more systematic
approach to the problem has to be done if one wishes to obtain accurate numbers from the
molecular picture of the X(3872). This is the purpose of the present paper.

A consistent dynamical picture of the X(3872) in the coupled channels of DD̄∗− c.c. was
elaborated in [20] using an extrapolations to SU(4) of chiral Lagrangians used in the study
of pseudoscalar meson interaction with vector mesons [21]. This is equivalent to extending
to SU(4) the local hidden gauge approach of [22–25] with a particular SU(4) breaking.
Given the subtlety of the small binding for the neutral D0D̄∗0 − c.c. component versus
the about 7 MeV binding for the charged D+D∗− − c.c. components, a coupled channel
approach considering these explicit channels with their exact mass and not assuming isospin
symmetry, was done in [26], concluding that the coupling of the resonance to the neutral and
charged components was very similar, which tells us that in strong processes the X(3872)
behaves as a rather good I=0 object. The D+

s D
∗−
s − c.c. components were also included

in [20, 26]. On the other hand, the study of the wave functions of the resonance for each
of its channels indicated that the couplings provided essentially the wave function at the
origin, which indicates that the neutral component, extending further away in space than
the charged components, because of the small binding, and having the same strenght at the
origin, will have a larger probability in the wave function. But this has not repercussion in
strong processes, of short range, or electromagnetic ones where there is production of real
photons radiated from the components of the wave function, because they see the strength

2



of the wave functions at the origin. In sum, the charged D+D∗− − c.c. components have to
be considered in the study of these processes.

In the present work we follow the approach of [16, 26] where all the couplings are accu-
rately determined from the unitary coupled channel approach and are tied to the binding of
the X(3872), which is generated dynamically as a composite state of DD̄∗ in this picture.
The mechanisms for radiative decay are then basically the same as in [9], except that we
also have contribution from the DsD̄

∗
s components and have, although not much, different

couplings of the resonance to the neutral and charged DD̄∗ components. The work is also
technically different. Our approach has not ambiguities about the regularization of the loops,
and most of the terms are shown to be convergent. Some terms are formally divergent, but
we can isolate the divergence into a term proportional to the same loop function G which
appears in scattering. The function G is regularized in the scattering problem in order to fit
the position of the resonance, so when it comes to evaluate the radiative decay it is already
fixed. This makes the scheme fully selfconsistent and predictive, since one does not have
to rely upon unknown parameters that have proved to have a strong repercussion in the
numerical results from the former studies.

Traditionally the X(3872) could be considered as a JP = 1++ or JP = 2−+ state, and
there is a work similar to the one of [9] but assuming JP = 2−+ [27]. Here we will continue
to use the JP = 1++, which is supported by recent analysis of data in [28, 29].

Our work proceeds as follows: in the next section we present the formalims for the
work with the Feynman diagrams used and the scheme to evaluate them. In section III
we present the results for X(3872)→ J/ψγ, J/ψω, J/ψρ and compare them to experiment,
discussing the role of the charged components of the X(3872) wave function. In section IV
we summarize our results.

II. FORMALISM

In [20, 30], the interaction between pseudoscalars and vector mesons is studied includ-
ing the charm sector. The potential is like the Weinberg-Tomozawa interaction between
pseudoscalar mesons but including the vector meson fields [21]. In [20, 26], all the different
currents within the SU(4) scheme are classified in terms of SU(3) currents, and the break-
ing symmetry parameters are introduced to account for the suppression of the heavy meson
exchange. Within this formalism, the X(3872) is a dynamically generated resonance from
the interaction of DD̄∗, having an eigenstate of positive C-parity with isospin I = 0. It also
has some component of DsD̄

∗
s . In fact, the basis of positive C-parity and I = 0 for these

two channels corresponds to:

1√
2
|(D∗D̄ − D̄∗D), I = 0, I3 = 0〉 =

1

2
|(D∗+D− −D∗−D+ +D∗0D̄0 − D̄∗0D0)〉

1√
2
|(D∗sD̄s − D̄∗sDs), I = 0, I3 = 0〉 =

1√
2
|(D∗+s D−s −D∗−s D+

s )〉 .
(1)

In [26] it was found that the X(3872) had couplings to the charged and neutral components
of DD∗ that were very close to each other, implying an approximate I = 0 character for the
state. Since the masses and bindings used in [20, 26] have been updated, we have redone
the calculation of [20, 26] with updated masses, assuming the present binding of 0.2 MeV
of the X(3872) with respect to the D0D̄∗0 − c.c component. The result of the couplings are
shown in table I.
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Channel |gR→PV | [MeV]

(K−K∗+ − c.c.)/
√

2 −53

(K0K̄∗0 − c.c.)/
√

2 −49

(D−D∗+ − c.c.)/
√

2 3638

(D0D̄∗0 − c.c.)/
√

2 3663

(D−s D
∗+
s − c.c.)/

√
2 3395

TABLE I: Couplings gR of the pole at (3871.6− i0.001) MeV to the channels (αH = −1.27
here). Table taken from Ref. [26].

From the couplings in Table I, we observe that there is some isospin violation, which is
however very small, less than 1%. Intuitively, one might think that the D0D̄∗0 component is
the only relevant, because the binding of the DD̄∗0 is very small, of the order of 0.2 MeV and
the wave function extends much further than for the charged component, which is bound by
about 8 MeV . However, as we mentioned, the relevant interactions in most processes are
short ranged and then the wave functions at the origin, proportional to the couplings, are
what matters. In this sense it is found in [20, 26] that in the limit of the D0D̄∗0 binding going
to zero, all couplings go to zero, but the ratio of the couplings of the charged and neutral
components goes to a constant close to one, which guarantees that the charged component
will play an important role in physical processes. The conclusion is that the wave function of
the X(3872) is very close to the isospin I = 0 combination of D0D̄∗0−c.c. and D+D∗−−c.c.
and has a sizable fraction of the D+D∗− − c.c. of Eq. (1).

From this table we can also see that the couplings to the K−K∗+ − c.c. and K0K̄∗0 −
c.c. channels represent less than the 1% of the contributions from the other channels (the
π−ρ+ − c.c. has even smaller strenght). Therefore, we will treat the X(3872) as if it were
dynamically generated only from the last three channels in Table I.

In this picture, the X(3872) decays into J/ψγ through the diagrams shown in Fig. 1.
From this figure we observe that there are four kinds of different Feynman diagrams, all of
them with an anomalous vertex coupling two vectors and a pseudoscalar (VVP), depending
on whether the diagram contains a PPV or a 3V vertex, or the photon emerges from the
anomalous vertex. To begin with, there are three different channels: D0D̄∗0, D+D∗− and
D+
s D

∗−
s , which lead to 12, plus another 12 for the complex congujate, Feynman diagrams to

evaluate. The formalism used is very similar to the one of [31] where the authors study the
radiative decay of the dynamically generated resonance K∗2(1430) [32] into Kγ, via diagrams
containing anomalous vector-vector-pseudoscalar vertices. The VPP, 3V and Vγ vertices are
evaluated using the local hidden gauge approach [22–25] which automatically incorporates
vector meson dominance, by means of which the photons couple to other hadrons converting
itself into ρ0, ω, φ and J/ψ. As a consequence of this, we are also able to evaluate the rates
of the X(3872) decay into J/ψρ, J/ψω and the ratios of the decay rates, which can be
compared to existing data.
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X(P )

P (q)

Pl(q − p)

V (P − q)

J/Ψ(p)

γ(k)

Vp(k)(1)

X(P )

P (q)

Vl(q − p)

V (P − q)

J/Ψ(p)

γ(k)

Vp(k)(2)

X(P )

P (q)

Pl(q − p)

V (P − q)

(3)

γ(k)

Vp(k)

J/Ψ(p)

X(P )

P (q)

Vl(q − p)

V (P − q)

(4)

J/Ψ(p)

γ(k)

Vp(k)

FIG. 1: Different types of Feynmann diagrams for the decay of the X(3872) into J/ψγ.

In summary, the Lagrangians we need in order to evaluate the amplitude are listed below:

LV V P =
G′√

2
εµναβ〈∂µVν∂αVαP 〉 (2)

LV γ = −M2
V

e

g
Aµ〈V µQ〉 (3)

LPPV = −ig〈V µ[P, ∂µP ]〉 (4)

L3V = ig〈(V µ∂νVµ − ∂νVµV µ)V ν)〉 , (5)

with e the electron mass (e2/4π = α), G′ = 3g′2/(4π2f), g′ = −GVMρ/(
√

2f 2), GV =

f/
√

2 and g = MV /2f . The constant f is the pion decay constant fπ = 93 MeV , Q =
diag(2,−1,−1, 2)/3 and MV is the mass of the vector meson, for which we take Mρ.

The P and V matrices contain the 15-plet of the pseudoscalars and the 15-plet of vectors
respectively in the physical basis considering η, η′ mixing [33]:

P =



η√
3

+ η′√
6

+ π0
√

2
π+ K+ D̄0

π− η√
3

+ η′√
6
− π0
√

2
K0 D−

K− K̄0 − η√
3

+
√

2
3
η′ D−s

D0 D+ D+
s ηc


, (6)
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and Vµ represents the vector nonet:

Vµ =



ω+ρ0√
2

ρ+ K∗+ D̄∗0

ρ− ω−ρ0√
2
K∗0 D∗−

K∗− K̄∗0 φ D∗−s

D∗0 D∗+ D∗+s J/ψ


µ

. (7)

From Eqs. (2), (3), (4) and (5) we can write the vertices involved in the diagram of type
(1) of Fig. 1 as

tRV P = gX ε(V )µε(X)
µ

tVpγ = P M2
Vp

e

g
ε(γ)
µ ε(Vp)µ

tPPlJ/ψ = PV g (2q − p)µε(J/ψ)µ

tV VpPl = A G′ εαβγδ (P − q)αε(V )
β kγε

(Vl)
δ ,

(8)

where gX = 3638/
√

2, 3663/
√

2, 3395/
√

2 MeV , for D−D∗+, D̄0D∗0, D−s D
∗+ and−3638/

√
2,

−3663/
√

2,−3395/
√

2 MeV , for D+D∗−, D0D̄∗0, D+
s D

∗−
s respectively and P , PV and A are

numerical factors.
The Vp → γ conversion essentially replaces, up to a constant, ε

(Vp)
δ by ε

(γ)
δ . Therefore, we

can write the amplitude of the diagram (1) depicted in Fig. 1 as

− it1= −BegXG
′
∫

d4q

(2π)4
ε(V )β′ε

(X)
β′ ε

(J/ψ)µ(2q − p)µεαβγδ(P − q)αε(V )
β kγε

(γ)
δ

× 1

q2 −m2
P

1

(q − p)2 −m2
Pl

1

(P − q)2 −m2
V

, (9)

where B = PAPV (the values of B for each case are shown in Table II). Summing over the
polarizations of the internal vector, we have∑

λ

ε
(V )
β ε

(V )
β′ = −gββ′ +

(P − q)β(P − q)β′
m2
V

. (10)

When contracting with the antisymmetric tensor εαβγδ, the term (P−q)β(P−q)β′ disappears.
Thus, we have an integral like∫

d4q

(2π)4

(2q − p)µ(p+ k − q)α
(q2 −m2

P + iε)((q − p)2 −m2
Pl

+ iε)((p+ k − q)2 −m2
V + iε)

= i(agµα + bkµkα + cpαkµ + dkαpµ + epαpµ) (11)

because of Lorentz covariance. After contracting with the antisymmetric tensor εαβγδ and
applying the Lorentz condition pµε

(J/ψ)µ = 0, only the coefficients a and c remain to be
evaluated. The a coefficient is related to the logarithmically divergent part of the integral
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in Eq. (11) and therefore the evaluation of this coefficient needs a special treatment as we
will see later on. We arrive to an amplitude of the form

t1 = BeG′gXε
αβγδ(aε(J/ψ)

α + cpαk · ε(J/ψ))ε
(X)
β kγε

(γ)
δ . (12)

Now we want to evaluate the a and c coefficients. We do it using the formula of the
Feynman parametrization for n = 3,

1

αβγ
= 2

∫ 1

0

dx

∫ x

0

dy
1

[α + (β − α)x+ (γ − β)y]3
. (13)

In the integral of Eq. (11), we can perform the above parametrization with

α = (q − p)2 −m2
Pl

β = q2 −m2
P

γ = (p+ k − q)2 −m2
V . (14)

We define a new variable q′ = q + p(x− y − 1)− ky, such that the integral of Eq. (11) can
be expressed as

4

∫ 1

0

dx

∫ x

0

dy

∫
d4q′

(2π)4

(q′ + p(1− x+ y) + ky)µ(k − q′ − p(y − x)− ky)α
(q′2 + s1)3

, (15)

with

s1 = −m2
Pl

+(m2
Pl
−m2

P )x+(k2+m2
P−m2

V )y+p2(x−y)(1−x+y)+2pky(x−y)−k2y2 . (16)

From Eq. (15), we must take the iagµα and icpαkµ terms. The c coefficient can be evaluated
very easily, since ∫

d4q′

(q′2 + s1)3
=
iπ2

2s1

(17)

and we have

c =
1

8π2

∫ 1

0

dx

∫ x

0

dy
y(x− y)

s1

. (18)

The evaluation of the a coefficient is a little bit more elaborated. We have the identity

iagµα = −4

∫ 1

0

dx

∫ x

0

dy
d4q′

(2π)4

q′µq
′
α

(q′2 + s1 + iε)3
, (19)

and after taking the trace

ia = −
∫ 1

0

dx

∫ x

0

dy
d4q′

(2π)4

q′2

(q′2 + s1 + iε)3
. (20)

This part is logarithmically divergent and we will relate it to the two-meson function loop
G(P ):

G(P = p+ k) = i

∫
d4q

(2π)4

1

q2 −m2
P + iε

1

(p+ k − q)2 −m2
V + iε

. (21)
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Multiplying the integrand by the factor ((q − p)2 − m2
Pl

)/((q − p)2 − m2
Pl

) and using the
Feynmann parametrization rule with the change of variable q′ = q + p(x− y − 1)− ky, we
obtain:

G(P ) = 2i

∫ 1

0

dx

∫ x

0

dy

∫
d4q′

(2π)4

q′2 + (ky)2 + 2pky(y − x) + p2(x− y)2 −m2
Pl

(q′ + s1)3
(22)

and

a =
G(P )

2
+

1

32π2

∫ 1

0

dx

∫ x

0

dy
(ky)2 + 2pky(y − x) + p2(x− y)2 −m2

Pl

s1 + iε
. (23)

Now, we want to calculate the amplitude for the second diagram in Fig. 1 containing the
three-vector vertex. The only difference with the previous diagram is the 3V vertex. Thus,
the amplitudes corresponding to the 3V vertex and the anomalous vertex are, respectively:

tV VlVp = V3g {(q − p+ k)µε
(Vl)
ν ε(V )µε(Vp)ν − (p+ 2k − q)νε(V )

µ ε(Vl)νε(Vp)µ

+ (2(p− q) + k)νε
(V )
µ ε(Vl)µε(Vp)ν}

tVlJ/ψP = AG′ εαβγδ(q − p)αε(Vl)β pγε
(J/ψ)
δ ,

(24)

where V3 and A are numerical factors.
Thus, we can write the amplitude of the diagram (2) in Fig. 1 as

−it2 = −eG′gXC

∫
d4q

(2π)4
εαβγδ(q − p)αε(Vl)β pγε

(J/ψ)
δ ε

(X)
ν′ ε

(V )ν′

× {(q − p+ k)µε
(Vl)
ν ε(V )µε(γ)ν − (p+ 2k − q)νε(V )

µ ε(Vl)νε(γ)µ

+ (2(p− q) + k)νε
(V )
µ ε(γ)νε(Vl)µ} 1

q2 −m2
P + iε

1

(q − p)2 −m2
Vl

+ iε

× 1

(p+ k − q)2 −m2
V + iε

,

where C = V3PA. In this process the D̄∗0 is very close to be on-shell with zero three
momentum. To be consistent with the approach of [26], which is neglecting the three-
momentum compared to the mass of the vector meson, |~q |/mV ' 0, ε(V )0 ' 0, we perform
the sum over polarizations as ∑

λ

ε(V )µε(V )ν′ ' δ(µν′)spatial = δij (25)

We also can keep the covariant formalism and remember at the end that µ, ν ′ are spatial. The
way to proceed is very similar to that of the previous diagram. The second term of the 3V
vertex proportional to (p+2k−q)β does not contribute, since we have (q−p)αpγ(p+2k−q)β =
qα(p+ 2k)βpγε

αβγδ, which applying Lorentz covariance in the integral turns into a term like
(a′pαkβ + b′pβkα)pγε

αβγδ = 0. Therefore, we have two kinds of integrals:∫
d4q

(2π)4

qα(q − p+ k)ν′

(q2 −m2
P + iε)((q − p)2 −m2

Vl
+ iε)((p+ k − q)2 −m2

V + iε)

= i(a1gαν′ + b1kαkν′ + c1pαkν′ + d1pν′kα + e1pν′pα) (26)
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and ∫
d4q

(2π)4

qα2(p− q)ν
(q2 −m2

P + iε)((q − p)2 −m2
Vl

+ iε)((p+ k − q)2 −m2
V + iε)

= i(a2gαν + b2kαkν + c2pαkν + d2kαpν + e2pαpν) . (27)

One can see that only the coefficients proportional to a1, b1, d1, a2 and d2 survive. Thus, we
finally get

t2 = −CeG′gX εαβγδ{(a1ε
(X)
α + (b1k

µ + d1p
µ)ε(X)

µ kα)ε
(γ)
β + (a2ε

(γ)
α + d2ε

(γ)
µ pµkα)ε

(X)
β }pγε

(J/ψ)
δ ,

(28)
where now

a1 = −G(P )

4
− 1

64π2

∫ 1

0

dx

∫ x

0

dy
(ky)2 + 2pky(y − x) + p2(x− y)2 −m2

Vl

s2 + iε

b1 =
1

16π2

∫ 1

0

dx

∫ x

0

dy
y(y + 1)

s2 + iε

d1 =
1

16π2

∫ 1

0

dx

∫ x

0

dy
y(y − x)

s2 + iε

a2 = −2a1

d2 = −2d1 ,

(29)

with

s2 = −m2
Vl

+(m2
Vl
−m2

P )x+(k2−m2
V +m2

P )y+p2(x−y)(1−x+y)+2kyp(x−y)−k2y2 . (30)

In order to evaluate diagrams (3) and (4) in Fig. (1), we only have to do the exchanges
k ↔ p and ε(γ) ↔ ε(J/ψ) in the amplitudes of diagrams (1) and (2).

We have
t3 = BeG′gcX εαβγδ(aε(γ)

α + dkα(p · ε(γ)))ε
(X)
β pγε

(J/ψ)
δ , (31)

with

a =
G(P )

2
+

1

32π2

∫ 1

0

dx

∫ x

0

dy
(py)2 + 2pky(y − x)−m2

Pl

s3 + iε
(32)

and

d =
1

8π2

∫ 1

0

dx

∫ x

0

dy
y(x− y)

s3

, (33)

where

s3 = −m2
Pl

+ (m2
Pl
−m2

P )x+ (p2 +m2
P −m2

V )y + 2pky(x− y)− p2y2 , (34)

for diagram (3), and

t4 = −CeG′gX εαβγδ{(a1ε
(X)
α +(c1k

µ+e1p
µ)ε(X)

µ pα)ε
(J/ψ)
β +(a2ε

(J/ψ)
α +c2ε

(J/ψ)
µ kµpα)ε

(X)
β }kγε

(γ)
δ ,
(35)
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with

a1 = −G(p)

4
− 1

64π2

∫ 1

0

dx

∫ x

0

dy
(py)2 + 2pky(y − x)−m2

Vl

s4 + iε

e1 =
1

16π2

∫ 1

0

dx

∫ x

0

dy
y(y + 1)

s4 + iε

c1 =
1

16π2

∫ 1

0

dx

∫ x

0

dy
y(y − x)

s4 + iε
a2 = −2a1

c2 = −2c1 , (36)

and

s4 = −m2
Vl

+ (m2
Vl
−m2

P )x+ (p2 −m2
V +m2

P )y + 2kyp(x− y)− p2y2

(37)

for diagram (4).

X(P )

P (q)

Vl(q − p)

V (P − q)

(4a)

X(P )

P (q)

Pl(q − p)

V (P − q)

(3a)

X(P )

P (q)

Pl(q − p)

V (P − q)

J/Ψ(p)

ρ, ω(k)

(1a)

X(P )

P (q)

Vl(q − p)

V (P − q)

J/Ψ(p)

ρ, ω(k)

(2a)

ρ, ω(k)

J/Ψ(p) J/Ψ(p)

ρ, ω(k)

FIG. 2: Different types of Feynmann diagrams for the decay of the X(3872) into J/ψρ and
J/ψω.

This formalism also allows us to evaluate the amplitudes for the decays X → J/ψρ and
X → J/ψω (Fig. 2). We can proceed in complete analogy with the radiative decay to
determine these amplitudes, simply removing the final photon and leaving the vector meson
in the final state, the ρ0 or the ω. Moreover, we must take into account that the ρ0 and
the ω do not couple to the strange D mesons, so that we have again four different kinds of
diagrams, but only two channels plus their complex conjugate, that is 16 Feynman diagrams
to evaluate. Doing this, we can observe that the new amplitudes have the same structure of
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Diagram P V Pl B

1 D0 D̄∗0 D0 4
3
√

2

D+D∗− D+ 1
3
√

2

D+
s D
∗−
s D+

s
1

3
√

2

1̄ D̄0D∗0 D̄0− 4
3
√

2

D−D∗+ D−− 1
3
√

2

D−s D
∗+
s D−s − 1

3
√

2

3 D0 D̄∗0 D0 0

D+D∗− D+ 1√
2

D+
s D
∗−
s D+

s − 1√
2

3̄ D̄0D∗0 D̄0 0

D−D∗+ D− − 1√
2

D−s D
∗+
s D−s − 1√

2

Diagram P V Vl C

2 D0D̄∗0 D∗0 0

D+D∗− D∗+ − 1√
2

D+
sD
∗−
s D∗+s

1√
2

2̄ D̄0D∗0 D̄∗0 0

D−D∗+ D∗− 1√
2

D−sD
∗+
s D∗−s

1√
2

4 D0D̄∗0 D∗0− 4
3
√

2

D+D∗− D∗+− 1
3
√

2

D+
sD
∗−
s D∗+s − 1

3
√

2

4̄ D̄0D∗0 D̄∗0 4
3
√

2

D−D∗+ D∗− 1
3
√

2

D−sD
∗+
s D∗−s

1
3
√

2

TABLE II: Coefficients B and C of the different diagrams in Fig. 1

the previous ones and can be obtained, up to a coefficient, directly with the substitutions
e↔ g and ε(γ) ↔ ε(ρ,ω). For instance, in the case of the diagram (1a) of Fig. 2, we have

t1a = B′gG′gXε
αβγδ(aε(J/ψ)

α + cpαk · ε(J/ψ))ε
(X)
β kγε

(ρ,ω)
δ , (38)

with a and c the same as before

a =
G(P )

2
+

1

32π2

∫ 1

0

dx

∫ x

0

dy
(ky)2 + 2pky(y − x) + p2(x− y)2 −m2

Pl

s1 + iε
,

c =
1

8π2

∫ 1

0

dx

∫ x

0

dy
y(x− y)

s1

(39)

and B′ = PVA of Eqs. (8). However, since we are dealing with different vertices, the new
numerical coefficients, that we call B′ and C′, are now different and they are written in the
tables III and IV.
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Diagram P V Pl B
′

1 D0 D̄∗0 D0 1
2

D+D∗− D+−1
2

1̄ D̄0D∗0 D̄0−1
2

D−D∗+ D− 1
2

3 D0 D̄∗0 D0−1
2

D+D∗− D+ 1
2

3̄ D̄0D∗0 D̄0 1
2

D−D∗+ D−−1
2

Diagram P V Vl C
′

2 D0D̄∗0 D∗0 1
2

D+D∗− D∗+−1
2

2̄ D̄0D∗0 D̄∗0−1
2

D−D∗+ D∗− 1
2

4 D0D̄∗0 D∗0 1
2

D+D∗− D∗+−1
2

4̄ D̄0D∗0 D̄∗0−1
2

D−D∗+ D∗− 1
2

TABLE III: Coefficients B′ and C ′ of the different diagrams in Fig. 2 in the case of a ρ
meson in the final state.

Diagram P V Pl B
′

1 D0 D̄∗0 D0 1
2

D+D∗− D+ 1
2

1̄ D̄0D∗0 D̄0−1
2

D−D∗+ D−−1
2

3 D0 D̄∗0 D0−1
2

D+D∗− D+−1
2

3̄ D̄0D∗0 D̄0 1
2

D−D∗+ D− 1
2

Diagram P V Vl C
′

2 D0D̄∗0 D∗0 1
2

D+D∗− D∗+ 1
2

2̄ D̄0D∗0 D̄∗0−1
2

D−D∗+ D∗−−1
2

4 D0D̄∗0 D∗0 1
2

D+D∗− D∗+ 1
2

4̄ D̄0D∗0 D̄∗0−1
2

D−D∗+ D∗−−1
2

TABLE IV: Coefficients B′ and C ′ of the different diagrams in Fig. 2 in the case of a ω
meson in the final state.
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III. RESULTS

Following the procedure in section II we can obtain the total decay amplitude for the
radiative decay of the X meson and evaluate the correspondent decay width for this channel
by means of the formula

Γ =
|~k|2

8πM2
X

∑̄∑
|t|2 , (40)

where we sum over the polarizations of the final states and average over the X meson
polarizations.

To evaluate the amplitude we use the dimensional regularization for the loop function.
The subtraction constants used are α = αS = −1.27, where the subscript S identifies the
strange channel, and they are chosen to fit the mass of the X(3872) [26].

Applying Eq. (40), we obtain

Γ(X → J/ψγ) = 149.5 keV . (41)

In order to make an estimation of the theoretical uncertainty on this quantity we perform
a suitable variation of the parameters used to compute the total amplitude: the coupling
G′ for the V V P vertex (Eq. (2)), the axial-vector-pseudoscalar couplings gX for the three
channels, and the two subtraction constants in the loop function, α and αS.

We allow the constant f , contained in G′, to vary, but keeping the relationship GV =
f/
√

2 and replacing MV = Mρ by MD∗ . The couplings gX for the neutral and strange
channels are also varied, independently, by 10%. On the other hand, the variation of the
coupling for the charged channel is such that the ratio between it and the one for the neutral
channel is kept constant, in order to preserve the isospin of the X(3872). Then, we let the
subtraction constants α and αS vary between −1.60 and −1.27. This range is motivated by
the range chosen for f . Indeed, going to higher values of the constant f causes a decrease of
the potential in the Lippman-Schwinger equation used to evaluate the scattering amplitude
which determines the position of the resonance. One would need to go to more negative
values of the subtraction constants α and αS in the loop function, which appears in the a
coefficients, to keep the pole representing the resonance in the same position. The range is
thus chosen such as to produce an effect in the pole position similar to that induced by the
change in f .

We obtain the result

Γ(X → J/ψγ) = (117± 40) keV . (42)

We can also evaluate the branching ratios for the decays X → J/ψρ and X → J/ψω.
These two decays, if we consider the ρ and the ω with fixed masses, are not allowed because
of the phase space, but they can occur when their mass distributions are taken into account
and they are observed in the decays X → J/ψππ and X → J/ψπππ respectively. The two
and three pions states are produced in the decays of the ρ and the ω.

Thus, the decay widths, convoluted with the spectral functions, are given by the formula

Γρ/ω =
1

N

∫ (mρ/ω+2Γρ/ω)2

(mρ/ω−2Γρ/ω)2
dm̃2

(
− 1

π

)
Im

[
1

m̃2 −m2
ρ/ω + iΓ̃ρ/ωm̃

]
ΓX(m̃)θ(mX −mJ/ψ − m̃) ,

(43)

13



where

N =

∫ (mρ/ω+2Γρ/ω)2

(mρ/ω−2Γρ/ω)2
dm̃2

(
− 1

π

)
Im

[
1

m̃2 −m2
ρ/ω + iΓ̃ρ/ωm̃

]
, (44)

where ΓX(m̃) given by Eq. (40), changing mρ and mω by m̃.
In Eqs. (43) and (44), mρ = 775.49 MeV and mω = 782.65 MeV are the masses of the

mesons, Γρ = 149.1 MeV and Γω = 8.49 MeV are the on shell widths and

Γ̃ρ/ω = Γρ/ω

(
q̃

qρ/ω

)3

, (45)

where q̃ and qρ/ω are the off shell and on shell momentum of the mesons in the center of
mass reference frame:

q̃ =

√
m̃2 − 4m2

π

2
θ(m̃− 2mπ) ,

qρ/ω =

√
m2
ρ/ω − 4m2

π

2
.

(46)

We call ΓX the total decay width of the X into J/ψρ or J/ψω to simplify the notation and
mπ is the pion mass.

Using Eq. (43) we find

Γρ = 821.9 keV ,

Γω = 1096.6 keV ,
(47)

and when the error anlysis that leads to Eq. (42) is done, the band of values becomes

Γρ = (645± 221) keV ,

Γω = (861± 294) keV .
(48)

With the results of Eq. (47) we can evaluate the ratio

R =
B(X → J/ψπππ)

B(X → J/ψππ)
=

Γω
Γρ

= 1.33 . (49)

However, the experiment gives the ratio

Rexp =
B(X → J/ψπ+π−π0)

B(X → J/ψπ+π−)
= 1.0± 0.4± 0.3(sys) (50)

and, to compare our result with this, we must take into account that the ω decays into
π+π−π0 with a branching ratio Bω,3π = 0.892.

Hence, our ratio to compare with Rexp is

Rth =
Γω
Γρ
×Bω,3π = 1.19 , (51)

well within the experimental error.
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The result we obtain for the ratio

Γ(X → J/ψγ)

Γ(X → J/ψππ)
= 0.18 , (52)

is also compatible with the two values known from the experiment (0.14 ± 0.05) [1] and
(0.22± 0.06) [2].

We can also estimate the theoretical errors for the two ratios in Eqs. (51) and (52),
by evaluating the γ, ρ and ω decays with the same set of parameters, and varying these
parameters in the range used to evaluate Γ(X → J/ψγ):

Rth = (0.92± 0.13)

Γ(X → J/ψγ)

Γ(X → J/ψππ)
= (0.17± 0.02) .

(53)

The uncertainties in the ratios are smaller than for the absolute values and they are of
the order of the 15%.

Finally, we do another exercise removing the D+D∗− − c.c and D+
SD

∗−
S − c.c and letting

only the D0D̄∗0 − c.c contribution. The results that we obtain are

Γγ = 0.46 keV

Γρ = 9104.9 keV

Γω = 368.9 keV

Rth = 0.04

Γ(X → J/ψγ)

Γ(X → J/ψππ)
= 5.05 · 10−5 .

(54)

As we can see, the two ratios that we have to compare with experiment grossy diverge
from the experimental values and Γρ by itself becomes much bigger than the width of the
X(3872) (ΓX < 1.2 MeV ).

In table V we compare our results with a variety of results available in the literature using
different models. It would be interesting to test these models with the new information on
the experimental ratios to help discriminate among them.

The ratio of J/ψγ to J/ψππ is also evaluated in [9], where the Weinberg compositeness
condition [14] is used to determine the couplings but other assumptions are made, and they
find a range of values from 0.18 to 1.57 depending on the model they consider. We should
stress that once the X is obtained in our case and, hence, the couplings are determined, there
is no freedom in our approach, which makes unique predictions, up to the small uncertainties
tied to the limited range of variation of the parameters. This comparison helps gauge the
value of the results obtained here.

We should note that our results are based on the central value of the masses in the PDG
and a binding of the D0D̄∗0 − c.c of B = 0.2 MeV . However the error on the mass of the
X(3872) is as big as that value. This is important to note because the coupling goes as B

1
4

according to the Weinberg compositeness condition [14]. When in the future the binding
can be more accurately determined we can also obtain more accurate values of the absolute
rates. On the other hand, the values of the ratios will be essentially unaltered.
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model Γ [keV ]

cc̄ 11 [5]

cc̄ 139 [6]

molecule 8 [6]

molecule 125− 250 [8]

cc̄ 11− 71 [9]

molecule + cc̄ 2− 17 [9]

2−+ 1.7− 2.1 [27]

cc̄ 45− 80 [10]

tetraquark 10− 20 [11]

present work 77− 158

TABLE V: Results from previous works for the decay width of the X(3872) into J/ψγ,
using different models.

IV. CONCLUSIONS

In this paper we have exploited the picture of the X(3872) as a composite state of
DD̄∗− c.c. dynamically generated by the interaction of the D and D∗ states. The couplings
of the state to the different DD̄∗ − c.c. channels have been calculated before within this
model and are used here. The coupling for the D0D̄∗0− c.c is similar to the one that would
be obtained using the compositeness condition of Weinberg, since the state is barely bound
in the D0D̄∗0 component, but the dynamics of the model produces also couplings for the
D+D∗−−c.c and D+

SD
∗−
S −c.c states. Using an extension to SU(4) with an explictit breaking

of this symmetry of the local hidden gauge approach, used before successfuly in the study
of related processes, one can determine the widths of the X(3872) to J/ψρ, J/ψω and J/ψγ
and compare with the ratios determined experimentally in recent works. We find a very good
agreement with the experimental results. The absolute numbers obtained for the different
widths are also reasonable and their sum within errors, (1.6± 0.6) MeV , is compatible with
the recent total X(3972) upper limit of the width, Γ = 1.2 MeV .

We have also conducted a test neglecting the charged and strange components of the
wave function and thus having only the D0D̄0∗ − c.c. component. We obtain ratios in great
disagreement with experiment and an absolute value for the X(3872) partial width into J/ψρ
which largely exceeds the experimental upper bound for the total width of the X(3872). This
exercise confirms the relevance of the charged channels and the approximate I=0 character
of this resonance, contrary to the appealing picture of the D0D̄0∗ − c.c. state, which has a
larger probability to be found because it is less bound than the charged components. We
showed that in these processes it is the wave function at the origin what matters, or more
concretely the couplings, which are related to it, and not the probability.
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