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Abstract

We present results of dynamical simulations of Nf = 2 degenerate Wilson
twisted mass quarks at maximal twist in the range of pseudo scalar masses
300 MeV . mPS . 550 MeV. Reaching such small masses was made pos-
sible owing to a recently developed variant of the HMC algorithm. The
simulations are performed at one value of the lattice spacing a . 0.1 fm. In
order to have O(a) improvement and aiming at small residual O(a2) cutoff
effects, the theory is tuned to maximal twist by requiring the vanishing of
the untwisted quark mass. Precise results for the pseudo scalar decay con-
stant and the pseudo scalar mass are confronted with chiral perturbation
theory predictions and the low energy constants F , l̄3 and l̄4 are evaluated
with small statistical errors.

1 Introduction

The Wilson twisted mass formulation of lattice QCD, though a rather recent
approach, has been by now well established. It amounts to adding a twisted
mass term to the standard, un-improved Wilson-Dirac operator [1] leading to
so-called Wilson twisted mass fermions [2, 3].

Besides being a theoretically sound formulation of lattice QCD, Wilson
twisted mass fermions offer a number of advantages when tuned to maximal
twist: (i) in this case automatic O(a) improvement is obtained by tuning only
one parameter, the bare untwisted quark mass, while avoiding additional tuning
of operator-specific improvement-coefficients; (ii) the mixing pattern in the renor-
malisation process can be significantly simplified; (iii) the twisted mass provides
an infra-red regulator helping to overcome possible problems with ergodicity in
molecular dynamics based algorithms1.

In the quenched approximation, these expectations – based on general field
theoretical and chiral perturbation theory (χPT) related arguments [2, 3, 11, 12,
13, 14, 15] – could be verified in actual simulations [16, 17, 18, 19]: O(a) im-
provement is indeed realised when the theory is tuned to maximal twist. More-
over, it has been shown that a particular realisation of maximal twist, requiring
parity restoration, also suppresses the O(a2) cut-off effects substantially, even
at small quark masses corresponding to values of the pseudo scalar mass of
mPS . 300MeV. In addition, with the twisted mass parameter as an infra-red
cut-off in place, substantially smaller quark masses could be obtained, compared
to those reachable by standard or O(a) improved Wilson fermions which are
plagued by so-called exceptional configuration problems in the quenched approx-
imation. In Refs. [20, 21, 22] it was shown that “wrong chirality” mixing effects

1Although in the light of recent algorithmic developments [4, 5, 6, 7, 8, 9] this property
does not seem to be that important anymore, we consider it still to be an advantage to have
an infra-red regulator in the theory which helps in stabilising the simulations. For a recent
stability analysis of pure Wilson fermion simulations see Ref. [10]
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in the renormalisation process are substantially reduced. In Ref. [11] it was
proved that all such mixings can be eliminated if a mixed action with maximally
twisted sea quarks and appropriately chosen Osterwalder–Seiler valence fermions
is employed. For a further discussion of the potential of twisted mass QCD on
the lattice, see Refs. [23, 24, 25, 26].

The main drawback of the twisted mass approach is the explicit breaking of
parity and isospin symmetry which are only restored when the continuum limit is
reached. However, due to O(a) improvement, this breaking is an O(a2) effect as
confirmed by simulations performed in the quenched approximation [27, 28]. For
recent reviews of the status of Wilson twisted mass fermions see Refs. [29, 30, 31]
and references therein.

It is the main goal of our collaboration to compute a number of phenomeno-
logically relevant quantities with dynamical quarks, in the continuum limit and
at small values of the pseudo scalar mass. As a first step in this direction we
here present results for Nf = 2 mass-degenerate quarks at a fixed lattice spacing
a . 0.1 fm. We have so far concentrated on the pseudo scalar mass mPS, covering
a range of values 300MeV . mPS . 550MeV, the pseudo scalar decay constant
fPS and the static inter-quark force parameter r0 at five values of the quark mass.
A wider range of physical observables will be addressed in the future. The results
for mPS and fPS are confronted with predictions of χPT which allows extracting
the low-energy constants l̄3, l̄4, F and B0 of the corresponding effective chiral
Lagrangian. We also provide a determination of the size of isospin violation mea-
sured from the mass splitting between the lightest charged and neutral pseudo
scalar particles. First accounts of our work were presented at recent conferences,
see Refs. [32, 33]. In this publication we will focus on the results of our present
simulations obtained at one value of β and one volume. We shall provide, in
a forthcoming paper [34], a comprehensive description of our analysis procedure
and address systematic errors by including future runs on larger lattices, at differ-
ent values of β and with extended statistics. Related works with Wilson fermions
at similar small pseudo scalar meson masses are published in Refs. [35, 36, 37].

2 Choice of Lattice Action

The Wilson twisted mass fermionic lattice action for two flavours of degenerate
quarks reads (in the so called twisted basis [2] and fermion fields with continuum
dimensions)

Stm = a4
∑

x

{

χ̄x

[

m0 + iγ5τ3µ+
4r

a

]

χx

+
1

2a

4
∑

ν=1

χ̄x

[

Ux,ν(−r + γν)χx+ν̂ + U †
x−ν̂,ν(−r − γν)χx−ν̂

]}

,

(1)
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where am0 is the bare untwisted quark mass and aµ the bare twisted mass, τ3
is the third Pauli matrix acting in flavour space and r is the Wilson parameter,
which we set to one in our simulations. Twisted mass fermions are said to be at
maximal twist if the bare untwisted mass is tuned to its critical value, mcrit. We
will discuss later how this can be achieved in practice.

In the gauge sector we use the so called tree-level Symanzik improved gauge
action (tlSym) [38], which includes besides the plaquette term U1×1

x,µ,ν also rectan-
gular (1 × 2) Wilson loops U1×2

x,µ,ν

Sg =
β

3

∑

x

(

b0

4
∑

µ,ν=1
1≤µ<ν

{1 − ReTr(U1×1
x,µ,ν)}+b1

4
∑

µ,ν=1
µ6=ν

{1 − Re Tr(U1×2
x,µ,ν)}

)

(2)

with β the bare inverse coupling, b1 = −1/12 and the (proper) normalisation
condition b0 = 1− 8b1. Note that at b1 = 0 this action becomes the usual Wilson
plaquette gauge action.

2.1 O(a) improvement

As mentioned before, O(a) improvement can be obtained by tuning Wilson
twisted mass fermions to maximal twist. In fact, it was first proved in Ref. [3] that
parity even correlators are free from O(a) lattice artifacts at maximal twist by
using spurionic symmetries of the lattice action. Later on it was realised [12, 31]
that a simpler proof is possible based on the parity symmetry of the continuum
QCD action and the use of the Symanzik effective theory.

From this latter way of proving O(a) improvement, it becomes also clear
how to define maximal twist: first, choose an operator odd under parity (in the
physical basis) which has a zero expectation value in the continuum. Second,
at a non-vanishing value of the lattice spacing tune the expectation value of
this operator to zero by adjusting the value of am0. This procedure, which has
been proposed in [39, 40] and has been theoretically analysed in [12], is sufficient
to define maximal twist independently of the chosen operator. To approach
smoothly the continuum limit this tuning has to be performed at fixed physical
situation while decreasing the lattice spacing.

It was shown in an extended scaling test in the quenched approximation,
that O(a) improvement works extremely well for maximally twisted mass quarks
[16, 17, 18]. In the context of this scaling test, the method of setting the so-called
PCAC mass to zero was found to be very successful, in agreement with theoretical
considerations [15, 13, 12]. Here the PCAC mass

mPCAC =

∑

x
〈∂0A

a
0(x)P

a(0)〉

2
∑

x
〈P a(x)P a(0)〉

, a = 1, 2 (3)

is evaluated at large enough time separation, such that the pion ground state
is dominant. To see that the procedure of defining amcrit from the vanishing of
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mPCAC is the appropriate one, it is enough to recall that under that condition
the multilocal operator

∑

x
Aa

0(x)P
a(0) becomes, in the physical basis, the parity

odd operator ǫ3ab
∑

x
ψ̄γ0τ

bψ(x) ψ̄γ5τ
aψ(0).

In principle one could think of determining amcrit at each value of aµ at which
simulations are performed, possibly followed by an extrapolation to vanishing
aµ. The strategy we are following in this paper is, instead, to take the value of
amcrit from the simulation at the lowest available value aµmin ≪ aΛQCD. In this
situation O(a) improvement is still guaranteed, because working at µmin merely
leads to O(aµminΛQCD) effects in mcrit and O(a2µminΛQCD) relative corrections in
physical quantities [12].

2.2 Phase Structure

In order to understand our choice of the gauge action, it is important to realise
that Wilson-type fermions have a non-trivial phase structure at finite lattice spac-
ing: in a series of publications [41, 39, 40, 29, 42, 43] the phase structure of lattice
QCD was explored. For lattice spacings a ≥ 0.15 fm clear signals of first order
phase transitions at the chiral point were found. The strength of those phase
transitions weakens when the continuum limit is approached. This phase tran-
sition was identified to be a generic property of Wilson-type fermions since the
phenomenon takes place for the pure Wilson as well as the Wilson twisted mass
formulation [2, 3] of lattice QCD. Also the properties of physical quantities mea-
sured in both metastable branches of this first order phase transition were studied
and compared to results of χPT [13, 15, 44, 45, 46, 47] finding that (lattice) χPT
describes the simulation data quite well. This is somewhat surprising since the
simulation data were obtained at rather coarse values of the lattice spacing and
at rather heavy pseudo scalar masses, where the applicability of χPT may be
questionable.

A very important consequence of the first order phase transition phenomenon
is that at non-vanishing lattice spacing, simulations cannot be performed with
pseudo scalar mesons below a certain minimal mass value. From lattice χPT
analyses it is expected that this minimal value of the pseudo scalar mass goes to
zero with a rate of O(a). In different words, given a value of the pseudo scalar
mass, mPS, one can always find a value of the lattice spacing amax(mPS), such
that simulations at a < amax(mPS) can be safely performed. For example, when
the Wilson plaquette gauge action is used one finds amax ≈ 0.07 fm to realise a
pseudo scalar mass of about 300MeV [43].

The phase structure of lattice QCD with Wilson-type fermions has previously
been addressed: there have been investigations concerning the Aoki-phase [48]
in Refs. [49, 50] at large gauge couplings corresponding to values of the lattice
spacing a ≥ 0.2 fm. In other studies [51, 52, 53] signals of first order phase
transitions were found for Wilson fermions with and without the clover term, see
also Ref. [54]. In Ref. [55] a speculative picture of the phase structure of Wilson
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β L3 · T aµmin κcrit(aµmin) r0/a

3.9 243 · 48 0.004 0.160856 5.22(2)

Table 1: Simulation parameters. We denote by aµmin the smallest value of the twisted mass
parameter aµ at which we have performed simulations. At this value of aµ we determined the
critical mass mcrit, or, equivalently the critical hopping parameter κcrit = 1/(8+ 2amcrit). The
value of r0/a has been extrapolated to the physical point, where mPS = 139.6 MeV.

lattice QCD has been given and in Ref. [56] an analysis within the framework of
χPT has been reported. A detailed understanding of the generic phase structure
was obtained in the 2-dimensional Gross-Neveu model, see Refs. [57, 58, 59]. Of
course, it is unclear how much these last results are applicable to 4-dimensional
lattice QCD.

In order to choose a gauge action for our production simulations we studied
the phase structure employing a number of different gauge actions: the stan-
dard Wilson plaquette gauge action [1] (b1 = 0 in Eq. (2)), the DBW2 gauge
action [60] (b1 = −1.4088) and the tree-level Symanzik improved gauge action
[38] (b1 = −1/12). A marked dependence of the strength of the phase transition
on the choice of the gauge action has been found. In particular, these investiga-
tions revealed that the DBW2 and the tlSym gauge actions substantially weaken
the effect of the first order phase transition and in particular the value of amax

increases when the coefficient b1 in Eq. (2) is moved away from zero [40, 43]. We
refer to Refs. [29, 31] for summaries of these results.

The DBW2 gauge action appears to lead to a bad scaling behaviour [61, 62, 63]
and a slow convergence of perturbation theory [64], whereas the tlSym gauge
action is expected to show – by construction – a good scaling behaviour and a
fast convergence of perturbation theory. Therefore, the tlSym gauge action looks
like a good compromise between the Wilson gauge action which is most strongly
affected by the first order phase transition and the DBW2 gauge action.

3 Numerical Results

3.1 Set-up

In this letter we will present results at a fixed value of the lattice spacing of
a . 0.1 fm only. In table 1 we provide the value of aµmin at which we imposed
the vanishing of mPCAC (Eq. (3)) and thus determined amcrit. In table 2 we list
the values of the quark mass amPCAC, the pseudo scalar mass amPS, the pseudo
scalar decay constant afPS, r0/a and the plaquette integrated autocorrelation
time at all values of the twisted mass parameter aµ. All other parameters were
kept fixed as specified in table 1.

The algorithm we used is a HMC algorithm with mass preconditioning [4, 65]
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aµ amPS afPS amPCAC r0/a τint(P )

0.0040 0.13587(68) 0.06531(40) −0.00001(27) 5.196(28) 55(17)
0.0064 0.16937(36) 0.07051(35) −0.00009(17) 5.216(27) 23(07)
0.0085 0.19403(50) 0.07420(24) −0.00052(17) 5.130(28) 13(03)
0.0100 0.21004(52) 0.07591(40) −0.00097(26) 5.143(25) 15(04)
0.0150 0.25864(70) 0.08307(34) −0.00145(42) 5.038(24) 06(02)

Table 2: Results from simulations at β = 3.9 using the simulation parameters listed in table 1.
The measurements were started after 1500 equilibration trajectories and are based on 5000
equilibrated trajectories.

and multiple time scale integration described in detail in Ref. [8]. The trajectory
length τ was set to τ = 1/2 in all our runs. Our estimates of the plaquette
integrated autocorrelation time τint(P ) quoted in table 2 are in units of τ = 1/2.
Note that our estimates of the autocorrelation times of quantities such as amPS

or afPS are found to be substantially smaller, typically by a factor of 5-10, than
those reported in the table for the plaquette.

As discussed above, maximal twist is realised in our simulations by tuning
m0 to obtain a vanishing PCAC quark mass amPCAC at the smallest value aµmin

of the twisted mass parameter aµ. From table 2 one can see that this condition
has been numerically realised with good accuracy, which in this context means
mPCAC(µmin)/µmin < aΛQCD within statistical errors (aΛQCD ∼ 0.1 in our case).
Once this is achieved, the (weak) µ-dependence of mPCAC, which is visible in fig.
1(a), is an O(a) cutoff effect that merely modifies the O(a2) artifacts in physical
observables, as already mentioned in section 2.1.

In order to make maximum use of the gauge configurations, we evaluate con-
nected meson correlators using a stochastic method to include all spatial sources.
The method involves a stochastic source (Z(2)-noise in both real and imaginary
part) for all colour and spatial indices at one Euclidean time slice. By solving
for the propagator from this source for each of the 4 spin components, we can
construct zero-momentum meson correlators from any bilinear at the source and
sink. Four inversions of the Dirac matrix per Euclidean time slice value are nec-
essary, since we chose to use only one stochastic sample per gauge configuration.
This “one-end” method is similar to that pioneered in Ref. [66] and implemented
in Ref. [67]. We also employ a fuzzed source [68] of the extent of 6 lattice spac-
ings to enable studying non-local meson creation and destruction operators. This
allowed us to obtain very stable effective masses and to confirm the extraction of
the pion ground state.

In general, we save a gauge configuration every second trajectory and analyse
meson correlators as described above from a selection of different Euclidean time
slice sources. To reduce autocorrelations, we only use the same time slice source
every 8-10 trajectories. Our primary statistical error was obtained with the so
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0.0150.010.0050

0.0008

0.0004

0.0000

-0.0004

-0.0008
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-0.0020

-0.0024
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Figure 1: (a) PCAC quark mass amPCAC as function of aµ and (b) Sommer parameter (r0/a)
as functions of (aµ)2. The solid line in subfigure (b) represents a linear fit in (aµ)2 to the data.

called Γ-method as described in Ref. [69] and cross-checked with a bootstrap
analysis and a jack-knife analysis of blocked data. For a detailed description of
our error analysis we refer to a forthcoming paper of our collaboration [34].

3.2 Force parameter r0

In simulations of the quenched approximation of lattice QCD, the Sommer pa-
rameter r0 [70] with a value of 0.5 fm, was widely used to set the lattice scale.
While (r0/a) is measurable to good accuracy in lattice QCD simulations it has
the drawback that its value in physical units is not known very well. Therefore,
it becomes necessary to determine the scale using other quantities which are ex-
perimentally accessible with high precision, such as mπ, fπ, mK, fK or mK∗ . In
fact, in this paper we attempt to determine the lattice scale by fitting χPT based
formulae to our precise data for fPS and mPS, using the physical values for mπ

and fπ as inputs. From this analysis, we obtain a value of the lattice spacing
which is 10% lower than the value obtained by setting r0 = 0.5 fm.

Our results for (r0/a) are reported in table 2 and plotted in figure 1(b). Within
the current errors the mass dependence of this quantity appears to be weak. Since
r0 is a pure gauge quantity, it should be a function of (aµ)2 and indeed, a linear
fit in (aµ)2 describes the data rather well as shown in figure 1(b). From the fit
we obtain a value for r0/a = 5.22(2) at the physical point, where aµ = aµπ (see
below), as also quoted in table 1.
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3.3 fPS and mPS as a function of the quark mass

The charged pseudo scalar meson mass amPS is as usual extracted from the time
exponential decay of appropriate correlation functions 2. In contrast to pure
Wilson fermions, for maximally twisted mass fermions an exact lattice Ward
identity allows to extract the (charged) pseudo scalar meson decay constant fPS

from the relation

fPS =
2µ

m2
PS

|〈0|P 1(0)|π〉| , (4)

with no need to compute any renormalisation constant since ZP = 1/Zµ [2]. We
give our results for mPS and fPS in table 2.

We now discuss whether the continuum χPT formulae can reproduce the data
in table 2 for amPS and afPS. In our χPT based analysis, we take into account
finite size corrections because on our lattices at the lowest and next-to-lowest
µ-values they turn out to affect amPS and, in particular, afPS in a significant
way. We have used continuum χPT to describe consistently the dependence of
the data both on the finite spatial size (L) and on µ.

We fit the appropriate (Nf = 2) χPT formulae [71, 72]

m2
PS(L) = 2B0µ

[

1 +
1

2
ξg̃1(λ)

]2
[

1 + ξ log(2B0µ/Λ
2
3)
]

, (5)

fPS(L) = F [1 − 2ξg̃1(λ)]
[

1 − 2ξ log(2B0µ/Λ
2
4)
]

, (6)

to our raw data for mPS and fPS simultaneously. Here

ξ = 2B0µ/(4πF )2 , λ =
√

2B0µL2 . (7)

The finite size correction function g̃1(λ) was first computed by Gasser and
Leutwyler in Ref. [71] and is also discussed in Ref. [72] from which we take our
notation (except that our normalisation of fπ is 130.7 MeV). In Eqs. (5) and (6)
NNLO χPT corrections are assumed to be negligible. The formulae above depend
on four unknown parameters, B0, F , Λ3 and Λ4, which will be determined by the
fit.

We determine aµπ, the value of aµ at which the pion assumes its phys-
ical mass, by requiring that the ratio [

√

[m2
PS(L = ∞)]/fPS(L = ∞)] takes

the value (139.6/130.7) = 1.068. From the knowledge of aµπ we can evaluate
l̄3,4 ≡ log(Λ2

3,4/m
2
π) and using fπ the value of the lattice spacing a in fm.

In order to estimate the statistical errors affecting our fit values we generate
at each of the µ-values 1000 bootstrap samples for mPS and fPS extracted from
the bare correlators, blocked with block-size of 32. For each sample (combining
all masses) we then fit m2

PS and fPS simultaneously as a function of µ. From
the 1000 fits we obtain 1000 bootstrap samples for 2aB0, aF , log(a2Λ2

3,4), aµπ, a

2Concerning results on the neutral pion mass, am0
PS, see section (3.4).
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and l̄3,4, respectively, from which we compute the corresponding error estimates,
taking in this way the statistical correlation between fPS and mPS into account.

For our lightest four µ-values, we find an excellent fit to our data on fPS and
mPS (see figures 2 and 3). The fitted values of the four parameters are

2aB0 = −4.99(6) ,

aF = −0.0534(6) ,

log(a2Λ2
3) = −1.93(10) ,

log(a2Λ2
4) = −1.06(4) .

(8)

Our data are clearly sensitive to Λ3 as visualised in figure 2(a). We obtain

aµπ = 0.00078(2), l̄3 = 3.65(12), l̄4 = 4.52(06) (9)

which compares nicely with other determinations (for a review see Ref. [73]).
Including also our results from aµ = 0.0150 in the fit gives an acceptable de-
scription of m2

PS but misses the data for fPS, as shown in figures 2(b) and 3.
Note, however, that in Eqs. (5, 6), and thus in the fit results (8, 9), a number of
systematic errors as discussed below are not included.

The values presented here should hence be taken as a first estimate, the valid-
ity of which will be checked in the future. Nevertheless, the statistical accuracy
we are able to achieve implies that there is a very good prospect of obtaining
accurate and reliable values for the low-energy constants from Wilson twisted
mass fermion simulations.

Since we have obtained an excellent description of our pseudo scalar mesons,
we can use our fit to extract the lattice spacing. Based on the physical value of
fπ, we get

a = 0.087(1) fm . (10)

Using the value of r0/a reported in table 1, this lattice calibration method yields
r0 = 0.454(7) fm.

We now discuss the possible sources of systematic error. Our analysis is based
on lattice determinations of properties of pseudo scalar mesons with masses in
the range 300 to 500 MeV on lattices with a spatial size slightly above 2 fm.
Systematic errors can arise from several sources:
(i) Finite lattice spacing effects. Preliminary results at a smaller value of the lat-
tice spacing that were presented in Refs. [32, 33] suggest that O(a) improvement
is nicely at work and that residual O(a2) effects are small.
(ii) Finite size effects. In order to check that next to leading order (continuum)
χPT adequately describes these, we are presently performing a run at β = 3.9
and aµ = 0.004 on a 323 · 64 lattice.
(iii) Mass difference of charged and neutral pseudo scalar meson. In the ap-
propriate lattice χPT power-counting for our values of the lattice spacing and
quark masses, i.e. a ∼ µ ∼ p2, one gets the order of magnitude relation

9



(am2
PS/µ)

(aµ)

0.0160.0120.0080.0040

5.0

4.8

4.6

4.4

(a)

fit to 4 points
fit to 5 points

(amPS)
2

(aµ)

0.0160.0120.0080.0040

0.08

0.06

0.04

0.02

0

(b)

Figure 2: In (a) we show (amPS)
2/(aµ) as a function of aµ. In addition we plot the χPT fit

with Eq. (5) to the data from the lowest four µ-values. In (b) we show (amPS)2 as a function
of aµ. Here we present two χPT fits with Eq. (5), one taking all data points and one leaving
out the point at the largest value aµ = 0.015. In both figures (a) and (b) we show finite size
corrected (L → ∞) data points.

(mPS)
2 − (m0

PS)
2 = O(a2Λ4

QCD) = O(p4), from which it follows that to the order
we have been working the effects of the pion mass splitting do not affect, in par-
ticular, the finite size correction factors for mPS and fPS. In spite of these formal
remarks, it is possible, however, that the fact that the neutral pion is lighter
than the charged one (by about 20% at aµ = 0.0040, see section (3.4)) makes
inadequate the continuum χPT description of finite size effects adopted in the
present analysis. This caveat represents a further motivation for simulations on
larger lattices, which will eventually resolve the issue.
(iv) Extrapolation to physical quark masses. We are assuming that χPT at next
to leading order for the Nf = 2 case is appropriate to describe the quark mass
dependence ofm2

PS and fPS up to ∼ 450–500 MeV. Our lattice data are consistent
with this, but it would be useful to include higher order terms in the χPT fits as
well as more values of aµ to check this assumption. The effect of strange quarks
in the sea should also be explored.

3.4 Effects of Isospin Breaking

In this section we report the results of some quantitative investigation of the
effects of isospin breaking in the twisted mass formulation of lattice QCD at
finite lattice spacing. This effect is expected to be largest in the mass splitting
between the lightest charged and uncharged pseudo scalar mesons. A first analysis
at aµ = 0.004, taking the disconnected contribution in the neutral channel fully
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fit to 4 points

fit to 5 points

(afPS)

(aµ)

0.0160.0120.0080.0040

0.09

0.08

0.07

0.06

0.05

Figure 3: We show afPS as a function of aµ together with fits to χPT formula Eq. (6).
We present two fits, one taking all data and one leaving out the point at the largest value
aµ = 0.015. We show finite size corrected (L → ∞) data points.

into account, shows that the uncharged pseudo scalar meson is about 20% lighter
than the charged one. We obtain

am±
PS = 0.1359(7) , am0

PS = 0.111(11) ,

or, expressed differently, r2
0((m

0
PS)

2 − (m±
PS)

2) = c(a/r0)
2 with c = −4.5(1.8).

This coefficient is a factor of 2 smaller than the value found in quenched investi-
gations [28]. Note that the uncharged pion being lighter than the charged one is
compatible with predictions from lattice χPT if the first order phase transition
scenario is realised [45, 47, 44]. For an investigation of isospin breaking effects in
χPT see also Ref. [74].

The disconnected correlations needed for the π0 meson are evaluated using a
stochastic (Gaussian) volume source with 4 levels of hopping-parameter variance
reduction [75]. We use 24 stochastic sources per gauge configuration and evaluate
the relevant propagators every 10-th trajectory.

4 Summary

In this letter we have presented results of simulations of lattice QCD with Nf = 2
maximally twisted Wilson quarks at a fixed value of the lattice spacing a . 0.1 fm.
We reached a pseudo scalar meson mass of about 300 MeV. The numerical
stability and smoothness of the simulations allowed us to obtain precise results
for the pseudo scalar mass and decay constant which in turn led to determine
the low energy constants of the effective chiral Lagrangian. In particular, we find
for the pseudo scalar decay constant in the chiral limit F = 121.3(7) MeV, and
l̄3 = 3.65(12) and l̄4 = 4.52(6) where only statistical errors are given.
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We do see effects of isospin breaking which are largest in the mass splitting of
the neutral and charged pions and turn out to be about 20%. This is significantly
smaller and opposite in sign than the corresponding splitting obtained in the
quenched approximation.

Tuning to maximal twist had to be performed on lattices of the same size as
those used for the calculation of physical quantities. The reason for this is that
we need to single out cleanly the one pion sector in order to impose the vanishing
of the PCAC quark mass (Eq. (3)) without being affected by finite size effects
or excited state contributions. Thus the tuning step itself is rather expensive.
But it has to be done only once, as is the case for the determination of action
improvement coefficients in other Wilson based approaches. Note, however, that
with twisted mass fermions we do not have to compute further operator-specific
improvement coefficients.

The encouraging results presented here will be extended and checked by future
simulations that will cover one coarser and one finer lattice spacing, double the
statistics at one of our present simulation points (β = 3.9, aµ = 0.004) and go
to a larger, 323 · 64, volume at the latter simulation point. In this way, we will
be able to obtain results in the continuum limit, cross-check our autocorrelation
times, improve our error estimates and control the finite size effects in order
to check χPT predictions. The preliminary results presented in Refs. [32, 33]
indicate a very good scaling behaviour already suggesting that automatic O(a)
improvement is indeed working well.
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