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- 1 Introduction

There is increasing evidence that quantum chromodynamies (QCD) describes the dynamics of
hadrons. Heavy quarks, i.e. quarks with masses much larger than the QCD seale (Agcp), play
an important role in studying its non-perturbative confinement dynamics. Systems involving two
heavy quarks (Q Q) a5 charmonium (¢ Z) and bottonium (b 5), has been described in an accurate way
by a nonrelativistic potential for distances under 1 Fermi and perturbative QCD at shorter distances
[1]. Lattice QCD has also been used to calculate succesfully the dynamics of those heavy systems [2].
However, heavy-light quark systems (Q 7), such as the B mesons ( (¥%), (bd), (b3) ) and, of course,
the T mesons when discovered, are not so well understood as heavy-heavy quark systems are.
The physical importance of the determination of the properties of heavy-light systems is twofold.
On the one hand, they will help to obtain, or at least to constrain, the values of the various free
parameters of QCD, as the poorly-known Kobayashi-Maskawa matrix element | Vi | and the
effects of CP violation. On the other hand, some interactions beyond the Standard Model could be
detected and, in some sense, understood from the theoretical interpretation of the large BS — 59
mixing measured by ARGUS (for an excelent review see [3]). The crucial difference between these
systems and the purely heavy quark systems is that the former cannot be treated by nonrelativistic
potencial methods owing to the relativistic light quark. Perturbative methods are unable to deal
with their long distance dynamics due to the fact that the light quark typical momentum 4 is of
order of Agep and so it is subject to QCD non-perturbative effects. While Presenting at present
some systematic errors that may obscure the results obtained by this method [4], Lattice QCD offers
among all other non-perturbative approaches, the unique possibility of computing with the same
method many different matrix elements which are of interest in the fenomenology of the Standard
Model and in the study of the strong interactions including heavy quark systems [5). However, one
is placed before a dilemmma: on the one hand, heavy quark systems should be studied on the lattice
but, on the other hand, to avoid lattice artifacts it must be satisfied mg a < 1 which is not true
for the B meson (typically a=! ~ 2+ 3 Gev). In other words, to propagate the b quark on a lattice
of spacing g, it is necessary that 4 be much smaller than the b quark Compton’s wave 1/m,, which
in practice is not available at the present status of computer resources. The basic idea to solve this
problem is to realize that we do not need to put a dynamical heavy quark on the lattice, as was
shown by Eichten (2, 6]. In fact, Eichten’s proposal was to consider the heavy quark Q in a meson
as a static color source which could be treated non-relativistically, Then, expanding its propagator
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in powers of Agcp/mg, any Green’s function and accordingly all relevant physical quantities, can
be calculated, to some order in 1/myq, only from the knowledge of the light—quark propagator and
the gluon fields, which can be estimated on a lattice [6]. The usual procedure is to consider only
the leading term 1/mg although some ca.lculafions, e.g. t’he determinstion of the leading spin
dependent potencials for (Q ¢) systems, have been made including the next-to~jeading term 1/ m'*é
[2]. Eichten's idea can be formulated as a low-energy effective field theory for heavy quarks which
should describe its long distance physics ( long distances compared to 1/mq ) [7, 8). The most
important difference between the effective and the complete QCD theory is that the heavy quark
propagates only in time so that both its propagator and its interaction with gluons involve just the
gero component of its field. This fact makes Feynman integrals to be more difficult to solve due to

the lost of manifestaly Lorentz invariance.

In this paper, we will present a method, indeed a mixture of well-known Feynman diagram
calculating techniques, to compute two loop integrals with static heavy quark lines which have not
been studied in a systematic way so far. As an application, we will discus the 23 continuum
renormalization of the axial current for heavy-light quarks at two loops and study how its value
influences the physical signification of the lattice measurement of the B~meson decay constant fg.
A paralle] study of the renormalization of the operator which determines the B-parameter of the

B meson is in process now and will be published elsewhere.

The plan of the paper is as follows. In the next section, we present briefly the effective field
theory for heavy quarks. Section 3 is devoted to state the strategy of the calculation of the
anomalous dimension of the axial current whose details will be discussed in the next section. Section
5 contains a summary of our final results. In Section 6, we analyse the importance of the axial
current renormalization in the determination of the B~meson properties. Finally, our conclusions
are present in Section 7. In addition, we have included three appendices where the techniques we
have used in the calculation are deeply disscused. Many new results for one loop integrals with a
heavy quark line are tabulated in Tables 1 to 3.

2 The effective field theory for heavy quarks

This section is devoted to present a résumé of the effective field theory for heavy quarks at low

energies [7], its motivation and its formalism.




Consider the physical effects on hadron systems associated with mass scales much larger than
the QCD scale Agcp. In studing the matrix elements of operators containing both heavy quark,
Q, and light quark, g, fields one encounters large logarithms of the type of In(mg/u), where 4 is
the typical three momentum of the light quark. It, u, must be of order of the QCD scale Agcp
because the reduced mass of heavy-light systems is, due to the heavy quark, close to the light quark
mass, that in turn is of order of the dynamical scale of QCD. These logarithms come from Feynman
diagrams with virtual loop moments p in the region Agcp < p < mq. In other words, mg plays
the role of an ultraviolet cut—off s0 that the Feynman integrals can depend logarithmically on it.
The objective is to extract the dependence of these operators on the heavy quark mass analytically,
i.e. to sum the logarithms In(mq/u), otherwise the estimates of their matrix elements using either
nonrelativistic quark model or lattice QCD with a static heavy quark [6], would have an obscure
physical significance. These logarithmic corrections has already been calculated in the complete
theory for fp and the B-parameter by Voloshin and Shifman [9] and also by Politzer and Wise
[10]. The latter used a somewhat complicated momentum space substraction involving examining
intermediate loop momentum ranges. Caswell, Lapage and Thacker [11] proposed & nonrelativistic
approach to this problem with a momentum cut-off well bellow the heavy quark mass mg. Following
Politzer and Wise [12], we think that these methods are inadequate to perform two loop and even
one loop calculations involving heavy quarks. The alternative method they suggested was to expand
the heavy propagator in powers of 1 /mgq doing calculations at zeroth order in this expansion. This
idea was first proposed by Eichten [6] in order to derive heavy quark potentials for (QQ) systems
on the lattice. Now, this technique will become a very useful tool to compute analitically the
dependence on a large mass scale of relevant matrix elements when other scales are much smaller
than it. The leading term of this expansion, corresponding to a heavy quark with mg — 00 so
that it only propagates in time, is (6]

S§(2:9) = —iP(e0,10) 8%F - 7) [6(a" - y7) eimaizomm) LETo
+ 0(y°-z°)¢--'m(w—-eo)_1“2‘70J (1)

where the path ordered exponential P(2¢,y0) is given by
z° a
P(zo,40) = Pexp [i'g -L“ dz° B(#, %) %J (2)

with B%z) being the time component of the external gauge field and A° are the generators of
the SU(N) group in its fundamental representation normaliged by t#(A%A%) = 2§,,. The full
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propagator Sg(2,y) can now be calculated perturbatively solving the Dirac equation

(043 () 42 - ma) Sate) = %= -w) ®
in powers of 1/mq making use of Eq.(1) as its basic solution [6]. Notice that the whole calculation
is done in position space. f ~

The idea of an effective field theory for heavy quarks that would allow us to perform perturbation
theory in momentum space, is due to Eichten and Hill [7] and generalizated by Georgi [8]. The goal
is to obtain a lagrangian density from which the hea.vyl quark propagator can be derived. Again,
the starting point is that a heavy quark in a QCD bound state carries most of the energy and
momentum of the system. As mg — o0, the heavy quark in the rest frame of the heavy-light

system is nearly at rest and nearly on shell. Then, its equation of motion (3) simplies to
(#1760 + 5 (32) 145 - mo ) Safe,y) = 4z - ) @

Equation (4) can be derived from the lagrangian density

L) = 30u(e)1°80Qu(e) - 5 [00Tu(2)] 1°Qu(2)
- mqQa(e) Qule) + 59Qa(e) 2s7° Qu(2) B(2) (5)

The now trivial dependence on the heavy quark mass, mg, can be eliminated redefining the heavy
quark field as follows

Qa(m) —_— et'fﬂqc"'rﬂ Qu(!!) (6)

Then the heavy quark lagragian £ becomes the Eichten-Hill-Georgi Lagrangian Lgrc

Lenole) = 5Tale)°8Qulz) - 5 [86Tule)] 1°Qule)
+ 390u(2) X297 Qu(2) B2(:) ™)

in the rest frame of the heavy-light quark system. The field § (1 + 9°) Q. annihilates heavy quarks
and 1 (1 — ¥°) Q. creates heavy anti-quarks. As can be seen, this lagrangian does not preserve
the Lorentz invariance but it can be generalizated to an arbitrary reference frame integrating in
velocity degrees of freedom (8]. The reader should not be misied by the Eq.(7) as it is just an
effective theory not g real one. Indeed, as a]l effective theory, we must match the static theory with

the complete theory at a scale of the order of the heavy quark mass, mg.

Let us now calculate the new Feynman rules. We will use them in the following sections to
evaluate the Feynman diagrams needed to obtain the anomalous dimension of the heavy-light
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quark axial current. From Eq.(7), the bare propagator for a heavy static quark in momentum
space is simply .

5ap(p) = bup g (8)
Also the vertex of an incoming and an outgoing quark with & gluon, the so-called fermionijc vertex,
must be modified in the limit of infinite quark mass. In fact, as the quark does not propagate
in space, only the time component of the gauge field can interact with it. The Feynman rule in

momentum space for the heavy quark vertex is

[ dadlye e <0 | T(Qp(e) Galy) BED)) | 05— 5900 (%),a ©)

where the Green's function must be considered with amputed legs. Other Feynman rules are

identical to those of the complete theory (see for example [13)). Notice that momentum must be

conserved in the effective theory even at vertices involving heavy quarks [6)].

The logarithms In(mg/u) can be displayed explicitly using this effective theory in momentum
space. The starting point is that as in the static field theory the heavy quark mass mgq is effectively
taken as infinite, the Green functions will contain divergences coming from mg —~ 0. Since mg
plays the role of a cut-off in systems with energy scale much lower than it, the effects of a very
large mass will appear as poles of the type of 1/¢ with ¢ = (D - 4)/2. Therefore, the anomalous
dimension of a heavy quark operator will be determined by the properties of Feynman diagrams
a3 the loop momenta go to infinity. In this framework, standard dimensional regularization can be
used to simplify as much as possible the evaluation of the double and simple poles of the diagrams
and a mass independent renormalization scheme as 35 can be used to renormalize them. Having

renormalized the corresponding operator, its logarithmic dependence on the heavy quark maas,
mg, can be summed and factorized.

3 The strategy of the calculation

In this section we describe the technique to compute the two loop contribution to the anomalous

dimension of the axial current with a heavy quark. The same result will also hold for the vector

current.

Consider the arial current operator

Afz) = 3(#)7»75 g(z) (10)
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and its two point bare Green’s function
GO(z,y,2) =< 0 | T{ Q) AW 75 (2) } 1 0> (1)

where Q(z) and g(z) are heavy and light quark fields. A (0) superscript denotes bare fields. If both
quarks were light, as the axial current is partially conserved so that it does not get renormalized,
the Green's function G(®) would be renormalized as

G(s) =< 0| T{Qale) A(y)Ts(2) } | 0> = (Zo Z,)7/* G (12)
with
Q) = /ZqQ(2) ((2) = /Z, g(2) (13)

and 4 the subtraction point.

The Green’s function in the effective theory, G(u), will be different from that of the complete
theory, G. In fact, in the former the scale u is much smaller than mq and so logarithmic terms
depending on u will arise. The axial current (10) in the effective theory, 4, (u), is thus s different
operator from that in the complete theory with different renormalization properties. We can write

mathematically this fact introducing the factor C(u) defined by [10]

A, = C(p}Au(p) (14)

Hence, C'(u) is the factor that we will have to take into account so that the physical consequences

of both theories agree each other. At u = mg, both theories must be equal, therefore
Clmq) = 1+ 0 (2472)) (15)

As we discussed in Section 2, the Green functions of the effective theory G(u) will contain
factors like 1/¢ which are not compensated by wave function renormalization factors. In order to

render G(u) finite, an additional axial current renormalization, denoted by Z 4, is needed
-1/2
G = (Zo 25,) 2.9 = 259 (16)

where Zg is the wave function renormalization constant for the heavy quark in the effective theory,
defined by

2
Salz) =< 01T (Qa(2)0(0)) [0>= (1/y/Ze) 5§ (17)
Notice that the wave function renormalization constant for the light quark in the effective theory

Z, is the same as that in the complete theory which is an old well-known result [14, 15]. In Eq.(16)
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we have used that 4, renormalizes multiplicatively because there is no other operator of dimension
three with the same quantum numbers.

Futhermore, differentiating Eq.(14) with respect to # and bearing in mind that A4, is inde-
pendent of the renormalization point 4, we find that C(p) must satisfy the renormalisation group

equation _
[#% -] e =0 (18)

where y4 = —p % In Z4 is the anomalous dimension of the axial current. If we write

2
= (2} . a @ L ...
T4 = (:) 74’ + (r) T4 + (19)

solving (18) up to order O(a?} we obtain

(&) 7
Clu) = C(#')up[— j':”)‘ dg%‘(‘a’;—’

L1

Sy(p)) A &) _ )] [ n‘””
(d.(u)) {1"'[ x " Tx ][E"?“ (20)

1

whereaf = u Hdﬁ a and the coefficients 3, and 8, are defined as

2
P (@)t () he o
sothat B; = ~11/2 + 1/3Ny, B3 = —b51/4 + 19/12 Ny [16]) and Ny is the number of unfrozen

quark flavours. Notice that the 2 function in the effective theory is the same as that in the coraplete

QCD theory [10]. This fact has been assumed explicitly in deriving Eq.(20) and will be treated

more deeply in Section 5.
The procedure to obtain Z 4 is now clear:
1. we will calculate the Green function G at two loop level in the effective field theory, that is
using the Feynman rules in Eq.(8) and Eq.(9). We are interested in its polynomial pole.

2. we will do the same with the heavy quark propagator g in the effective theory.

3. we will have to renormalize the results of points 1 and 2 substracting the corresponding

counterterms in the effective theory.

4. finally, we will use Eq.(17) and Eq.(16) to obtain Zg and Z 4.




4 The calculation

The diagrams that contribute to U(‘)(k) and :S'(Q‘)(k) are sketched in Fig. 1. In the first part of
this section, we present the method we have used to compute Feynman diagrams with static heavy
quark lines (hereafter heavy Feynman integrals). The calculation is performed in the Feynman
gauge using dimensional regularization to manipulate divergences. We want to draw the reader's
attention to two essential characteristics of the effective theory: the presence of heavy quark prop-
agators (see Eq.(8)) that makes heavy Feynman integrals non-invariant under Lorents rotations,
and the fact that gluon lines connecting two fermionic vertices being at least one of them a heavy
quark, carries only the zeroth component of the gauge field (see Eq.(9)). These properties will
generate some new problems which do not appear in standard Feynman integrals. In some cases,
however, they may simplify the calculation. For example, diagram number A.3 in Fig. 1 is exactly
zero owing to the three gluon vertex for zeroth component gluons vanishes.

The second part of this section is devoted to the renormalization of the two loop diagrams. It is
just conjectured, not demostrated, that the effective field theory is renormalizable [17]. As we will
demostrate, the diagrams in Fig. 1 can be renormalized in the T squeme, given rise to quatities

that do not depend on logarithms of neither &2 nor k%2, Furthermore, the result for each diagram

has the structure
a\? (-#\*14 B
I - Ic = (;) (4_-1#2) :2* + ? + ]

a\? (-8 \"[Ac B¢
- (3) (rr,p) [F+2 - (22)
where the second term represents the counter diagram and it turns out that diagram by diagram
the relation

Ao =24 (23)

is satisfied. Therefore, the pole part does not depend on 4 as it should be

a\? A B-B
I-Ic=(;) -5+ c"+...] (24)

4.1 A method to calculate heavy Feynman integrals

Self-energy diagrams A.1 to A.6 in Fig. 1 are much simpler to calculate that those for the
vertex Green's function. In fact, every two loop integral that appears in diagrams A.1 to A.6 can
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be performed applying one loop results repeatedly. For instance, diagram A.2 gives rise to the
integral

/ dPp dPq 1 (25)
(22)°2 22} PP (p+ g+ kP (p + B (g + k)
Using the identity '

= (p+8)° + (q+k)° - (p+g+k)° (26)

we get integrals which value can be obtained from the results for one loop integrals in Table 1.

As in every two loop calculation, we will need many different types of one loop heavy integrals
that it would be well to know in & very early stage of the work. Appendix C is devbted to this
crucial task. For the most part, one loop heavy integrals can be derived from a basic general one
involving & hypergeometric function with a complicated argument. However, we have also used the
Gegenbauer polynomial method (see Appendix A) as well as the integration by parts technique
(see Appendix B) to evaluate some specially intricate one loop heavy integrals. In Table 1, Table 2
and Table 3 we give the values of many one loop integrals up to order ¢®. Higher orders of ¢ can
also be calculated but they are not needed here. As an example of the use of these results, consider
the calculation of the anomalous dimension at one loop level. The heavy quark propagator with
amputed legs, i.e. the heavy quark self-energy, at one loop level is

Dy, [1-(1-a)8
S‘Q)(k) -9 C3(R) ba57° f (:1:)‘?5 [ P’((p :2):?]-

(‘3’) _‘C’gm (:::2) (B-a)Z[1+e(7- 4/3-a)]ik%° (1)

where Cr = N? — 1/2N, N being the number of colors. The values of the intermediate integrals
have been taken from Table 1 and ¢ is the gauge parameter. In turn, in Table 2, we can found

immediately the values of the one loop integrals that arise in the vertex Green’s function @(zl(k)
again with amputed legs

DE) = —go? dPp _ d%p (p~ k)°(#- F) #}
Tk = ~is C’(R”""{ @ 7o wr - [ o )P P - R
- (2) && (4;’::,) a-:-[1 + (v - (1+1/a))] (28)

Finally, the light quark self~energy is well-known. It can be found, for example, in ref. [13]

5§8Uk) = - (S) 9—’{& (ﬁ) a %[1 +e(r-1)]i§ (29)




From Eq.(27) tq Eq.(29) along with Eq.(16)

o= - (5) -
Zr = 1+ (2) Ha-a!
Za = 1+(§) w;(R)% (30)

which agree with the renormalization constants obtained in refs. (7,9, 10). Notice that 2, is gauge

invariant at one loop level, as it should be.

Consider now the vertex diagrams in Fig. 1. For instance, the two loop heavy integrals corre-

sponding to diagrams B.1 and B.5 are in the Feynman gauge
d°p dPq¢ 1° ¥1° o

5 @ PG Gy (31)
and
j‘ dPp dPg [- (2p -g° = k%9 + (2 ¥~ - ﬁ)] Il (82)
@2 2} -k (- kP (p-qfi PO g

respectively. Diagram B.2 leads to an integral whith the same numerator as B.1 but the heavy
propagator p° being replace by the three momentum one (g —p+ k)% There arises also integrals
with only one heavy propagator as in diagrams B.4 and B.6. Even a three heavy propagator
denominator appears in diagram B.3, although it can be easily reduced to a sum of integrals with
two heavy propagators. Diagrams B.7 to B.9 can be performed with no aditional difficulties making
use o one loop results in Tables 1 to 3. On the calculation we have used & mixture of well-known
Feynman diagram calculating technigues: integration by parts and Gegenbauer polynomial series.
The former has been used to reduce the power degree of the propagators in the denominator of
the integrals so that they could be written as a sum of, one hopes, much more simple integrals.
In turn, these derived integrals can be evaluate_cl using repeatedly the one loop results in Table 1
to Table 3, parametrizating & la Feynman some propagators or even applying again integration by
parts. Notice that we are just interested in the pole polynomials of the diagrams not in their finite
parts. On the other hand, the Lorentz structure of the vertex Green function Z?(k) allows many

forms factors
Gk A(k) + B(k Ck 33
(k) = ()+()f-,+()\/_7 (33)
among which we just have to calculate A(k) because the pole polinomial of the dimensionless Green

function G(k) cannot depend on & after renormalization. This fact enables us to discard integrals

which give rise to form factors different from A. However, often there arises integrals that cannot
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be completely reduced by integration by parts, for example (31). Then, we will evaluate them
expanding the propagators, including the heavy ones, as Gegenbauer polinomial series which allow
us to treate separately their radial and angular integrations. Using the ortogonality properties of
Gegenbauer polynomials, we usualy can obtain the 1 /e poles of the integrals. The details can be
found in Appendix A and Appendix B.

4.2 Renorﬁnlization

The contributions to the two loop anomalous dimension of the axial current are obtained eval-
uating the diagrams of Fig. 1 and subtracting the corresponding two loop counterterm diagrams.
In the minimal subtruction scheme the latter are obtained by retaining only the 1/¢ parts in the
subdiagrams. Therefore, we have to calculate some one loop superficially divergent diagrams in
the effective theory, namely quark self-energy, gluon self-energy, . . .etc, retaining only its 1/¢ part.
The pieces in the Lagrangian added to cancel these one loop divergences will give rise to diagrams
that subtructed to the two loop diagrams of Fig. 1 will eliminate their logarithmic momentum de-
pendence. In practice, these counterterm diagrams are obtained inserting the counterterm vertjces
in a.ll possible ways in the one loop diagrams for the corresponding Green's function. Now, a remark
should be made about the counterterms in the effective theory. As in it the quark propagator and
gluon—quark vextex are different from those in the complete theory, we will have to recalculate some
of them. In fact, we need to know the residue of the single pole of the heavy quark self-energy
(Zq), of the vertex of a heavy and a light quark with an axial current insertion (7 =) and of the
heavy quark gluon vertex (Zx). The first and the second ones have been already calculated in
Eq.(27) and Eq.(28), respectively. For Zr the Green’s function

K(z,y) =< 01 7{Qa(=) B3(0)Qul) } | 0> = ZF® (34)
with amputed legs must be calculated at one loop level. It is not difficult to get

2) A p02
Tk) i’ (2),,, {2Nf(2x75p T(p- k)”[ (1"’)_]

dPp pO[p°2 — p?]
* (l_a)N/(%)b P (p-k)° }

= 07 (%), {- (3) slo+arese) - s6-0amnt) )

where Cg(R) = N and again we have made use of Table 1. As we mentioned above, the proper
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heavy fermionic vertex at one loop level (35) is different from that for the light quark [13]

a
g = igr (3) {- () gle+acke) +weimiz} @)
Pa x/ 16 [
These are the one loop divergent diagrams we will need to renormalize the two loop diagrams in
Fig. 1 whose final contributions are tabulated in Table & and Table 6.

5 The results

In this section we present our final results in a unified way. From Table b and Table 6, it is simple
to derive the expresions for 3'(3 )(k) and d‘)(k). The corresponding renormalization constants in
the Feynman gauge are

Ty = 1+ (w) Cz(R): ‘ (*)z Ci(R) {[mcz(g) ~ 8C3(R) - 8T(R) Ny) ;;

+ [(Fener - axm - 2—T(R)Nf) + E2)(14C3(G) - 80x(R))] 3 } (37)
2

1 - (2‘.) QA;EQ% - (') C’;&RJ {[150,(6) - BCy(R) - 8T(R)N,e]

- [Fone - Zrmm] 1} (38)

Zo

where T'(R} = 1/2 for the SU{N) gauge group. These equations are the main results of this work.
As it is well-known, the residue of the double pole 1/¢* of a renormalization constant is completely
determinated by the residues of its single pole at one loop level. In fact, writting a renormalization

constant Z as

2=1+3 % (2)" & (39)
n=] m=]
the renormalization group allows us to write [13]
1 11 2
20 = -3 [ - o + Frw) N,
13 CaG) 2 ) il ] (1) |
+ ((—3-—0) L - 5T@ Ny ) o g | 2 (40)

where yz = —~u 3% In Z, is the anomalous dimension of 2. If

= @) 2
we have
79 = -220) 4P =420 (42)
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Using the renomalization constants at one loop level for an arbitrary gauge given in Eq.(30), it is
very easy to checked that both Zg and Zg pass the test of the double pole.
In order to obtain the renormalization constant for the axial current, Z 4, we need to know that

for the light quark self-energy at two loops. It has been cajculated by Egoryan and Tarasov [14]
and confirmed by Tarrach {15]

7, = 14 (2) GBI, (2) 2R {lucy) + 203(R)] %

¢

+ 1170:(6) - 36:(8) - 47(R)N)) 1} (43)

From Eq.(16), Eq.(37), Eq.(38) and Eq(43), we get the renormalization constant for the axial
current

Z, = 1+ ( ) SC;(R) 1 + (') C'z(R) {[llCz(G) + < Cz(R) 4T(R)N;] :2

€

+ [(Foxor - Foum - —T(R)N,) +€2) (140x0) - 8GR)] 11 g

and its anomalous dimension

@ = R, (85)
W= -G [(Foe - seum - Loy,
+ 862) (§0x0) - 26:(R))] = - 2 [ + sagia) - 58 )

where the values in the righthand side are for N = 3.

As we mentioned in Section 3, during our whole calculation we have assumed that the 4 function
for heavy quarks is the same up to two loops as that for light quarks, i.e. the strong coupling of
a gluon to the heavy quark runs the same way as the strong coupling for the light fields. This is
a consequence of gauge invariance. Politzer and Wise [10] have verified this explicitly at one loop
level using the method of the background gauge field. Now, we want to repeat the calculatlon but
in a much easier way. The coupling a of a heavy quark to a gluon renormalizes

@ = Zf 23ty Zo'a = Zaa (47)

where Z3y u is the renormalization constant for the gluon self-energy [14)
_ a C3(R) (13 ) T(R) } 1
Zayy =1 - (r) { i (3 -9) - 22w} (48)
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and Zy has been calculated explicitly at one loop level in Eq.(35). Hence

<14 (8) [Ronor - BBy, L
Z.=1+ (*) 5 i(@) - =2y S (49)
which generates the usual § function. Finally, for complete}len, Zy can be obtained at two loop

level using the Slavnov-Taylor identity .
Zr Iy
7E = = (50)
e &4

where Z, and Z; are the renormalization constants for the ghost self-energy and ghost-gluon vertex
respectively which can be found in [13, 14]. In the Feynman gauge we found

Zr = 1+ (2) (6+0)0x6) - 43-a)Ca(B)]}
+ (;)’ & { 2L CI(G) + 8CH(R) - 26Cx(R) Cx(G) + 8C(R) T(R) Ny
—  203(G)T(R)Ny] Gl, + % [%c;(a) — 76 C3(R) C3(G)
+ 82C3(R)T(R) Ny - 5C5(G)T(R)Ny] %} (61)

Notice that we have used the ghost renormalization constants derived in the complete theory. This
is correct because as the ghost only interacts with the gluon, the presence of a heavy quark is
irrelevant at two loop level. Notice also that the one loop term of Zf in Eq.(51) agrees with that
we have obtained directly in Eq.(35), as it should be.

6 The decay constant of the B meson

The decay constant of the B meson fp is one of the most important quantities in studing
heavy-light quark systems. There has been some attempts to measure fp on the lattice [18, 19]
although the values cbtained have rather big systematic errors. In order to get the physical value
of fg in the continuum, it is required to compute the radiative corrections for the axial current
(10), which is the interpolating operator for the B meson, on the lattice & la Eichten, i.e. in the
limit mg — oo, and in the M5 continuum renormalization scheme in the complete QCD theory,
i.e. for finite mg. Both problems have been studied in detail in refs. [7] and [20]. The basic point
is to realize that the use of the static quark propagator of Eq.(1) corresponds to take as the largest
mass-scale in the calculations not the ultraviolet cut-off a~!, but the heavy quark mass, mg. The

calculation involves two steps. In a first step the conection between the effective operator on the
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lattice and that in the continuum at the renormalisation point g = a~! is determined. Despite
some theoretical differences, the relationship is [20)

m(p. =a"!) = ( 1 - 8.76 9‘(+“1-)) ALATT (g7 (62)

In a second step, how to pass from the continuum operator in the effective theory to that in the
complete QCD is needed. As we have disscused in Section 2, this requires to sum the logarithms
In{mg/u), i.e. to know the factor C(u). This problem has been solved in refs. [9, 10] at one loop
level . Using Eq.(20) and our result for the two loop anomalous dimension of the axial current (45)

- {M}w' ( 1- &'(“-1) 249 _Jg, 76) C(ms, 9(ms))

d,(a")
O o)
x {1 + ela” 1)-. &, () ( p: _14_4921 )} (63)

where fEONT = 7, fLATT If a,(a™?) ~ a,(mq) is of order al(mgq), it will be sufficient to know
the anomalous dimension up to one loop level. This has been the assumption implicitly made in
every lattice calculation to date. It leads to Z s = 0.8. This supposition appears to be logical for
the values of the lattice spacing which are usually used, a~! ~ 2 - 3 GeV, but it has not been
established as a fact up to now. Therefore, in order to understand completely the results extracted
from the lattice and make larger extrapolations, the two loop anomalous dimension is needed [19].
In Table 6 we have tabulated the value of the two loop correction to Z;

= Bola7) - a(m) (10 g4
82 = x ('fa‘,' T TR

for some values of N #» number of unfrozen quark flavours, Agcp and for o~1 = 2,4 and 6 Gev. As

(54)

can be seen, in all cases it is small. For N 1 =4, AZ; is less than 2%. Therefore, the impact of 7&2’
in the constant Z; is weak, less than 1.5%, and in practice no renormalization group improvement

up to order O(a/x) is needed to relate the matrix elements of A, and 4,(a"1).

7 Conclusions

We have calculated at two loop level the renormalization constant for the axial current in the

effective field theory of Eichten. Its anomalous dimension turns out to be

m=-(2)-, % |5 + 460 - 2 (;)2 T (55)
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We also have determined the self-energy renormalisation constant for a heavy quark and for the
coupling of a heavy quark to a gluon in this theory. The two loop anomalous dimension of the axial
current turns out to be small so that the dependence on it of the value of fp in the continuum
obtained from measurement on the lattice, is in practice lirrelemt. We have developed a technique
to perform higher loop calculations in the effective theory f:ar heavy quarks evaluating many new
Feynman integrals involving one o more heavy quark proagators. Finally, we have demostrated
that, at two loop level, the effective theory can be renormalized with only a few modifications in
the countertermns involving heavy quarks. We hope that this calculation may help to understand

more deeply the theory of heavy quarks that can be a source of very interesting and important

results both in its continuum and discreted form.
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. A The Gegenbauer’s polynomial method

The Gegenbauer’s method is a generalization to D = 4 + 2¢ dimensions of the old Chebyshev
polynomial expansion of Feynman propagators [21]. The go?l is to avoid Feynman parametrization
that for loops with more than two lines leads to very difficult parametric integrals involving hyper-
geometric functions and polylogarithms. It prescribes to expand p-space euclidean propagators in
the denominator of massless two loop integrals in terms of the so—called Gegenbauer polinomials
(22, 28, 24]. Doing that, one splits the D-dimensional integration into an often trivial radial inte-
gration and an angular one that usualy can be performed using the ortogonality properties of these
polynomials. However, sometimes this method leads to so complicated angular integrals which
make this technique useless. Chetyrkin et al. have used a z~space version of the same method
to deal with non-planar diagrams, i.e. diagrams with at least a line carrying three momenta [25).
Unfortunately, this technique cannot be applied to integrals with heavy propagators because it is
necessary to turn to z-space using a Fourier transformation. As it is demostrated below, it is easier
to expand also the heavy quark propagator in p—space as a Gegenbauer’s serie. As far as we know,
this is the first work where this method is applied to non—covariant Feynman integrals. In the

remainder of this section, we always consider integrals defined over euclidean space.
A.l1 Summary of Gegenbauer polynomial mathematical properties
The Gegenbauer polynomials C)(z) have as generating function {26, 27]
-A o
(1-22t4+ )" =3 ) (56)

n=0

Their general expresion is

1= (et (=) EBATOL YD £ (e
and they satisfy the recurrence formula
2(n+2)2C(2) = (n+1)Ciu(=) + (n -1+ 23) Ca_y(z) - (88)
Their parity behaviour is done by
Cal-2) = (-)*Ca(=) (59)

Some special and very useful cases are
Ciz) = 1
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‘N CMz) = 2z
C}e) = ~A+2A(A+1)e?
I'(n + 21}
Catt) WIT(Z3)
MO = 0 n= 2m+1
w0) = (—)—rﬁrx)-—l_:‘?'\-l-m n=2m
The most important expansions we will use are [24, 27)
1 1 I(A) & I(k+a) ta
G- = Gor N & [y F@o)
X sRla-X at+k;A+k+1;T(p,07CNp- Q)
1 _ (= 3 (£ X)T(E+a) ()t
(-0 P T(@) 5 TA+E+ N (o) F
x oF |2EE ap kel i, 1 CNp - éo)
241 2 2 ' ' ( ( /p)z) R\P- €0
1 ()& )=4 (k + \)T(k + a) /7
[T = " Ke) Zr(l—'l'-gi—ﬂ)r(ulﬂ-,—ﬂ)z* G- %) (60

where 2 F) is the confluent hypergeometric function, p =| § |= (p’)*, P = P/p, &, is an unitary
vector on the direction g and A = D/2 -1,
The ortogonality relation that they satiefy is

2xl+r )

b ST T%) 3 OnE 9 (61)

f 40, CXa-B)CA(b- &) =
Very often one has to perform angular integrals involving three Gegenbauer polinomials
Winmi) = 5= [ d0,C2(-4) CA (¢ &) OF (e - #) (62)
Unfortunately, W is only known for ! = 1 [25]
W(nm1) = Y A{n=1-20+))

L A ma

X CP#1-23) C)yiisp(Z1-%2) + (M= n, 2y <= 23) (63)

(5m.n-1 - 6m.n+1 )

A.2 Calculating two loop heavy integrals using the Gegenbauer method

A very important example of the use of the Gegenbauer polynomials is the two loop integral

_ [ 4% P 1
A= | @P P e e (64)
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A appears in three irreducible diagrams for the heavy-light quark vertex, namely B.1, B.2 and B.5.
If we try to evaluate A integrating first over ¢ using the formulae in Appendix C, we will have to
face with a second integral now over p which involves a hypergeometric function with a complicated
momentum dependent argument. However, making the expansion of the propagators in terms of
Gegenbauer polinomials we render A almost trivial to be 'calculated. In fact, using the series in

Eq.(60), we get
*x = = . ; 1
= T4\ —Yy-hiEg_y-is/2
A ¥ (2n) ( )“’%_o M%:M( )72 (=) YT
(L + AT +1) (Gs + M T(ds +1)
T(1471/2)T(1/2+ j1/2 + A) T(1 + 33/2)T(1/2 + §s/2 + A)
T(1+4 §a)T(1+jz + A)T(1+ ky = A)P(1 + ky + j2)
P(iz + A)T(L = A)T(1 + 2} B! T(1 + by + Ja + A)
P(145)T(1+ e+ A)T(2 + k3 = M) T{1 + ks + j4)
T+ A)T(1 = A)T(1 4 54) ksl T(1 + kg + J4 + A)

X /“ dpp'p-" [T(p, k)]“""'"‘" jw dg qD-3 [T(q’p)]1+.f=+3hl
0 (]

x [ d0,05-@0) € (p-¥) [ dny (- é0) CL (4-5) (65)

where we have made used of the definition of the hypergeometric function as a power serie. Equation
(64) locks formidable but soon it will undergo a great simplification. Firstly, the radial integration
can be easily performed

fao deDq [T(p,k)]1+j|+2h j"’ dqqp-s [T(q,P)]1+j’+="' =
0 [

piD-8 (~2) {2k + 72 + 1] (—=2)[2ks + j4 + 1)
(D= 3842k +j2) (D~ 6— 2k; — ja) (2D — 6 + ja + 2k3) (2D ~ 8 — ja = 2k7)

(66)

After doing that, we can analyse the e~pole structure of 4. The radial integral generates a 1/¢
term for j4 = k3 = 0, otherwise it is of order of €. On the other hand, in the denominator of
Eq.(64) there are two I' functions which argument is 1 —~ A = —e. However, if k; = ks = 0 these
singular Gamma functions will be canceled by the same functions in the numerator. Therefore, the

e-structure of A is
Ozder k1=0 k1=0 k;;éo k;#o

of A kz=0 kg#ﬂ k2=0 kz#O
Ja=0)0(1/e) | O(e) | O(°) | O(€)
Js#£0] O(€) | O() | O(e) | O(e)

As we are interested only in the e-pole polynomial of A, the case we must to studyis j, =0, %, =0

and k; = 0. Secondly, the angular integration over § is immediate using Eq.(60). The next angular
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integration, new over p, is trivial becanse of in the case we are dealing with the Gegenbauer’s
polynomial with index jq desappears (see Eq.(60)) snd we can use again Eq.(60). The result of
these manipulations is

LY m §2D-8

Al/a (2!)3 I‘(2A) ‘
x 3 o I*(2j, 4 2) T(2j; +2X + 1)
S0 #AH TIG/24 )T+ 5+ )T (23 + A+ HT()
x (=2)*2(j +1) -

(D-2+25)(D-6-25)(2D-6)(2D -8)
where 2p is the volume of an unit sphere in D-dimensions. Taking only its 1/¢ residue, we obtain

A=-ﬁ-§2 1 =_u—i)7%g(2) (68)

m=l ml
which is the pole-polynomial of A.

Two loop integrals with tensor structure of momenta can, sometimes, be calculated with this

method. Consider the Minkowskian integral which arises from diagram B.1 in Fig. 1

B = /‘ dPp dPg ’e
@) ()P PP p-kP(p-g) P

Notice that in the product g ¢ only p° ¢° and p' ¢’ 4; ¥;, with ¢, j runing from 1 to D — 1, contribute
iR E

(69)

to the vertex form factor we are interested in. In fact, it is easy to check that the crossing terms
p'q® and pO¢’ give rise to form factors like & O(1/VkE,1/k%). Therefore, using that the integral
of the term p’ ¢’ must be symmetric under the exchange of the indices i and j, we can make the
sustitution

il-—'(P-q)=::;[p’+q’-(p-q)’] (70)
in the numerator of B, reducing its calculation to evaluate already known integrals, including A.
The diagram B.2 can be computed the same way. Now, however, as a proof of the consistence of
our two loop calculation, we would like to evaluate B using the Gegenbauer series given in Eq.(60).
The p°¢° piece gives rise to an usual Feynman integral easily doable

2\ % :
Bpg = oyt (;f,;) o5 114 2e(y - 5/2)] ()

The non-trivial calculation is, of course, that generated by p'g?. Going to Euclidean space and

expanding first only the propagators involving the loop momentum g, we get

o i TN & LapavE {1+ M I +1)
Byigr = (2x)?P "2 M’%ﬂ( ) 22:'1 T(1+41/2)T(1/24 51/2+ A)
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T(1+73)T(1+ i3+ A T(1+ k1 = A)T(L + k; + J2)
T(js + A)D(1 = A)T(1 + 73) ;! T(1 4+ ks + 53 + A)

(=2)[2k1 + 43 +1] - LuFY =
X BoTThE DTy P "By W) (72

al

with .
Wiorio) = gy [ 1- 204 Nl - Bs2)Oosens 60

+ (ja-1-20+ a\)(Jj,.,',-l ~ 85y 34+1)C o120 (B e‘o)] . (73)

where we have expressed ¢* as a Gegenbauer polynomial of index 1 and then we have perfomed the

resulting angular integration using Eq.(62). The numerator of the remainder integral over p is
FH vy = -1+ (74)

Hence, By can be descomposed into two pieces, The first one gives rise to the integral

2D -8 1 7T
j dpdflys"0~ s W5 0) (5)
and the second one to
-o —
[ 080, B Wi o) (76)

In order to avoid having to evaluate difficult angular integrals involving three Gegenbauer polyno-
mials, we compute before the radial integrals because then we could discard terms which do not
contribute to the pole-polynomial of B [23]. This often implies to set at least one of the indices I
J2, k1 equal to sero, which simplies strongly the angular integration which now can be done using
the ortogonality relation (60). Sometimes, however, this is imposible and integrals such as (61)
must be evaluated making the method useless. Fortunately, it is not our case. In fact, expanding
the remainder propagators and performing only radial integrals we find

T(ky +1— APk, +1-2) k2D-8
B, i .
e .u.::z.k::—o ,,.,.z::.,_o T*(1-2) (D~ 4= ja— 2k1)(2D — 8 — j4 — 2k3)
fdﬂ (5- k W(P éo) {AC,,(p €)+ BCp- eo)} (17)

where we have write only the terms that are important to analyse the pole structure of B i All
other contributions are in constants A and B. From Eq.(76) we find that B, s can contain a pole
1/€ only for ky = ky =0 '
Bpgi | 72=0 | j2a#0
Ja=0 0(1/€%) | O(1/¢)
Ja#0} O(l/e) | O()
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otherwise it is prder O(¢?) at least. It is easy to check that W vanishes if j; = O as it is the scalar
product of two ortogonal Gegenbauer polinomials. Therefore, we just have to calculate the case

Jja = 0 and jz # 0 where angular integrations are trivial. After some elemental algebra, we get

Bow = i ¢ {360 + 50— (r8)

where we have displayed explicitly the contributions coming from the two pieces of B igi- With
Eq.(70) and Eq.(77) we can obtain the final result which is exactly the same as that found using
the sustitution (69).

A.3 Calculating one loop heavy integrals using the Gegenbauer method

Not only two loop integrals can be performed with this method but also important one loop ones

do. For example, consider

c= [.22 ! (79)
P g o -k @)
Expanding the propagators and performing the trivial radial and angular integrals, we get
_ 9 AT%(}) ¢ 1 D-4+4¢ ~h2 YE
¢ = (2%)P T(1 - A)T(-2¢) (=)% J;§=o( ) o5
PA+5s+DT(1 -2+ k)1 + 1 + k) T{j; - 2¢)
Tl+h+k + A RIT(G + A D(1/24+ 51/2-€)T(1+71/2+ A+ ¢)
(—=2) (2ky + jy +1) 2 (i
X DaT et toh) (Dod—5ak Or (%) (80)

Its pole structure is very simple: only for j; = k; = 0, C has a 1/¢ pole, otherwise it is order ¢ at
least. As we are insterested in the value of C up to order €°, we will take j; = k; = 0. In this case,

C simplies to

C = - ___1____ k« (_)¢ \/; i
T (4m)ie T(3 ~ ¢)T{2 + 2¢) (1 + 2¢) 2¢
which leads to the same result as that calculated directly from the basic one loop formula (113} in

Appendix C, as it should be. The value of C is quoted in Eq.(126).

(81)

To finish this section we will present briefly an interesting and powerful way to evaluate integrals
with propagators powered to indices depend.ing on €. For instance, consider

1
f (2%} ()7 (p - k)*5°

The basic point is to realize that from Eq.(113) in Appendix C we can know to all orders in ¢ the

(82)

integral
dPp 1

(2n)° (p- k)*5°

22

D= - (83)




Expanding the (p — k)? propagator in 7/, it is a simple exercise to found

D = _(4_:___ 214 (7 - 32 - mar + (YY)
¥ (4 () FS )J:(:+2) Claaslh &) (&

i=1

Comparing Eq.(83) with the value of D' up to order ¢ (see Table 1), we can sum the Gegenbauer

seTie

iml
Equation (84) can be explicitly checked in the case z = 1, Now, notice that D and ' differ just
from their corresponding radials integrations. In fact, the value of the radial integral for D’ can be
obtained from that of D just making the sustitution D — D + 2¢. This does not modify its pole
structure and only the residue of 1/¢, easily computable, changes. Therefore, the € part of D is
the same as that for D’ which we already know and the value of D up to order of ¢® can be found.
It is tabulated in Table 2. The same method can be used when some index is n — ¢. In this case,

the unknown integral can be obtained from that with index n following the same steps as above.
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. B Integrﬁtion by parts Method

This method was introduced first by Chetyrkin and Tkachov (28] (see also {29]) in order to
calculate S-functions in 4 loops. However, as we will demestrate, its basic ides is 30 simple and
powerful that it can be applied to many different types of integrals including those with heavy
propagators. The starting identity of this technique is

0= [ b s b (56)
where f(p, k) is whatever function of the loop momentum p and of the external momentum k.
Equation (85) holds in dimensional regularization [80]. In fact, it can be considered as a conse-
quence of translational invariance of dimensionally regularized integrals in p-space [28). Choosing
appropiate functions f, Eq.(85) can generate many very important algebraic identities th'at would
enable us to express a non-trivial n-loop integral through diagrams of much simpler structure, usu-
ally known to all orders in ¢. The basic trick is to manage to get in the numerator of the identity
(86) combinations of momenta that also appear in the denominator so that they can cancel each
other. Furthermore, through this procedure, a set of recursive relations can be constructed which
will make possible to evaluate diagrams with propagators powered to high indices from a few basic

integrals with propagators powered to low indices. For instance, consider the integral

dP )
1,p*] [aBy] = f (2”)195 P’“(p[l—i;]zﬁpo" (87)

where here "a™ stands here by the factor 2% in the denomiinator, "8” by (p - k) and so on. This

is & very convenjent notation when using integration by parts. It is easy to check that
d
g P (aB7]} = (D-2a-f-v)[aBr] - Bla~18+11]+ Fk [aB+14] (88)

where here the notation of square brackets refers to the integrant rather than to the integral and

repeated index p are understood to be summed. Using Eq.(85), we find an algebraic relation among
integrals .

(D-2a-~f-9)[afr]=fla-16+17] - K8 [af +17] (89)
where we have used that 2(a-b) = a? + b2 — (a — B)%. Other useful relations ean be generated
using (p ~ k)%, p* p, p* (p - k)?, g, g°, p* g% and P° 9% instead of p° as functions f in Eq.(85)

(D-a-2-v)[afrl=ala+18-17] - v&° [aBr+1] -k ala+187] (90)
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(D-Za~p-7+1)p' [afy] = Bp* [a=18+17] - B Bp* [af+17] (91)
(D-a=26-7+1)p"[aBv] = ap [a+18-19] - y40p* [aBy+1]
-kap’ [a+187] + ¥ [afy] (92)

2api[at167] + 289" [aB+17] = 288 (6B +17] - 79® (@B +1] (93)
2ala+1B7-1] + 28[af+17-1] = 284 [af +14] -7(aBy+1} (94)
Zapflat+1fy-1] + 209" [aB+17-1) = 28%°p* [af +14]

—1P* [aBr+1] + g*° [aBy] (95)
2¢{a+1B7-2] + 28 [af+19-2] = 284° [aB+1y-1]
-7 [aBy] + [aBy] (96)

Notice that the formal manipulations of the divergent expressions we are dealing with are correct
within dimensional regularization [28).

In performing some [a 5 7] integrals, & second type of independent relations aze needed because
integration-by-parts equations (88) to (95) are not sufficient to reduce them to a sum of already
known integrals. We can add to Eq.(88) to Eq.(95) other algebraic relations obtained by parametric

differentiation with respect to the external momentum k. By parametric derivation we mean

8 dPp _ [ d°p &
ﬁ;f(-ér—)yﬂp.k) = f(z_ﬂﬁm'f(hk) (97)
which again is correct within dimensional regularization (30]. For [@B7] we can get the additional
relations
5 [967] = 269" [af+11] - 268 [af419) (98)
fﬂaﬁvl = —2ap’[a+189) - 299" [aBy +1] (99)
2 laBr] = 26(aBt1y-1] - 2640 [ap 415] (100)
25 (@8] = -2alat1py-1] - 27 (afys1] (101)

In Appendix C we make use of these relations among integrals [a 8] to obtain their expression

for various values of the indices o, B and 4 up to order of °,
Consider now the Feynman’s integral corresponding to diagram B.5 in Fig, 1
[2p° - ¢' - ¥y ¢[123456] =

dp  dPg [-(20°—® -~ k%)1° + (2 p- ¢- E)l o
@2 2P P (g kP (- kP (p- )5

(102)
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where "1” stands by ¢%, "2" by (g ~ k)?, and 50 on. It is worth descomposing the factor 4 in the
numerator into its zeroth and non-geroth vector components: ¢°v° 4 ¢/ v;. In fact, it is easy to
check that the piece of the numerator coming from ¢° will give rise to a contribution proportional to
k' v; x O(1/vk,1/k°). Obviously, these form factors do not contribute to the anomalous dimension
and can be negleted. Therefore, the three pieces to be r:alcu.luted are p' ¢’ 3 75 ¢ ¢ 7i7; and
k¢’ 4; 7;. Regarding the first one, integration by parts with p* ¢# (p — )° as function f in Eq.(85),

enables us to write

(D-38)p"¢"[123486] = ¢“¢*[123456] + p*¢*[123°4°66)]
- p¢*[12°3%456] - p¢“[12345%6°] (103)

where integrals in the righthand side of (102) are either already known, as the third, or much
simpler than that in the lefthand side. The more difficult integral to calculate is the first one, that

is the same as the second piece in the numerator of [123456]. We can write it as

¢er=¢ - (104)
On one hand, the term ¢°% generates an integral involving a heavy propagator in the denominator
whose pole part can be extracted using a Feynman's parametrization. On the other hand, the
g* piece gives rise to an integral that looks very difficult owing to the presence of two heavy

propagators, p° and ¢°. In order to evaluate it, we can use again integration by parts that allows

us to write
(D -4)[1°23456] = [1°2374%56] - [1°2°3%456) — [1°2345%6°] (105)

where we have choosed in this case (p— ¢)* as function f in Eq.(85). Each integral in the righthand
side of Eq.(104) can be solved using repeatedly the results for one loop integrals in Table 1. Notice
that we have to expand the Gamma functions up to order O(e?) due to the factor 2¢ in the lefthand
side of Eq.(104). After some algebra, the final result is

[1°23456) = -(4—:_)-‘-§e(2) - (108)

The Gegenbauer method could also have been used to evaluate this integral. The final results are
exactly the same as they should be. Finally, the third piece in Eq.(101) does not contribute to the
pole polynomial of diagram B. 5 which turns out to be

[2p' = ¢ — ¥]7 ¢[123456] = (-4#2%(1—4&(2)) (107)
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C  One loop integrals with heavy propagators

To perform the two loop integrals needed to obtain the anomalous dimension of the axial current,
it is necessary first to evaluate many one loop integrals involving one or more static heavy quark

propagators. In this Appendix, we present briefly how to calculate the most important ones.
C.1 Basic one loop heavy integrals

Consider

dPp 1

20 (5 - 8 + 4P [(p - o + iel]"
with D = 4 -+ 2¢ the space-time dimension and a and J arbitrary real numbers. As it will be seen
below, many useful one loop heavy integrals in dimensional regularization can be obtained from
IG5 as particular cases.

1Gs(a, B; % a) = f ( (108)

In order to evaluate IG3 we first perform a Wick rotation going into a D-dimensional Euclidean
space. The integrant of G, is invariant under rotations in the D — 1~dimensional subspace p; with

i=1...D ~1. Hence, we can integrate trivialy over the direction of the (D - 1)-dimensional
momentum p

IG!(Q,ﬂ;bz;u) = ¢o-1 (_)_ﬂ 21(9—1)/2 f+“ D )

NG- /2@ J-e @ [T

® 15| 1BIP
X dlF| (109)

where ip? = p® and ia® = @°. The radial integral can be performed by means of the well-known
formula

- P! I(n/2)T(m - n/2) ( \n/z-m
b e = e () (10

+ 0" 2 T(m)
which is valid for m — /2 > 0. Note that for values of m and n where the integral is ill-defined.
its divergences will occur as poles of the Gamma functions. As I'(m) has an unique analitic
continuation, the result of the integral in the left side of Eq.(109} can be defined to be, for all n
and m, the right side of Eq.(109). Then, we get -

8 .—ar1 T(B - (D ~1)/2
1Gy(a,B;4%a) = (=)Pi—e+ r((mz%,(mlfn)
[

x

o 1
¥ [#? - a?]" [(pl?)2 + 52]"(9'”" ()
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The integral over pP can be performed using the residue theorem with some remarks. In fact, choos-
ing as contour the upper semicircle, we find that the integral in Eq.(110) is equal to 2xi Res(pP =
i1d), where Res is the residue of the integrant at the singularity p? = ib. This residue is easy to
calculate for positive integer powered factors in the denomh'.mtor of the integrant. In fact, then its
singularities are just poles whose contribution can be obtained as it is well-known, differentiating
the non-singular integrant with respect to p? at the pole. Doing that, it turns out that the residue

can be written as a hypergeometric confiuent function

Res(p® = ib;1/(p°? + 8*)" (9P + ia®)™) =
e I(20 + m ~ 1) 1
) e Tm ) fa 7 pJFnem-1 3

0 _
FA(2n+m-1,n;n+m; %é—_l_-g) (112)

where we have made use of the integral representation of the hypergeometric function which is valid
for n 4+ m > n > 0. In the case when the integral (110) is divergent, we can use Eq.(111) to define
its value for all @ and 3. As above, divergences will show up as poles in the Gamma functions. The
final expresion for IG, is

i(=)F-e I{a + 25 - D) (25
219002 T(A)T(a + B - (D - 1)/2)

X 1F [a+2b—D,a;a+ﬁ—(D-1)/2;% (1 - %o)] (113)

IGy(a, B;b%0) = |P-a-25

where we have made a transformation of the argument of the hypergeometric function. Notice
that Eq.(112) has the correct limit as o — 0, namely the usual basic formula of dimensional
regularizatior [13].

A specially useful case of Eq.(112) arises taken b = 0. Then, the hypergeometric function
disappears and Eq.(112) simplifies to
dPp i 1
@P (5 + i (p-a+t i€)°]®

Ia,B;a) =

- _H=)*" T(a+26-D)I(D-28) [a0]77 (114)
© 201200 T(o) I (B T(D + 1)/Z = 6)
where we have used that
2Fifo, b ;1) = DO T(c—a-)) (115)

F(c-a)T(c-b)
In Table 1 we have listed the results for the integral I; for some values of o and £ up to order ¢°.
Note that their logarithmic dependence is on 4%°2 /u® instead of the usual k?/u? factor. This is

due to the non-rotacional invariance of the I, integrals.
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Sometimes, we need to know also the value of

dPp 1

2,.)1) pzc (g - k)Oﬂpo'r
Using a Feynman's parametrization for the heavy propagators in Eq.(115), 723 becomes an I,
integral which can be evaluated by means of Eq.(113)

I25(a, B, 7; %) = j ( (116)

y _ $(=)77*= T2a + 8 +7- D)T(D - 2a - 7) D-3a~-pry
Pslaf1ik) = b~ @) TE) (D +1)/2 = a) []

(117)

Finally, we look at integrals of the type of J; but with tensor structures of p in their numerators.
They are rather straightforward. For instance, consider the integral J; with a factor p* in its
numerator, i.e. I{. It is obvious that only for 4 = 0 it is not sero. But we can rewrite p° as
(P° — a®) + a®. The first piece gives rise to an integral I; with the index o decreased by one. The

second piece, however, is trivialy a® times the integral I itself. Therefore
I(a,8;0) = ¢ {I{a ~1,8;0) + o° Iy(a,B;a) } (118)

This method can be aplied in a judicious way to more complicated tensor structure in the numerator

and, of course, to G,

C.2 General one loop integral with a heavy propagator

The results of the previous part will allow us to obtain the value of the most important one loop

integral that we often meet in both one and two loop calculations with static heavy quarks.

Consider

D
B Elepmib = [ o o LB (116)

More complicated tensor structures in the numerator could also been treated. However, we do
not consider them here so as not to go into somewhat tedious details that do not give us further
information about the method of calculating integrals like (118). Notice that for 4 = 0, I reduces
to a standard one loop integral without heavy propagators which expresion is well-known, (for a
complete list, see [13]).

At first glance, the way to perform I; and I8 is clear: a Feynman's parametrization of the
two non-heavy propagators transforms (118) into IG5 integrals, which can be done using Eq.(112).
However, a technical problem arises: an usually very difficult parametric integral involving & hy-
pergeometric function must be evaluated up to the order of ¢ desired (see Eq.(112) ). In order to
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evaluate Iy and I}’ for different values of the indices a, B and v we will use both expansion of their
Propagators in terms of Gegenbauer polinomials and integration by parts. The idea is to use the
algebraic relations, valid to all orders in ¢, (88) to (95) of Appendix B which will allow us to get

many different integrals from a few basic ones.

To begin with, consider the integral I3(1,1,1). The method of Gegenbauer polynomials, de-
scribed in detail in Appendix A, is specially easy to apply in this case. In fact, it allows us to
WrTite

| ap e - @k &Y g Chalb/h) + 060

(T;‘)f % $(K°/k) (120)
Note that as I3(1,1,1) ie finite, the results for a = 1 - & 8=1-¢andy =1-¢must be equal to
the righthand side of Eq.(119) up to order ¢°. Now, we would like to sum the Gegenbauer’s serie & .
Integration by parts gives us the solution in a very elega.nt way. On the one hand, differentiating

I3(1,1,1) with respect to k° we get
-;—%1’;(1,1,1) = Is(1,2,0) - E°Iy(1,2,1) (121)
On the other hand, Eq.(88) in Appendix B allows us to write
2 03(1,1,1) = Iy(0,2,1) ~ ¥ Iy(1,2,1) (122)
Elimipating J3(1,2,1) between Eq.(120) and Eq.(121), we get up to order ¢°
[(1- z’)i— - z] #(z) = - In(-42?) (123)
where 2 = k- ¢, = k°/k. The solution of this differential equation is

&(z) = 7% {2 fo’ dt-’i'l;-z ~ sin~}(z) In(-4 z’)} (124)

Integrals of the type of I3 with some of their indices greater than 1 can be obtained ejther
differentiating Iy(1,1,1) with respect to k° or using the relations derived by integration by parts
(see Appendix B). The same method is valid for I, For example,

I(1,2,1) = 2;0 {21,(1 2,0) - 1,(1 1, 1)}

F {5(0,2,1) - (D—4)Ia(1 L,1)}

h(l-61,2) = —{2(1-5)13(2—6,1,0)+dkofg(l e,l,l)}
211 = (??_-3—)[1;‘(0.2,1)-5-’1;(1,2,1)]
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These integrals in turn can be used to generate other with greater exponents. When evaluating I,
we need the function A(z) defined by

’[zi-r%f‘io][%*(i—")]s worl{a()-o(f)) e

therefore
A(z) = [q»(z) - = In(—42?)] (126)

Another class of useful integrals are those with y = —2¢. Its basic integral is I3(1,1, ~2¢), which
can be calculated up to order ¢ using Eq.(112). In fact, in this case the hypergeometric function is
14 O(e?) so that we have only to consider the factor 1 which gives rise to a very simple parametric
integral. The result is

Il,1,~2¢) = — E‘;—);(-k’)‘ (%’-) %[l + e(y-4)]4 + O(e) (127)

It can also be computed expanding the propagators in Gegenbauer series (see Eq.(79) in Appendix
A for details). Again, integration by parts allows us to obtain many other integrals with y = —2¢.
For example,

15(2,1,~2¢) = ;1,- {(D-9#°1(1,1,1-2¢) - (D=3 421,011, -29}  (128)

Finally, consider integrals with a = —¢ or B = —e. Starting from I3(-¢,1, 1), whatever integral
of this type can be obtained. This integral has been calculated in Appendix A and some derived

results are

Iy(~¢,1,2) = 5’1;-6{(0—4)k213(1—e,1,1)—2(D-3+e)Is(-e,1,1)}

(D -4)

Ia(l, —€, 1) m

1

{F¥150,1-¢1) - (0,1~ ¢,1) } (129)

In Tables 2 and 3 we give the values up to order ¢® of many integrals of the type of I3 and I}
which we have to know to evaluate two loop integrals.
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Figure captions

Figure 1: Diagrams which contribute (A) to the seli-energy of a heavy quark and (B) to the
heavy-light quark vertx with an insertion of the axial current.
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Table caﬁt ions

Table 1: Sﬁecial values of the integral J(a, 5; k) in terms of

k02
lsl—h4w+1+h(fT)
€ € fii

Table 2: Special values of the integral Iy(a, 8, 7; k) in terms of 1/es, defined in Table 1, and
11 —k
7::—11141'4")""111(7“2—)

Table 3: Special values of the integral
(47

)? kH
I(a,8,v;k) = g 4 + [F - 9“"] B

Table 4: Renormalized values of the diagrams for the heavy quark self-energy.
Table 5: Renormalired values of the diagrams for the axial current vertex.

Table 6: AZ; for different values of N¢, Agep and a™?.
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8 ()+22~¢ [y(a, B; k)

1 1 £ -4

2 1 2

3 1 2

1 2 |- &

2 2 & - 2 I
3 2 - & +

1 [1-¢ & - 4 +In :1;1;1’_’
2 1-¢ ‘e% +In ﬂﬁﬂ
1 2-ef - zi—o - % -l 24‘;’;2
2 |2-e¢ e - 3 +hm (=44
1-2| 1 & - 4 +hn -’:—f,’-
1-2) 2 |- & ~In :’
2- 2| 1 2 + 2 +In EE;
2- 2| 2 2 - 2 +h %’,3

- 2¢ 1 - 1

~2¢ | 2 = +im(E]

Table 1: Integral I; up to order ¢°
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al| B 9 || k-Factor Hf X k- Factor x Is(a,8,7; k; 0)
0
1 % )
1 1 Viz $ ((%ﬁ
12| 1 kO k2 -}3
ktl _ 02
2 1] 1 5 %. 21n€5;%,-
2 _ 2 k%2

11| 2 k 4 +21n i_—k,-

- - _ -k’)
1|1 (<26 1 217 + iln(-é;;‘-,-
1] 2 |~2¢ k2 : +ln(4- )

- 2 = ’)
211 |-2¢| & T, +4ln (;,*;
-l 1] 1 ;15 - & 4 - -‘i;’“,—
-] 2| 1 k° } +1n %‘:—2
-] 1] 2 1 i +In 4;";-2
l | -¢ 1 ;15
2 | -¢ 1 %; -
1 -e| 2 1 |-} ~In (%5

Table 2: Integral I3 up to order ¢°
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Table 4: Integral I} up to order ¢
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SELF-ENERGY VALUE®

DIAGRAM COLOR 1/e | 1/e
Al 922552 ¥l o1
2
A3 Ca(R) Cy(G 0 0
A4 SRTE N, | o1 -4 5
A5 Ca(R) Co(G 0| 1 ‘
A6 C2(R) Co{G 5 263

*(It must be multiplied by i(a/m)? bap k%0

Table 5: Renormalized two loop diagrams for the heavy quark self~energy




v

VERTEX VALUE®

DIAGRAM COLOR /¢ 1/e
R

&

B1 —%‘,‘31 -} £(2)
B2 9%(,—1 -1 —2

B3 922(,}—31 i 0
B4 Cur) -1 -2
BS Ca(R l 0
B.6 Ck) 0] -¢(2)-1
B | 3GBIGE) I o] ;_ 42
B8 30,;3;0,((;; -1 _:1;
By || 3GlRIC(G)| 0
J

*(It must be multiplied by (a/7)?é,3)

Table 6: Renormalized two loop diagrams for the heavy-light quark vertex




ﬂ—AZf Agep = 100 Gev m Agep = 200 Gev {
a"!=2Gev |a"1 =4 Gev | a~! = § Gev a~l =4 Gev | a~! = 6 Gev

2 0.012 0.002 ~0.003 0.019 0.026 =0.004 q
3 0.014 0.002 -3.003 0.022 0.003 ~0.005
4 0.017 0.002 -0.004 0.027 0.004 -0.005
5 0.020 0.003 -0.005 0.032 0.004 -0.007
J_G 0.026 0.004 -0.006 0.041 0.006 —0.008

Table 7: AZj for various values of N s and Agep
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