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Abstract

We compute on the lattice the “bag” parameters of the five ∆B = 2 operators of
the supersymmetric basis, by combining their values determined in full QCD and in
the static limit of HQET. The extrapolation of the QCD results from the accessible
heavy-light meson masses to the B-meson mass is constrained by the static result. The
matching of the corresponding results in HQET and in QCD is for the first time made
at NLO accuracy in the MS(NDR) renormalization scheme. All results are obtained
in the quenched approximation.
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1 Introduction

This paper is devoted to a combined analysis of the matrix elements of the complete set of
∆B = 2 operators, which we computed on the lattice in both the static limit of the heavy
quark effective theory (HQET) and in standard lattice QCD (with Wilson fermions). All
five operators enter the phenomenological analyses of supersymmetric (SUSY) effects that
might affect the Standard Model (SM) expectations for ∆mBd

and/or ∆mBs . It is therefore
convenient to work in the so-called SUSY basis of operators:

O1 = b̄iγµ(1 − γ5)q
i b̄jγµ(1 − γ5)q

j ,

O2 = b̄i(1 − γ5)q
i b̄j(1 − γ5)q

j ,

O3 = b̄i(1 − γ5)q
j b̄j(1 − γ5)q

i , (1)

O4 = b̄i(1 − γ5)q
i b̄j(1 + γ5)q

j ,

O5 = b̄i(1 − γ5)q
j b̄j(1 + γ5)q

i ,

where the superscripts denote colour indices, and q stands for either d- or s- light quark
flavour. The first of the above operators has been widely studied over the last decade, since
it is crucial for the SM description of the B0 − B0 mixing amplitude, whereas O2 and O3

were also recently studied because they are relevant for the SM estimates of the relative
width difference in the neutral B-meson system, (∆Γ/Γ)Bs

[1].
It is customary to parameterize the matrix elements of the operators (1) in terms of the

so-called “bag”-parameters, which are introduced as a measure of the mismatch between
the vacuum saturation approximation (VSA) and the actual value for each of the matrix
elements, namely [2, 3]

〈B̄0
q |Ô1(µ)|B0

q 〉 =
8

3
m2

Bq
f 2

Bq
B1(µ) ,

〈B̄0
q |Ô2(µ)|B0

q 〉 = −5

3

(
mBq

mb(µ) + mq(µ)

)2

m2
Bq

f 2
Bq

B2(µ) ,

〈B̄0
q |Ô3(µ)|B0

q 〉 =
1

3

(
mBq

mb(µ) + mq(µ)

)2

m2
Bq

f 2
Bq

B3(µ) , (2)

〈B̄0
q |Ô4(µ)|B0

q 〉 = 2

(
mBq

mb(µ) + mq(µ)

)2

m2
Bq

f 2
Bq

B4(µ) ,

〈B̄0
q |Ô5(µ)|B0

q 〉 =
2

3

(
mBq

mb(µ) + mq(µ)

)2

m2
Bq

f 2
Bq

B5(µ) .

The hat symbol denotes operators renormalized in some renormalization scheme at the
renormalization scale µ. To determine the values of the “bag” parameters B1−5(µ), we have
performed a numerical simulation of (quenched) QCD on the lattice. While such a simulation
can be made directly for the c-quark mass or somewhat heavier, present limitations of
computational resources do not allow for a direct study of the b-quark. For this reason
we work in the range of heavy-light pseudoscalar masses mP ∈ (1.7, 2.4) GeV, from which
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we have to extrapolate to the physical point, mBd
= 5.28 GeV and/or mBs = 5.37 GeV.

Although guided by the HQET scaling laws, this extrapolation is the dominant source of
the systematic uncertainty in final results. To get around this problem we also computed
the same matrix elements in the static limit of HQET on the lattice, and used them to
constrain the extrapolations towards the physical point, mBs/d

. It is technically challenging
to combine results from two different theories, namely one should match the B-parameters
obtained in QCD onto the HQET ones so that the heavy quark scaling laws can be safely
used. A special care to this issue will be given in the body of this paper.

The main features of this work are:

– The B-parameters which appear in eq. (2) are computed using lattice QCD with
Wilson fermions and are renormalized non-perturbatively in the (Landau) RI/MOM
scheme. It is important to stress that we incorporated the recent proposal to remove
the effects of the Goldstone boson contamination [4, 5];

– The B-parameters computed in the static limit of HQET on the lattice are matched
onto the continuum MS(NDR) renormalization scheme. This matching has been made
by using the one-loop (boosted) perturbative expressions [6, 7];

– The conversion of the operators computed in lattice QCD from RI/MOM to MS(NDR)
scheme is made at NLO accuracy [8, 9]. Matching of the QCD operators onto the
HQET ones has also been performed at NLO accuracy in a specified MS(NDR) scheme.
In that procedure we use the recently computed 2-loop anomalous dimension matrices
in HQET [10]. With this matching at hand, we were able to constrain the extrapola-
tion, i.e. to interpolate to the physical b-quark mass;

– Final results are presented in the RI/MOM scheme and in the MS(NDR) scheme of
ref. [9]. In addition, the parameters B1,2,3 are also given in the MS(NDR) renormal-
ization scheme of ref. [11]. 1

The complete list of results can be found in table 1. Notice that we do not observe any
SU(3) breaking effect in the B-parameters, i.e.:

B
(s)
i

B
(d)
i

∣∣∣∣∣
i=1,...,5

=
{

0.99(2), 1.01(2), 1.01(3), 1.01(2), 1.01(3)
}

. (3)

This paper is organized as follows: In sec. 2 we give the essential details of our lattice
calculations and present the results as obtained for each heavy quark that we were able to
access from our lattice and also in the static limit of the HQET. In sec. 3 we outline the
general strategy to combine the results of the two theories. We then explicitly give all the
necessary anomalous dimension matrices and present the results of the combined analysis
for all the five B-parameters. In sec. 4 we discuss the systematic uncertainties which are
included in the results given in table 1. We briefly conclude in sec. 5.

1Preliminary results were presented in ref. [12].
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Scheme RI/MOM MS(NDR) [9] MS(NDR) [11]

B
(d)
1 (mb) 0.87(4)

(
+5
−4

)
0.87(4)

(
+5
−4

)
0.87(4)

(
+5
−4

)

B
(d)
2 (mb) 0.82(3)(4) 0.79(2)(4) 0.83(3)(4)

B
(d)
3 (mb) 1.02(6)(9) 0.92(6)(8) 0.90(6)(8)

B
(d)
4 (mb) 1.16(3)

(
+5
−7

)
1.15(3)

(
+5
−7

)
–

B
(d)
5 (mb) 1.91(4)

(
+22
−7

)
1.72(4)

(
+20
−6

)
–

B
(s)
1 (mb) 0.86(2)

(
+5
−4

)
0.87(2)

(
+5
−4

)
0.87(2)

(
+5
−4

)

B
(s)
2 (mb) 0.83(2)(4) 0.80(1)(4) 0.84(2)(4)

B
(s)
3 (mb) 1.03(4)(9) 0.93(3)(8) 0.91(3)(8)

B
(s)
4 (mb) 1.17(2)

(
+5
−7

)
1.16(2)

(
+5
−7

)
–

B
(s)
5 (mb) 1.94(3)

(
+23
−7

)
1.75(3)

(
+21
−6

)
–

Table 1: The main results of this paper: B-parameters defined in eq. (2), renormalized at
µ = mb = 4.6 GeV and in three renormalization schemes: RI/MOM, MS of ref. [9] and the MS of
ref. [11]. The results are obtained in the quenched approximation.

2 Direct Lattice results

2.1 Computation in lattice QCD

In this subsection we recall the main elements of our lattice simulation, the details of which
can be found in refs. [13, 14]. We work with a lattice of the size 243 × 48, at β = 6.2, and
use the non-perturbatively improved Wilson action [15]. Note however that the 4-fermion
operators, which are the main target of the present work, are not improved. Our data-set
consists of 200 independent gauge field configurations. We work with 3 values of the heavy
and 3 values of the light quark masses, corresponding to the Wilson hopping parameters:
κq ∈ {0.1344, 0, 1349, 0.1352}, and κQ ∈ {0.125, 0, 122, 0.119}. The mass spectrum and the
decay constants have already been discussed in our previous publications [13, 14, 16] and
we immediately turn to the computation of the B-parameters.

The starting point is to compute the 2- and 3-point correlation functions

C(2)
JJ (t) = 〈

∑

~x

J(~x, t)J†(0)〉 t≫0−→ ZJ

2 sinh MJ
e−MJ t ,

3



C(3)
i (t1, t2) = 〈

∑

~x,~y

P5(~x, t2)Ôi(~0, 0; µ)P †
5 (~y, t1)〉

T−t2≫0−→
√
ZP

2 sinh MP
e−MP t1 · 〈Pq|Ôi(µ)|Pq〉 ·

√
ZP

2 sinh MP
e−MP t2 , (4)

where the operator Ôi is placed at time equal to zero, the source of the pseudoscalar mesons
(P5 = Q̄γ5q) is fixed at t1 = 16, while the other source operator moves around the periodic
lattice (of the size T = 48). At some t2 ≡ t, which is sufficiently far from the first source
and from the operator Ôi, the lowest lying heavy-light pseudoscalar meson, Pq, is isolated.
J in the above equations stands for either P5 or A0 = Q̄γ0γ5q.

To extract the parameter B1(µ), one computes

RB1
(t) =

C(3)
1 (t1, t; µ)

8

3
Z2

A C(2)
AP (t) C(2)

AP (t1)

T−t≫0−→ 〈Pq|Ô1(µ)|Pq〉
8

3
|〈0|Â0|Pq〉|2

≡ B1(µ) , (5)

where the 2-points functions are used to eliminate the exponential terms from the 3-point
functions (4) and also to divide out the (8/3)f 2

Pm2
P from eq. (2), thus accessing directly the

wanted B-parameter. Similarly, to reach other four B-parameters we form the ratios

RBi
(t) =

C(3)
i (t1, t; µ)

bi Z2
P (µ) C(2)

PP (t) C(2)
PP (t1)

T−t≫0−→ 〈Pq|Ôi(µ)|Pq〉
bi |〈0|P̂5(µ)|Pq〉|2

≡ Bi(µ) , (6)

where bi ∈ {−5/3, 1/3, 2, 2/3} for i ∈ {2, 3, 4, 5}, respectively.
As already discussed in our previous works [13, 14], the operators Ôi(µ) are renormalized

non-perturbatively in the (Landau)RI/MOM scheme by using the method explained in
detail in ref. [17] (see also references therein). The method is based on the possibility
of computing amputated 4-quark vertices at sufficiently large quark virtualities with the
operators inserted at zero momentum. The RI/MOM renormalization condition is merely
imposed on various projections of the amputated Green functions, which then lead to a full
set of 9 renormalization (Z(µ, g2

0)) and 16 subtraction (∆(g2
0)) constants, where g2

0 = 6/β is
the bare lattice coupling. The renormalized operators are given by

Ôi(µ) = Zij(µ, g2
0)
[
Oj(g

2
0) + ∆jk(g

2
0)Ok(g

2
0)
]
k 6=j

. (7)

Since the computation of the off-shell quantities (4-quark vertices) is performed in the
Landau gauge, the scheme is often referred to as the Landau RI/MOM scheme.

In practice, one computes all the renormalization and subtraction constants with specific
(nonzero) values of the light quark masses and then extrapolates all Z’s and ∆’s to the chiral
limit. It has been pointed out in refs. [4, 5] that such an extrapolation can be contaminated
by the Goldstone boson (GB) contributions. The recipe to subtract these contributions
away has been proposed and implemented in ref. [18] (see also appendix of this paper). We
employed that prescription and recomputed the renormalization and subtraction constants.
Their values, together with ZP (µ) and ZA which are needed in eqs. (5,6), are listed in
appendix. This is a new feature of our computation which improves (corrects) our previous
results, presented in refs. [13, 14].
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30 35 40 45
 t (Time of the moving source)

1.0

1.2

0.8

1.0

1.2

30 35 40 45
 t

1.2

1.4

1.6

1.8

1.0

1.2

0.8

1.0B1

B3

B5

B2

B4

κQ = 0.122; κq = 0.1349

NPR (in RI/MOM) at 2.8(1) GeV

Figure 1: Signals for the ratios RBi(t), defined in eqs. (5) and (6), are shown for the combination:

κq = 0.1349, κQ = 0.122. The operators are non-perturbatively renormalized (NPR) in the

(Landau)RI/MOM scheme at µ ≃ 1/a = 2.8(1) GeV.

In fig. 1, we illustrate the quality of the signals for the ratios RB1−5
(t) for a specific

combination of heavy and light quarks. After inspecting the ratios for all 9 pairs of κQ–κq,
we find that common stability plateaus are reached for

RB1
: t ∈ [28, 35] ;

RB2,3 : t ∈ [30, 35] ;

RB4,5 : t ∈ [29, 35] . (8)

On each of these plateaus we fit the ratios to a constant and hence extract the parameters
B1−5(µ) for each combination of the heavy and the light quark masses. Every parameter
is then linearly interpolated in the light quark mass to the strange and extrapolated to the
up/down light quark mass, by using the (standard) lattice-plane method (see refs. [19] for
details). The extrapolations are very smooth as it can be seen from fig. 2. In table 2, we
present a detailed list of the results for all five B-parameters renormalized non-perturbatively
at three different values of the renormalization scale µ in the (Landau)RI/MOM scheme.
The results are given for the values of the heavy quark masses, which are in the region of
the charm quark and slightly higher, and for the light quark interpolated to the strange and
to the averaged up/down mass.
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0.00 0.05 0.10
 Mqq

2

0.85

0.90
B1(µ)

0.00 0.05 0.10
 Mqq

2

1.1

1.2 B4(µ)

0.00 0.05 0.10
 � Mqq

2

0.8

0.9

B2(µ)

0.00 0.05 0.10
 Mqq

2

1.4

1.5

1.6 B5(µ)

0.00 0.05 0.10
 Mqq

2

1.0

1.1

1.2
B3(µ)

Figure 2: Extrapolations to the light up/down and interpolations to the strange light quark

mass are shown for all five B-parameters in the case of fixed heavy quark mass corresponding to

κQ = 0.122. Empty symbols denote the B-parameters directly accessed in our simulation. Filled

symbols correspond to the B parameters extrapolated to the physical u/d and s quark respectively.

In the figure µa = 1.03.

2.2 Computation in the static limit of HQET

To avoid a confusion in notations, we consistently use “tilde” symbols over the operators
and the B-parameters computed in HQET. Instead of the five operators that we listed in
eq. (1), in HQET one deals with only four of them, namely

Õ1 = h̄iγµ(1 − γ5)q
i h̄jγµ(1 − γ5)q

j ,

Õ2 = h̄i(1 − γ5)q
i h̄j(1 − γ5)q

j ,

Õ4 = h̄i(1 − γ5)q
i h̄j(1 + γ5)q

j ,

Õ5 = h̄i(1 − γ5)q
j h̄j(1 + γ5)q

i , (9)
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q=up/down q=strange

Scale (µ) 1.9(1) GeV 2.8(1) GeV 3.9(2) GeV 1.9(1) GeV 2.8(1) GeV 3.9(2) GeV

B
(Q1)
1 (µ) 0.856(20) 0.841(20) 0.825(20) 0.866(15) 0.850(15) 0.835(15)

B
(Q1)
2 (µ) 0.875(38) 0.817(31) 0.797(31) 0.904(27) 0.843(22) 0.822(22)

B
(Q1)
3 (µ) 1.295(73) 1.072(51) 0.941(42) 1.284(48) 1.074(34) 0.947(28)

B
(Q1)
4 (µ) 1.092(23) 1.107(22) 1.035(20) 1.112(16) 1.129(16) 1.056(15)

B
(Q1)
5 (µ) 1.523(37) 1.322(29) 1.332(27) 1.606(30) 1.386(24) 1.392(22)

B
(Q2)
1 (µ) 0.880(25) 0.862(24) 0.849(24) 0.883(17) 0.866(17) 0.852(17)

B
(Q2)
2 (µ) 0.886(37) 0.824(31) 0.803(30) 0.940(26) 0.874(22) 0.851(22)

B
(Q2)
3 (µ) 1.275(81) 1.060(55) 0.932(45) 1.294(48) 1.089(33) 0.963(28)

B
(Q2)
4 (µ) 1.066(26) 1.083(25) 1.013(24) 1.124(17) 1.144(17) 1.070(16)

B
(Q2)
5 (µ) 1.673(45) 1.427(36) 1.421(34) 1.784(35) 1.520(28) 1.511(26)

B
(Q3)
1 (µ) 0.887(26) 0.869(25) 0.856(25) 0.886(16) 0.867(15) 0.855(15)

B
(Q3)
2 (µ) 0.950(33) 0.881(27) 0.857(26) 0.962(23) 0.890(19) 0.869(19)

B
(Q3)
3 (µ) 1.349(84) 1.123(54) 0.989(43) 1.288(51) 1.090(34) 0.966(27)

B
(Q3)
4 (µ) 1.114(23) 1.136(21) 1.062(20) 1.119(14) 1.141(13) 1.068(12)

B
(Q3)
5 (µ) 1.885(47) 1.592(35) 1.573(33) 1.925(32) 1.622(25) 1.601(23)

Table 2: B-parameters, as defined in eq. (2), extracted from our non-perturbatively renormalized
data at three values of the renormalization scale µ in the RI/MOM renormalization scheme. From
top to bottom of the table, the bag parameters correspond to the heavy quark with κQ1

= 0.125,
κQ2

= 0.122 and κQ3
= 0.119, respectively (they are separated by the horizontal lines).

where h stands for the infinitely heavy (static) quark. In the HQET, the operator Õ3 is

related to Õ1 and Õ2 by the equations of motion as

Õ3 = −Õ2 −
1

2
Õ1 . (10)

The computation of the first two operators has been explained in detail in refs. [6, 20]. The
data-set consists of 600 configurations gathered on the 243×40 lattice at β = 6.0. The light
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quarks were simulated by using the tree-level improved Wilson action and three values of
κq ∈ {0.1425, 1432, 1440}.

To reach the HQET parameters equivalent to the ones appearing in eq. (2), which we

will call B̃i, one computes the following 2- and 3-point correlation functions:

C̃(2)
AA(t) = 〈

∑

~x

Ã0(~x, t)Ã†
0(0)〉 t≫0−→ Z̃Ae−∆Et ,

C̃(3)
i (t1, t2) = 〈

∑

~x,~y

Ã0(~x, t2)Õi(~0, 0; µ)Ã†
0(~y, t1)〉

t≫0−→ Z̃A · 〈Pq|Õi(µ)|Pq〉
2MP

· e−∆E(t1−t2) , (11)

where the source operators are the axial currents 2 which are extended by using the so-called
cubic smearing procedure [21]. ∆E in eq. (11), is the binding energy of the heavy meson Pq.

Note also that in this case,

√
Z̃A = 〈0|Ã0|Pq〉/

√
2MP . To get the desired B-parameters, we

form the following ratios:

R̃Bi
(t1) =

C̃(3)
i (t1, t2; µ)

bi Z2
A C̃(2)

AA(t2) C̃(2)
AA(t1)

t1≫0−→ 〈Pq|Õi(µ)|Pq〉
bi |〈0|Ã0|Pq〉|2

≡ B̃i(µ) , (12)

where bi ∈ {8/3,−5/3, 2, 2/3} for i ∈ {1, 2, 4, 5}. In this case, the fixed time has been chosen

to be t2 = 35. In fig. 3, we show the quality of the signals for all four R̃i(t1). On the plateaus

we fit to a constant and thus obtain the values of the corresponding parameters B̃i(µ). Our
data is renormalized in the MS(NDR) scheme, after matching the lattice regularization
scheme onto the MS(NDR) by using one-loop boosted perturbation theory, as explained
in great detail in ref. [6]. The matching scale µ = q∗ is varied between 2/a ≤ q∗ ≤
π/a, and the results are run to µ = mb = 4.6 GeV. The spread of values is assigned
to the systematic uncertainty. As in the previous subsection, all 4 operators are linearly
extrapolated (interpolated) in the the light quark mass to up/down (strange). The resulting
values are listed in table 3. In that table errors are statistical only, obtained by using the
standard jackknife procedure.

3 Extrapolation to the B-mesons

Armed with “raw” results obtained in full QCD (table 2) and in HQET (table 3), we now
discuss the extrapolation of the QCD results to the physical B-meson mass. The aim of this
section is to provide a consistent way to constrain that extrapolation by the static HQET
results in order to reduce the systematic uncertainties.

A common wisdom is to follow the HQET scaling laws, according to which every B-
parameter scales with the inverse heavy quark (meson) mass as a constant, and to ex-
trapolate to the desired heavy meson mass. The (unknown) 1/mP corrections are to be
determined from the fit with our data. To use these scaling laws, however, one first need to

2 In the static limit the axial current is identical to the pseudoscalar density.
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Figure 3: Signals for the ratios R̃Bi(t) defined in eqs. (12) from which the B̃i parameters are

extracted. The common plateaus are chosen for t1 ≡ t ∈ [32, 36]. The plotted ratios correspond to

κq = 0.1432. The operators are renormalized perturbatively and evolved to µ = mb.

Light quark q=up/down q=strange

B̃1(mb) 0.89(4) 0.89(4)

B̃2(mb) 0.82(4) 0.83(3)

B̃4(mb) 1.07(4) 1.07(4)

B̃5(mb) 2.37(10) 2.40(10)

Table 3: B̃-parameters, extracted from our HQET data by using the boosted perturbative 1-loop
matching onto the continuum MS(NDR) renormalization scheme.

relate the matrix elements of the QCD operators, 〈Oi(µ)〉 from eq. (1), to the HQET ones,

〈Õi(µ)〉 of eq. (9) [24]. This matching is made in perturbation theory at some suitably cho-
sen renormalization scale, for example µ = mb. The matching is crucial since the anomalous
dimensions for these operators in the two theories (QCD and HQET) differ. Moreover, when
dealing with the 4-fermion operators, it is important that the matching between the two
theories is made at NLO accuracy because it is at this order that the scheme can be fully
specified (leading order anomalous dimensions are universal). Before entering the details of
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that matching, we now outline the basic strategy that must be followed.
Matching of the QCD operators, renormalized at some high scale µ ≫ mP , and the

HQET ones, renormalized at some low scale µ′ ≪ mP , is made at µ = mP by using the
following expression 3

WT
QCD[mP , µ]−1 〈 ~O(µ)〉mP

= C(mP ) WT
HQET [mP , µ′]−1 〈~̃O(µ′)〉 + O

(
1

mP

)
+ . . . (13)

where WT
QCD[µ2, µ1]

−1 is the matrix encoding the full QCD evolution from a scale µ1 to
µ2 of all five ∆B = 2 operators which are, for convenience, collected in a five-component
vector 〈 ~O(µ)〉mP

. Likewise for WT
HQET [µ2, µ1]

−1 in HQET. These matrices will be speci-

fied later on. We will be working in the MS(NDR) scheme in which the matrices of the
anomalous dimension coefficients are known at NLO in both theories. Hence, the matching
matrix, C(mP ) = 1 +

∑
n c(n)[αs(mP )/4π]n, is also known at NLO, i.e. c(1) is completely

determined [10].

On the HQET side, we also consider five operators, 〈~̃O(µ)〉, where we add the operator

Õ3 by means of eq. (10). In this way the matching matrix c(1) is squared (5 × 5). We now
put all the evolution expressions appearing in eq. (13) on its l.h.s.

WT
HQET [µ′, mP ]−1C−1(mP )WT

QCD[mP , µ]−1〈 ~O(µ)〉mP
=

(
WT

QCD[mP , µ]C(mP )WT
HQET [mP , µ′]−1

︸ ︷︷ ︸
M4[mP , µ, µ′]

)−1

〈 ~O(µ)〉mP
= 〈~̃O(µ′)〉 + O

(
1

mP

)
+ . . . (14)

so that the l.h.s. manifestly satisfies the HQET scaling laws which are the intrinsic prop-
erty of the r.h.s. One proceeds similarly for the bilinear operators to define the matching
constants M2[mP , µ, µ′]. In terms of B-parameters, eq. (14) then reads

M2
2[mP , µ, µ′]

(
b−1M−1

4 [mP , µ, µ′]b
)

~B(µ) =
~̃
B(µ′) + O

(
1

mP

)
+ . . . (15)

where b is the diagonal matrix of the coefficients appearing in the definitions (2), i.e.

b = diag(8/3,−5/3, 1/3, 2, 2/3), and by ~B(µ) (
~̃
B(µ′)) we designated the vector column of

our five B-parameters.
Based on the above discussion, a simple recipe can be applied to our data, namely evolve

to the same µ = µ′ and create the quantity

~Φ(mP , µ) = M2
2[mP , µ]

(
b−1M−1

4 [mP , µ]b
)
· ~B(µ) (16)

which can be fit either freely as

~Φ(mP , µ) = ~a0(µ) +
~a1(µ)

mP

, (17)

3 Instead of matching at the point corresponding to the mass of the heavy quark, we choose to do it at
the mass of the heavy-light meson, mP .
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where ~a0(µ) and ~a1(µ) are the fit parameters, or by constraining it by the static HQET
results, i.e.

~Φ(mP , µ) = ~a′
0(µ) +

~a′
1(µ)

mP
+

~a′
2(µ)

m2
P

, (18)

where the coefficient ~a′
0(µ) is constrained by the static value,

~̃
B(µ), so that one can probe

the term O(1/m2
P ). As a result of these two procedures, we obtain the HQET values of

the B-parameters, i.e. ~Φ(mBs/d
, µ), which are then to be matched back onto their QCD

counterparts.
To keep the expressions as short as possible, we will now split the discussion into two

pieces: we will first discuss the extrapolation of the first three B-parameters and then the
last two. This can be done because all the matrices, WT

QCD[µ2, µ1], WT
HQET [µ2, µ1] and

C(µ) are the block-matrices of the form [3 × 3] ⊕ [2 × 2].

3.1 Getting the physical results for BMS
1,2,3(mb)

At the leading order in perturbation theory, the anomalous dimensions for our B-parameters
in the RI/MOM and MS schemes are the same. This is not the case at NLO, and in
order to proceed we need to convert our RI/MOM results from table 2 into the MS(NDR)
scheme. It is crucial to specify the set of evanescent operators or the Dirac projectors used
to renormalize the operators because only with this information at hand, the MS(NDR)
scheme is unambiguously defined [25]. In this subsection, we will use the MS(NDR) scheme
of ref. [11] (see eqs. (13-15) of their paper) in which the Wilson coefficients for the SM
expression for the (∆Γ/Γ)Bs have been calculated at NLO. Therefore, the results for the
B-parameters that will be presented in this subsection can be directly combined with the
Wilson coefficients of ref. [11].

The conversion of the operators O
RI/MOM
1,2,3 (µ) and P

RI/MOM
5 (µ) to the MS scheme is pro-

vided by the following expressions




〈O1(µ)〉
〈O2(µ)〉
〈O3(µ)〉




MS

=

[
I + r123

αs(µ)

4π

] 


〈O1(µ)〉
〈O2(µ)〉
〈O3(µ)〉




RI/MOM

,

〈P5(µ)〉MS =
(
1 + rP

αs(µ)

4π

)
〈P5(µ)〉RI/MOM , (19)

where the NLO matching coefficients are given by [8, 9, 10]

rP =
16

3
, r123 =

1

9




−42 + 72 log 2 0 0
0 61 + 44 log 2 −7 + 28 log 2
0 −25 + 28 log 2 −29 + 44 log 2


 . (20)

To get the central values, we will convert the results from table 2, obtained at µ = 2.8(1) GeV
and run them to µ = mb = 4.6 GeV [22]. It should be noted that the matching RI/MOM →
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MS(NDR), made in ref. [14], was incorrect because the MS scheme was not the one of ref. [11],
but rather the one of ref. [9]. Although the numerical differences are very small, the physical
results presented in ref. [14] are not fully consistent because the matrix elements matched
onto the MS scheme of ref. [9] were combined with the Wilson coefficients of ref. [11]. The
correct physical results were presented in ref. [23].

The evolution from the scale µ to mb, in this MS scheme, is described by [11]




O1(mb)
O2(mb)
O3(mb)




MS

= WT
QCD[mb, µ]−1




O1(µ)
O2(µ)
O3(µ)




MS

(21)

where the operator WQCD[mb, µ] = M(mb)U(mb, µ)M−1(µ) contains the information on the
evolution obtained at the leading (U(µ, mb)) and the NLO (M(µ)) in perturbation theory.
For our purpose, it is convenient to write the evolution matrix in the following form

WQCD[mb, µ] = w(mb)w
−1(µ) , (22)

where

w(µ) = M(µ) αs(µ)−γT
0

/2β0 , (23)

and β0 = 11 − 2nF/3. The scheme independent, one-loop anomalous dimension matrix is

γ0 =




4 0 0
0 −28/3 4/3
0 16/3 32/3


 ,

whereas the NLO contribution

M(µ) = I + JMS
123

αs(µ)

4π
(24)

is encoded in the matrix

JMS
123 =




485
242 0 0

0 −4592
9075 −19083

3025

0 1612
3025 −36233

9075




. (25)

We have set nF = 0, since our lattice results are obtained in the quenched approximation.
The evolution of the pseudoscalar density is given by

〈P5(mb)〉MS =

(
αs(µ)

αs(mb)

)−γP /2β0
[

1 +
αs(µ) − αs(mb)

4π
JMS

P

]
〈P5(µ)〉MS , (26)

where γP = −8 and JMS
P = 998/363, for nF = 0.
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q=up/down q=strange

κQ 0.125 0.122 0.119 0.125 0.122 0.119

mP [GeV] 1.75(9) 2.02(10) 2.26(12) 1.85(8) 2.12(9) 2.36(10)

BMS
1 (mb) 0.891(21) 0.913(26) 0.920(27) 0.900(16) 0.916(18) 0.919(16)

BMS
2 (mb) 0.745(29) 0.771(29) 0.824(26) 0.788(21) 0.817(21) 0.833(18)

BMS
3 (mb) 0.896(41) 0.889(43) 0.943(41) 0.902(27) 0.918(26) 0.921(26)

Table 4: B-parameters, extracted from our lattice QCD data after conversion to the MS(NDR)
scheme of ref. [11] at µ = 2.8(1)GeV and running to µ = mb.

With all of the above formulae at hand, we convert our B-parameters from table. 2 to
the MS scheme (at µ = 2.8(1) GeV), run them to µ = mb, and list their values in table 4.

The next step is to match the B-parameters from table 4 from QCD to the HQET
where we can use the heavy quark scaling laws to extrapolate each B-parameter to the
physical point, i.e. to mBd/s

. The crucial ingredient that enters the matrix M−1
4 [mP , mb] ≡

M−1
4 [mP , mb, mb] of eq. (14), and hence the quantity ~Φ(mP , mb) in eq. (16), is the matching

matrix C(mP ) which relates the QCD operators, computed in the MS(NDR) scheme of
ref. [11], onto the HQET ones computed in the MS(NDR) scheme of ref. [6] (and vice
versa). In ref. [10] it has been shown that (at NLO) this matrix has the following form:

C123(mP ) = I + c
(1)
123

αs(mP )

4π
; c

(1)
123 =




−14 −8 0
0 61/12 −13/4
0 −77/12 −121/12


 , (27)

where we introduced the index “123” since we consider only these operators here.
The last piece of information needed to construct M−1

4 [mP , mb] of eq. (14), is the evo-
lution operator in the HQET at NLO. In a notation analogous to eq. (22) we have

〈~̃O(mb)〉 = WT
HQET [mb, µ]−1〈~̃O(µ)〉

WHQET [mb, µ] = w̃(mb)w̃
−1(µ) , (28)

where

w̃(µ) = M̃(µ) αs(µ)−γ̃T
0

/2β0 . (29)

In this case [10]

γ̃0 = −8

3




3 0 0
0 2 1
0 1 2


 ,
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M̃(µ) = I + J̃ MS
123

αs(µ)

4π
, (30)

J̃ MS
123 =




− 317

1089
+

68π2

297
−2639

8712
+

π2

99
0

0 −3181

4356
+

74π2

297

1913

4356
− 2π2

99

0
2639

4356
− 2π2

99
−3907

4356
+

74π2

297




. (31)

where, as before, we have set nF = 0.
To obtain the quantity ~Φ(mP , mb) of eq. (16), one also needs M−1

2 [mP , mb]. At NLO
this information can be extracted from ref. [26]. The matching of the axial current and of
the pseudoscalar density is given by

A0 =

[
1 − 8

3

αs(µ)

4π

]
Ã0(µ) ,

P5(µ) =

[
1 +

8

3

αs(µ)

4π

]
Ã0(µ) . (32)

while the expression for the running of the axial current (for nF = 0) is

Ã0(mb) =

(
αs(µ)

αs(mb)

)−γ̃A/2β0
[
1 −

(
439

1089
− 28π2

297

)
αs(µ) − αs(mb)

4π

]
Ã0(µ) , (33)

where the leading order anomalous dimension is given by γ̃A = −4.
By combining all of the above ingredients, we form the quantities ~Φ1,2,3(mP , mb), use

eq. (17), and extrapolate to mBd/s
. The result of that extrapolation is:

~Φ1,2,3(mBd
, mb) =




1.038(91)
1.055(64)
1.117(94)


 , ~Φ1,2,3(mBs , mb) =




1.009(36)
1.045(24)
1.070(48)


 , (34)

where we wrote separately the results of the extrapolation of our data with the light quark
extrapolated to d (left), and those with the light quark interpolated to s (right). By including

the B̃-parameters from table 3, we fit our data to eq. (18), from which we get

~Φ1,2,3(mBd
, mb) =




0.976(42)
0.943(28)
0.845(52)


 , ~Φ1,2,3(mBs , mb) =




0.967(21)
0.955(17)
0.857(31)


 . (35)

These two extrapolations, for each component of the vector ~Φ1,2,3(mP , mb), are illustrated in
fig. 4 for the case of the light d-quark. Results of that extrapolation are the B-parameters
in HQET, which we then match back onto their QCD values to get our final results for
B-parameters. These numbers are presented in table 5.
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0.0 0.5 1.0 1.5
1/MP

0.6

0.8

1.0

1.2

→ Φ123(mP,mb) [3]
~

 B3 (mb)

0.6

0.8

1.0

1.2

→ Φ123(mP,mb) [2]
~

 B2 (mb)

0.6

0.8

1.0

1.2

→ Φ123(mP,mb) [1]
~

 B1 (mb)

Figure 4: Extrapolation to the physical Bd meson mass (squared symbols) in the inverse heavy

meson mass. The unconstrained linear extrapolation for each of the components of the vector
~Φ1,2,3(mP ,mb) from our data (empty circles) to ~Φ1,2,3(mBd

,mb) (empty square) is depicted by

the dotted line. The result of the constrained extrapolation (filled squares) by the static HQET

bag-parameters (filled circles) is marked by the dashed line. ith component of the vector is marked

by [i].

An important issue to be mentioned is the treatment of the statistical errors when
constraining by the static HQET results because the three points obtained in QCD are cor-
related among themselves and are uncorrelated from the one obtained in HQET. Although
it may look trivial, we prefer to mention how these errors have been treated in this work. 4

For each jack of our QCD data we form the so-called augmented χ2
a by including the HQET

4For a clear discussion about the treatment of the statistical errors in such a situation, see ref. [27].
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value B̃j and its error σ̃j as:

(χ2
a)j =

∑

i




Φ(mPi
)[j] − (a′

0)j − (a′
1)j

mPi
− (a′

2)j

m2
Pi

σj [Φ(mPi
)]




2

+
(B̃j − (a′

0)j

σ̃j

)2

, (36)

where “[j]” denotes the jth component of the vector ~Φ(mPi
), the error of which is σj [Φ(mPi

)]
for the ith value of our three heavy-light meson masses, mPi

. By minimizing (χ2
a)j, we find

the values of the parameters (a′
0,1,2)j , where (a′

0)j is constrained by the prior knowledge of
the static result. In this way we get the value for Φ(mBd/s

)[j], for each jack of our QCD
data. The final error, σj(Φ(mBd/s

)), that we quoted in eq. (35), is obtained as a standard
error over all jacks (NJK)

σj(Φ(mBd/s
)) =

√√√√√NJK − 1

NJK




NJK∑

k=1

(
Φk(mBd/s

)[j]
)2

− 1

NJK

(
NJK∑

k=1

Φk(mBd/s
)[j]

)2

 . (37)

unconstrained constrained

Light quark d s d s

BMS
1 (mb) 0.938(81) 0.905(32) 0.875(37) 0.867(18)

BMS
2 (mb) 0.923(32) 0.915(30) 0.826(25) 0.836(15)

BMS
3 (mb) 1.192(101) 1.141(52) 0.901(56) 0.914(33)

Table 5: Final results for the first three B-parameters defined in eq. (2), in the MS(NDR) scheme
of ref. [11] at µ = mb.

From table 5 we see that by extrapolating the B-parameters from the range of masses
accessed from our lattice to the mBd/s

, without including the static HQET results, we always
overshoot the ones that are obtained by including the static HQET values. This is especially
pronounced for the parameter B3(mb). At this point it is not clear whether this is the real
physical effect, or it is due to the lattice artefacts: e.g. our heavier mesons may be more
subject to O(a) effects, our HQET data are only perturbatively renormalized etc. Further
research is needed to clarify this issue.

3.2 Physical results for BMS
4,5 (mb)

As in the previous section, we first convert our directly computed B
RI/MOM
4,5 → BMS

4,5 . We

choose the MS(NDR) scheme of ref. [9], according to which
(

〈O4(µ)〉
〈O5(µ)〉

)MS

=

[
I + r45

αs(µ)

4π

] (
〈O4(µ)〉
〈O5(µ)〉

)RI/MOM

, (38)
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with the NLO matching coefficient given by [9]

r45 = −2

3

(
−17 + log 2 3(1 − log 2)
−3(1 + log 2) 1 + log 2

)
. (39)

As in the previous subsection, we convert the results from table 2 at µ = 2.8(1) GeV and
evolve them in the MS scheme to the scale µ = mb = 4.6 GeV. The evolution is described by
an equation analogous to eq. (21) in which the one-loop anomalous dimension now reads [9]

γ0 =

(
−16 0
−6 2

)
,

whereas the NLO part (nF = 0) is

M(µ) = I + JMS
45

αs(µ)

4π
, JMS

45 =




24379
5808

5895
1936

45
16 −5807

5808


 . (40)

Our B4,5-parameters, in the MS scheme and at µ = mb, are given in table 6. The matching

q=up/down q=strange

κQ 0.125 0.122 0.119 0.125 0.122 0.119

mP [GeV] 1.75(9) 2.02(10) 2.26(12) 1.85(8) 2.12(9) 2.36(10)

BMS
4 (mb) 1.098(22) 1.074(25) 1.126(21) 1.119(16) 1.134(17) 1.131(13)

BMS
5 (mb) 1.235(25) 1.308(31) 1.442(30) 1.288(20) 1.390(24) 1.466(21)

Table 6: B-parameters, extracted from our lattice QCD data and converted to the MS(NDR)
scheme of ref. [9].

onto the corresponding operators in HQET is made through [10]

C45(mP ) = I + c
(1)
45

αs(mP )

4π
, c

(1)
45 =

1

2

(
17 −11
7 −21

)
. (41)

As for the evolution of these operators in HQET, the matrix of the leading order anomalous
dimension coefficients is

γ̃0 = −
(

7 3
3 7

)
,

while the NLO contribution (nF = 0) reads [10]

M̃(µ) = I + J̃MS
45

αs(µ)

4π
, J̃MS

45 =




−833

726
+

74π2

297

1987

2178
− 2π2

99

1987

2178
− 2π2

99
−833

726
+

74π2

297


 . (42)

17



We use all the above formulae to create the quantities ~Φ4,5(mP , mb) (16) and extrapolate in
the heavy meson mass by using eq. (17). The results are

~Φ4,5(mBd
, mb) =

(
1.189(70)
2.144(108)

)
, ~Φ4,5(mBs , mb) =

(
1.184(25)
2.158(60)

)
. (43)

After incorporating the values for B̃4,5(mb) given in table 3, the fit to eq. (18), gives

~Φ4,5(mBd
, mb) =

(
1.112(27)
2.072(49)

)
, ~Φ4,5(mBs , mb) =

(
1.121(12)
2.101(35)

)
. (44)

The two ways of reaching the physically relevant results are shown in fig. 5. As in the
previous subsection, for the final results we need to match back onto the QCD. These values
are presented in table 7. From tabs. 5 and 7 we conclude that, for all the B-parameters,

0.0 0.5 1.0 1.5
1/MP

1.0

1.5

2.0

2.5
→ Φ45(mP,mb) [2]
~

 B4 (mb)

0.8

1.0

1.2

→ Φ45(mP,mb) [1]
~

 B4 (mb)

Figure 5: The same as fig. 4 but for ~Φ4,5(mP ,mb).

the extrapolations in which we do not include the static results lead to higher values.

4 Systematic uncertainties

The central values of this work are the ones obtained by combining the static HQET and
QCD results, which are given in tabs. 5 and 7.

We now need to attribute systematic errors to these results. We do not discuss the
errors due to the use of the quenched approximation and refer to our results as quenched.
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unconstrained constrained

Light quark d s d s

BMS
4 (mb) 1.228(72) 1.223(26) 1.148(28) 1.157(13)

BMS
5 (mb) 1.784(90) 1.798(50) 1.724(41) 1.750(29)

Table 7: Final results for the last two B-parameters defined in eq. (2), in the MS(NDR) scheme
of ref. [9] at µ = mb.

The results of ref. [28], however, are quite encouraging in that they indicate that the values
of the parameters B1,2,3(mb) remain practically unchanged after switching from nF = 0 to
nF = 2.

◦ Systematic uncertainties present in the static results were estimated to be in the range
of (3÷4)% for all the B̃-parameters. This error is almost entirely due to the choice of
the renormalization point q∗ at which we used the boosted perturbative expressions.
We varied 1/a ≤ q∗ ≤ π/a, and then evolved the resulting (continuum) B-parameters

from µ = q∗ to µ = mb. The spread of values B̃(mb) with respect to the central one
(obtained from q∗ = 2.6/a), has been assigned to the systematic error.

◦ The QCD values are obtained after the non-perturbative renormalization in the RI/MOM
scheme at µ = 2.8(1) GeV. We repeated the whole procedure described in the pre-
vious section, but starting from our results obtained at µ = 1.9(1) GeV and at
µ = 3.9(2) GeV. The final results get modified as follows:

– ∆B1/B
central
1 < ±1%;

– ∆B2/B
central
2 ≃ ±1%;

– ∆B3/B
central
3 ≃ ±8%;

– ∆B4/B
central
4 ≃ −3%;

– ∆B5/B
central
5 ≃ +11%.

◦ Interpolation/extrapolation in the light quark mass is made linearly. For the average
up/down quark mass we need to account for the possibility of the quadratic term in
this extrapolation. As it can be seen from fig. 2, the extrapolations are smooth for all
the bag parameters. If we include a quadratic term in the extrapolation, we obtain
results which are fully compatible with the ones presented here. This is true for both
QCD and static HQET B-parameters.

◦ The value a−1(mK∗) = 2.72(13) GeV, has been used throughout the paper. Another
option would be to use the kaon decay constant, from which we obtain a−1(fK) =
2.69(16) GeV. Being completely consistent with a−1(mK∗), this choice affects our final
results by only +1%.
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◦ Even though we use the improved action, our operators are not improved. Therefore,
our results for the bag parameters suffer from O(a) discretization errors. The hope is
that these errors cancel in the ratios (5,6) from which the bag parameters are actually
extracted. A conservative estimate on the size of these uncertainties can be obtained
if we improve the axial current in the ratio R1, as A0(t) → A0(t) + cA(P5(t + 1) −
P5(t − 1))/2, with the known value for the parameter cA = −0.04 [29]. From this
exercise we conclude the further increase in our final results for B1 by ∼ 4%.

As for the HQET values, we checked that our values for the B̃i (obtained at β = 6.0)
are indistinguishable from the ones that can be extracted from the UKQCD data at
β = 6.2 [34]. That gives us more confidence that the O(a) effects in the static HQET
data are indeed small.

◦ We used the two-loop running coupling αs(µ) by taking Λ
(nF =0)
QCD = 0.25 GeV. We tried

to vary Λ
(nF =0)
QCD by 10% (which covers all the presently available lattice estimates [30]),

and see that the final results vary in the range of ±1.5%.

We now write our results in a fully explicit form as:

B
(d)MS
1 (mb) = 0.87(4)(3)(0)

(
+4
−2

)
, B

(s)MS
1 (mb) = 0.87(2)(3)(0)

(
+4
−2

)
,

B
(d)MS
2 (mb) = 0.83(3)(3)(1)(2) , B

(s)MS
2 (mb) = 0.84(2)(3)(1)(2) ,

B
(d)MS
3 (mb) = 0.90(6)(3)(7)(2) , B

(s)MS
3 (mb) = 0.91(3)(3)(7)(2) ,

B
(d)MS
4 (mb) = 1.15(3)(4)

(
+0
−4

)
(3) , B

(s)MS
4 (mb) = 1.16(2)(4)

(
+0
−4

)
(3) ,

B
(d)MS
5 (mb) = 1.72(4)(5)

(
+19
−00

)
(3) , B

(s)MS
5 (mb) = 1.75(3)(5)

(
+20
−00

)
(3) , (45)

where, besides the first statistical errors, the following sources of the systematic uncertainty
are being written out respectively: systematics of the calculation in the static limit of HQET,
the error in the renormalization of B-parameters computed in QCD, combined error due to
the variation of a−1 and of Λ

(nF =0)
QCD (and also due to the improvement of the axial current

in the case of B1). After adding all systematic errors in squares we arrive at the complete
set of results already given in table 1.

To be able to fully reconstruct the numbers that we presented in table 1, we also need
to provide the reader with the formulae allowing the conversion of the parameters B2(mb)
and B3(mb) from the MS(NDR) scheme of ref. [11] to the one of ref. [9]. This is achieved
by using the following formula

(
〈O2(µ)〉
〈O3(µ)〉

)MS [9]
=

[
I +

αs(µ)

12 π

(
−11 1
1 5

) ] (
〈O2(µ)〉
〈O3(µ)〉

)MS [11]
, (46)

which we obtained after rotating the operators QSLL
1,2 (µ)MS of ref. [9] to the SUSY basis (1).
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5 Concluding remarks

In this paper we computed the B-parameters for all five ∆B = 2 operators. The extrapo-
lation of the results obtained directly in lattice QCD in the region of masses mP ∼ 2 GeV
to the physically interesting mass mBd/s

, has been constrained by using the static HQET
result. The matching QCD ↔ HQET and running in each of the two theories have been
made by the consistent use of the perturbative expressions known at NLO. The final results
are presented in three renormalization schemes (see table 1).

Our results can be improved in many ways. We combined the results of the QCD lattice
simulations performed at β = 6.2 with the HQET ones obtained at β = 6.0. Naturally, a
good strategy would be to do the computation at the same value of β in both theories, to
vary the value of β (i.e. of the lattice spacing) and attempt extrapolating to the continuum
limit. All numbers are obtained in the quenched approximation (nF = 0). An investigation
of the sea quark effects on our quenched values by repeating the analysis performed in this
paper with nF = 2, would be very welcome.
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Appendix: Non-perturbative calculation of the renormalization
and subtraction constants in the (Landau)RI/MOM scheme

In this appendix we give the numerical values for the resulting matrices of the renormal-
ization and subtraction constants which are obtained in the (Landau)RI/MOM scheme by
using the method of refs. [17, 18]. These are computed in the following basis of operators:

Q1 = qiγµ(1 − γ5)q
i qjγµ(1 − γ5)q

j ,

Q2 = qiγµ(1 − γ5)q
i qjγµ(1 + γ5)q

j ,

Q3 = qi(1 + γ5)q
i qj(1 − γ5)q

j , (47)

Q4 = qi(1 − γ5)q
i qj(1 − γ5)q

j ,

Q5 =
1

2
qiσµν(1 − γ5)q

i qjσµν(1 − γ5)q
j (µ > ν) ,

which are equivalent to those appearing in eq. (1) (after setting b̄ → q̄):

Q1 = O1 , Q2 = −2O5 ,

Q3 = O4 , Q4 = O2 ,

Q5 = O2 + 2O3 . (48)

The difference between these and the results for the renormalization constants presented in
refs. [13, 14] is that the present renormalization and subtraction constants are not polluted
by the Goldstone boson contributions. To eliminate those, we applied the recipe of ref. [18].
Since that paper has not been released yet, we briefly explain the main steps here.

⊙ Starting from the 4-quark Green functions computed in the Landau gauge, with all
momenta in the external legs equal, Gi(p) = 〈q(p) q̄(p) Qi q̄(p) q(p)〉, one constructs
the amputated ones as

Λi(p) =

(
4∏

k=1

S−1(p)

)
Gi(p) , (49)

where S−1(p) stands for the inverse quark propagator.

⊙ The amputated Green functions are projected onto various Dirac structures as
(
Γi(p)

)
j

= Tr
[
Λi(p)Pj

]
, (50)

where Pj are suitable projectors satisfying the orthogonality relation

(
Γ

(0)
i (p)

)
j

= Tr
[
Λ

(0)
i (p)Pj

]
= δij , (51)

where Λ
(0)
i (p) stands for the tree level amputated Green functions. The explicit ex-

pressions for the projectors Pj can be found in ref. [17] (eq. (37)).
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⊙ Eq. (51) is turned into the RI/MOM renormalization condition as

(
Γ̂i(p/µ)

)
j

∣∣∣∣
p2=µ2

= δij , (52)

where the renormalized amputated Green function, Γ̂i(p/µ), is expressed as

Γ̂i(p/µ) = Γk(p)
(
δkj + ∆kj(g

2
0)
)
Zji(µ, g2

0) , (53)

up to an overall wave function renormalization, which is trivial to compute after
imposing the vector Ward identity on the quark propagator. The condition (52) is
applicable for virtualities Λ2

QCD ≪ p2 ≪ (π/a)2.

⊙ Thus, for each of the operators from the basis (47), one obtains 5 equations from which
the subtraction (∆(g2

0)) and renormalization (Z(µ; g2
0)) constants are computed. In

matrix form, the final result writes

~Q(µ) = Z(µ; g2
0)
[
I + ∆(g2

0)
]

~Q(g2
0) . (54)

The structure of the Z-matrix is determined by the chirality, i.e. Q1(µ) does not
mix with any other operator, 5 Q2,3(µ) mix with each other but not with the other
operators. The same goes for the Q4,5(µ) operators. The remaining elements of the
5 × 5 matrix are filled by the subtraction constants ∆ij(g

2
0).

⊙ In practice, however, the above procedure is implemented by computing Γ̂i(p, κq) at
several values of the (light) quark mass (i.e. various κq), followed by the extrapolations
of each ∆ij(g

2
0) and Zij(µ, g2

0) to the chiral limit. This extrapolation can be dangerous
because the operators are inserted at zero momentum (all external legs in the Green
function have the same momentum), and the coupling to the Goldstone boson con-
taminates the short distance behaviour (which we are interested in). In particular,
we find that for the vertices of the structure γ5 ⊗ γ5 this coupling is indeed large. In
addition, via projections (50), it may pollute the extraction of the renormalization
and subtraction constants for the other operators. Therefore, for each projected am-
putated four-quark Green function, one should subtract the Goldstone contribution.
For the parity even operators (which are the ones that we consider in this paper), this
Goldstone contribution can appear as a pole, but also as a double pole, i.e.:

(
Γi(p; κq)

)
j
≡ Γij(p; κq) = αij(p) +

βij(p)

m2
P

+
γij(p)

m4
P

+ δij m2
P . (55)

Note that we also added a term δ m2
P , to account for the the linear dependence in the

quark mass (m2
P ∝ mq).

6 A judicious way to subtract the Goldstone contributions,

5 In other words Z11(µ) 6= 0, whereas Z12 = Z13 = Z14 = Z15 = 0.
6 The linear dependence in the quark mass arises after the cancellation of the quadratic quark mass term

against the Goldstone pole contribution. More detailed discussion will be presented in ref. [18].
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and thus to reach the term αij(p), is to consider the following combination for the fit
with the data [18]

m2
P1

Γij(p; κq1
) − m2

P2
Γij(p; κq2

)

m2
P1

− m2
P2

= αij(p) − γij(p)

m2
P1

m2
P2

+ δij(p)
(
m2

P1
+ m2

P2

)
(56)

by which the pole-like contribution is automatically eliminated. This is to be per-
formed for each value of p and accounting for all the mass combinations. 7 The re-
sulting αij(p) is thus the chiral value of the projection Γij(p) free from the Goldstone
boson contamination.

The procedure sketched above has been applied at three values of the renormaliza-
tion scale: aµ = 0.71, 1.03 and 1.41. In physical units, these values correspond to µ =
1.9(1) GeV, 2.8(1) GeV and 3.9(2) GeV, respectively. The complete list of results for the
subtraction (∆ij(a)) and renormalization constants (Zij(µa)) is presented in table 8.

As for the renormalization constants for the bilinear quark operators, which are necessary
to compute the ratios (5) and (6), we use the following values [31]:

Z
RI/MOM
P

(
1.9(1) GeV

)
= 0.510(9) ;

Z
RI/MOM
P

(
2.8(1) GeV

)
= 0.575(7) ; (57)

Z
RI/MOM
P

(
3.9(2) GeV

)
= 0.630(6) .

In addition, in the same study, we obtained ZA = 0.814(4). Notice that we used the method

of ref. [32], to avoid the large Goldstone boson contribution to the value of Z
RI/MOM
P [4]. As

for the constant ZA, our value is consistent with the findings of other lattice groups [29].

7 Besides the light masses already mentioned in the previous section, for the discussion of the renormal-
ization constants we also had the results for κq = 0.1333 at our disposal. In this way, we could make 6
combinations and therefore a safe extrapolation to the chiral limit.
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Scale (µ) 1.9(1) GeV 2.8(1) GeV 3.9(2) GeV

Z11(µ) 0.663(6) 0.645(9) 0.644(13)

∆12 -0.072(3) -0.069(11) -0.063(10)
∆13 -0.015(2) -0.011(4) -0.014(2)
∆14 0.020(2) 0.021(7) 0.015(6)
∆15 0.011(3) 0.006(1) 0.005(1)

Z22(µ) 0.723(5) 0.691(7) 0.683(5)

Z23(µ) 0.315(3) 0.257(7) 0.202(9)

∆21 -0.052(2) -0.055(9) -0.050(9)
∆24 -0.250(7) -0.169(20) -0.168(19)
∆25 0.013(2) 0.014(2) 0.015(1)

Z32(µ) 0.023(1) 0.022(1) 0.021(3)

Z33(µ) 0.322(12) 0.392(20) 0.467(13)

∆31 0.018(1) 0.018(4) 0.014(3)
∆34 0.351(10) 0.233(34) 0.220(31)
∆35 -0.008(1) -0.007(3) -0.005(1)

Z44(µ) 0.414(9) 0.473(17) 0.534(13)

Z45(µ) -0.017(2) -0.015(2) -0.015(4)

∆41 0.008(1) 0.008(3) 0.005(1)
∆42 0.009(1) 0.001(2) 0.001(1)
∆43 0.208(4) 0.143(16) 0.144(15)

Z54(µ) -0.307(4) -0.233(7) -0.176(7)

Z55(µ) 0.914(9) 0.814(16) 0.761(18)

∆51 0.009(1) 0.008(2) 0.005(1)
∆52 0.009(1) 0.005(3) 0.008(1)
∆53 0.121(1) 0.084(6) 0.089(8)

Table 8: The values of the renormalization Zij(µ) and subtraction constants ∆ij computed non-
perturbatively in the (Landau) RI/MOM scheme at three different values of the renormalization
scale µ at β = 6.2.

25



References

[1] C. Bernard, Nucl. Phys. Proc. Suppl. 94 (2001) 159, [hep-lat/0011064].

[2] F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, Nucl. Phys. B 477 (1996) 321,
[hep-ph/9604387].

[3] C. R. Allton et al., Phys. Lett. B 453 (1999) 30, [hep-lat/9806016].

[4] J. Cudell, A. Le Yaouanc and C. Pittori, Phys. Lett. B 454 (1999) 105,
[hep-lat/9810058]; ibid 516 (2001) 92, [hep-lat/0101009].

[5] C. Dawson [RBC Collaboration], Nucl. Phys. Proc. Suppl. 94 (2001) 613,
[hep-lat/0011036].

[6] V. Gimenez and J. Reyes, Nucl. Phys. B545 (1999) 576, [hep-lat/9806023].

[7] M. Di Pierro and C. T. Sachrajda [UKQCD Collaboration], Nucl. Phys. B 534 (1998)
373, [hep-lat/9805028].

[8] M. Ciuchini, E. Franco, V. Lubicz, G. Martinelli, I. Scimemi and L. Silvestrini, Nucl.
Phys. B523 (1998) 501, [hep-ph/9711402].

[9] A. J. Buras, M. Misiak and J. Urban, Nucl. Phys. B 586 (2000) 397,
[hep-ph/0005183].

[10] V. Gimenez and J. Reyes, “Two-loop HQET Anomalous Dimensions of all ∆B = 2
four-quark operators”, preprint FTUV-IFIC-01-1010, in preparation;
J. Reyes, “Cálculo de elementos de matriz débiles para hadrones B con la HQET en el
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