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Abstract

The renormalization, at the next-to-leading order in αs, of the ∆B = 2 operators at the
lowest order in the heavy quark expansion, namely in the static theory, is computed taking
into account previously missed contributions. These operators are relevant for the calculation
of the B0–B̄0 mixing on the lattice.
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1 Introduction

The lack of a precise knowledge of the matrix elements of the operator

〈B̄|b̄γµ(1 − γ5)d b̄γµ(1 − γ5)d|B〉 =
4

3
f 2

BBBMB, (1)

generated by the box diagram with the exchange of virtual top quarks, is the main source of

theoretical error in the extraction of the CKM matrix element Vtd from the B0–B̄0 mixing pa-

rameter xd. This uncertainty on f 2
BBB propagates to other theoretical estimates. In particular

the extraction of the CP-violating phase from the combined analysis of xd and the K0–K̄0 CP-

violating parameter ǫ is affected by a twofold ambiguity that would be eliminated by a precise

determination of f 2
BBB. In turn this would strongly reduce the uncertainty in the prediction

of the asymmetry in the decay B → J/ψ KS [1].

The matrix element in eq. (1) can be evaluated on the lattice [2]. However, since mb is

larger than the current values of the lattice cutoff, the b quark cannot be put on the lattice as a

dynamical field. Therefore an effective theory based on the expansion in the heavy quark mass

is needed. Such a theory has been built [3], and its discretized version can be used in lattice

simulations. In particular the expansion at the lowest order in mb is used to build the static

effective theory both in the continuum and on the lattice. This theory has the usual form

Hstatic =
∑

i

CiQi (2)

in terms of Wilson coefficients and local four-fermion operators. In order to use lattice results,

the effective theory in the continuum must be matched both to its lattice counterpart and to

the “full” theory, namely a theory with a dynamical heavy field. In ref. [4] this matching has

been computed at O(αs), using the ∆B = 2 effective Hamiltonian [5] as the “full” theory.

The two matching procedures take place at different scales. In fact the matching to the “full”

theory is done at a scale of the order of the ultraviolet cutoff, namely mb, while the matching

to the static theory on the lattice is done at typical current values of the lattice cutoff, 1/a ∼ 2

GeV. A complete determination of the static theory in the continuum requires the calculation

of the running of the Wilson coefficients between these two scales. This is usually done by

using the renormalization group equations (RGEs). In this way, at the leading order (LO),

one resums in the Wilson coefficients terms such as αn
s logn, assumed to be of O(1). To be
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consistent, an O(αs) matching calls for a next-to-leading (NLO) determination of the Wilson

coefficients, which resums terms of the type αn+1
s logn. Of course, in the case at hand, one

may argue that the relevant logs, namely log(a2m2
b) ∼ 1.6, are not large, so that the running

at the leading order can be considered as a pure O(αs) effect. Anyway the calculation of the

anomalous dimension up to the NLO is required to have a regularization-scheme-independent

expression of the Wilson coefficients. In the past an effort has been made to calculate this

NLO anomalous dimension in the static theory [6]. However, as pointed out in ref. [7], some

contributions coming from the operator mixing have been overlooked in ref. [6].

In the next section we calculate these new contributions and present a complete determi-

nation of the NLO Wilson coefficients of the static theory.

2 NLO Wilson coefficients in the static theory

In this section we discuss the NLO gluon renormalization of the ∆B = 2 operators at the lowest

order in the heavy quark expansion, i.e. in the static limit mb → ∞. We want to calculate the

NLO expression of the Wilson coefficients of the relevant operators. To this end a few steps

are required. First of all, the basis of local operators in the effective theory must be identified.

Then the effective theory has to be matched against a “full” theory at a scale of the order

of the ultraviolet cutoff, fixing in this way the initial conditions of the renormalization group

equations. Finally the anomalous dimension matrix in the effective theory must be calculated

at the desired order in αs and the RGE solved to give the Wilson coefficients as functions of the

renormalization scale µ2. The scale-independent physical amplitude is given by the product

of the Wilson coefficients ~C(µ2) and the matrix elements of the corresponding renormalized

operators 〈 ~Q(µ2)〉, the latter usually requiring some non-perturbative method to be evaluated.

The ∆B = 2 operator basis in the static limit is given by two dimension-six local operators

~Q =

(

Q1

Q2

)

,

Q1 = 2h̄(+)γµ(1 − γ5)d h̄
(−)γµ(1 − γ5)d , Q2 = 2h̄(+)(1 − γ5)d h̄

(−)(1 − γ5)d , (3)

where the field h̄(+) creates a heavy quark and h̄(−) annihilates a heavy antiquark. Our calcu-

lation explicitly shows that indeed the basis is closed under renormalization at the NLO.
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The next step is the NLO matching. The heavy quark theory has to be matched against

the ∆B = 2 effective Hamiltonian by comparing the matrix elements at the scale mb of the

relevant operators in the “full” and the effective theories, up to and including O(αs) terms.

Here the effective Hamiltonian plays the role of the “full” theory, even if it is also an effective

theory with the top and the heavy bosons integrated out, which in turn is matched against the

Standard Model at the weak scale. The ∆B = 2 effective Hamiltonian has been calculated in

ref. [5] and is completely known at the NLO. There exists only one ∆B = 2 operator in this

theory, namely

QLL = b̄γµ(1 − γ5)d b̄γ
µ(1 − γ5)d . (4)

The calculation of the matching of this operator onto the operators in eq. (3) requires the

expansion of the matrix element 〈bd̄|QLL|b̄d〉 in the heavy quark mass. This calculation has

been done in refs. [4, 6] and gives the initial condition at the scale mb

~C(m2
b) =





1 +
αs(m2

b
)

4π
B1

αs(m2
b
)

4π
B2



CLL(m2
b),

B1 =

{

−14 NDR
−11 DRED

, B2 = −8 . (5)

We have reported the values of B1 both in the naive dimensional regularization scheme (NDR)

and in dimensional reduction (DRED). This scheme dependence cancels out against the cor-

responding dependence contained in the Wilson coefficient CLL(m2
b) of the ∆B = 2 effective

Hamiltonian1. The other initial condition, C2(m
2
b), is the same both in DRED and NDR. We

notice that, starting at O(αs), it does not pick up the scheme-dependent part inside CLL(m2
b)

at the NLO.

The evolution of the Wilson coefficients between the matching scale m2
b and the renormal-

ization scale µ2 is determined by the renormalization group equation

µ2 d

dµ2
~C(µ2) =

1

2
γ̂T ~C(µ2) . (6)

The anomalous dimension matrix γ̂ is defined as

γ̂ = 2µ2 d

dµ2
Ẑ , (7)

1As noticed in ref. [6], this implies that the anomalous dimension matrix element γ̂
(1)
11 , see eq. (11), in the

effective theory is the same in DRED and NDR.
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Figure 1: The Feynman diagrams that contribute to γ̂(0). Thick (thin) lines represent the heavy
(light) quarks. The blobs are the operator insertion point.

where Ẑ is the matrix of the renormalization constants connecting the bare and the renormalized

operators

~OR = Ẑ−1 ~OB . (8)

The formal solution of eq. (6) is

~C(µ2) = Tαs
e

∫ αs(µ2)

αs(m2
b
)
dαs

γ̂(αs)
2β(αs) ~C(m2

b) , (9)

where Tαs
is the ordered product with increasing powers of the coupling constant from left to

right and β(αs) is the QCD beta function

β(αs) = µ2dαs

dµ2
. (10)

In order to calculate the Wilson coefficients at the NLO, the first two terms of the pertur-

bative expansion of β(αs) and γ̂(αs) are needed:

β(αs) = −
α2

s

4π
β0 −

α3
s

(4π)2
β1 + . . . ,
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Diag. Mult. Q1 → Q1 Q1 → Q2 Q2 → Q1 Q2 → Q2

1 2 2ξCF - - 2ξCF

2 2 ξ
(

1 − 1
N

)

- − ξ

2
−ξ

(

1 + 1
N

)

3 1 3−ξ

2

(

1 − 1
N

)

- −3−ξ

4
−3−ξ

2

(

1 + 1
N

)

4 1 −3+ξ

2

(

1 − 1
N

)

- 1+ξ

4
− 1

2N
−1−ξ

2

(

1 + 1
N

)

5 1 (3 − ξ)CF - - (3 − ξ)CF

6 1 −ξCF - - −ξCF

Table 1: Pole coefficients of the operator insertions into the diagrams of fig. 1, calculated in
the linear Rξ gauge. An overall factor αs/4π is understood. The second column contains the
diagram multiplicity factors, which have already been applied to the shown coefficients. To
account for the renormalization of the external legs, self-energy diagrams count as 1/2.

γ̂(αs) =
αs

4π
γ̂(0) +

(

αs

4π

)2

γ̂(1) + . . . . (11)

The beta function coefficients are well known:

β0 =
11N − 2nf

3
, β1 =

34

3
N2 −

10

3
Nnf − 2CFnf , (12)

where N is the number of colours, nf is the number of active flavours and CF = (N2 − 1)/2N .

The anomalous dimension matrices γ̂(0) and γ̂(1) are calculated by computing the one- and

two-loop renormalization of the operators in eq. (3).

The one-loop renormalization matrix is given by the infinite parts of the operator insertion

into the diagrams in fig. 1, computed in the static theory. We have used the dimensional

regularization2 to calculate the divergent parts of these diagrams that appear as poles in ǫ = (4−

D)/2. The coefficients of the poles are collected in table 1. The calculation is straightforward,

the only peculiarity being that few tensor structures can appear in the effective theory because

of the equation satisfied by the static fields, vµγ
µh(±) = ±h(±). In particular tensors can be

reduced in the following way:

h̄(+)σµν(1 − γ5)d h̄
(−)σµν(1 − γ5)d = 4

[

h̄(+)γµ(1 − γ5)d h̄
(−)γµ(1 − γ5)d

+h̄(+)(1 − γ5)d h̄
(−)(1 − γ5)d

]

. (13)

The anomalous dimension at the LO is minus twice the pole coefficients in the matrix Ẑ of

2 γ5 and subtraction prescriptions are immaterial for the anomalous dimension at the LO.
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the operator renormalization constants, so that, from table 1, we readily find

γ̂(0) =

(

−6CF 0
1 + 1

N
−6CF + 4 + 4

N

)

. (14)

As expected, the anomalous dimension matrix is independent of the gauge. γ̂
(0)
11 agrees with

the previous calculations [8], while the other matrix elements were not considered previously.

The form of this matrix has some important consequences. On the one hand, Q1 insertion has

vanishing component on Q2 at the leading order. Since the initial condition of Q2 is already of

order αs, the one-loop contribution of Q2 becomes a NLO effect. For the very same reason, we

do not need to calculate the two-loop renormalization, i.e. the second row of γ̂(1), which would

generate a next-to-next-to-leading order term. On the other hand, Q2 has a non-zero leading

component on Q1, and thus contributes to the Wilson coefficient C1 at the NLO.

We still have to calculate the first row of γ̂(1). This is a hard task, involving the evaluation

of the pole parts of several two-loop diagrams. However the renormalization of Q1 onto itself

has already been calculated in ref. [6], while the insertion of Q1 has vanishing component onto

Q2. This last statement holds to all orders in perturbation theory, provided that one chooses a

renormalization scheme that preserves the Fierz symmetry. In fact

Q(+) = Q1 , Q(−) = Q2 +
1

4
Q1 (15)

are the eigenvectors of the Fierz transformation with eigenvalues ±1 3, therefore they cannot mix

under renormalization. This enforces the following relations among the anomalous dimension

matrix elements

γ̂12 = 0 , γ̂21 =
1

4

(

γ̂22 − γ̂11

)

, (16)

which indeed are satisfied by eq. (14).

The NLO anomalous dimension matrix is then given by

γ̂(1) = (17)




−N−1
12N

[

127N2 + 143N + 63 − 57
N

+ 8π2
(

N2 − 2N + 4
N

)

− nf (28N + 44)
]

0
1
4

(

X − γ̂
(1)
11

)

X



 ,

where, as already noticed, the entry marked with X is not needed at the NLO.

3This is a consequence of the properties of the static fields, vµγµh(±) = ±h(±).
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We are now ready to write down the solution of the RGE, eq. (6), at the NLO. Using

eqs. (12), (14) and (17), we obtain

C1(µ
2) =

(

αs(m
2
b)

αs(µ2)

)d1
(

1 +
αs(µ

2) − αs(m
2
b)

4π
J

)

C1(m
2
b)

+





(

αs(m
2
b)

αs(µ2)

)d2

−

(

αs(m
2
b)

αs(µ2)

)d1




γ̂
(0)
21

γ̂
(0)
22 − γ̂

(0)
11

C2(m
2
b)

C2(µ
2) =

(

αs(m
2
b)

αs(µ2)

)d2

C2(m
2
b) , (18)

where

di =
γ̂

(0)
ii

2β0

, J = β1
d1

β0

−
γ̂

(1)
11

2β0

. (19)

The new contribution to the NLO running of C1 is the term proportional to γ̂
(0)
21 , while C2 is

renormalized multiplicatively.

Numerically the new term contributes to the running between m2
b and a typical lattice scale

µ2 = 4 GeV2 by increasing C1 of a few per cent, roughly doubling the already known NLO

enhancement coming from γ̂
(1)
11 . Moreover the operator Q2 also contributes at the NLO and

should be included in lattice calculations of f 2
BBB in the static limit.

Acknowledgements

We thank G. Martinelli and M. Neubert for useful discussions on the subject of this work.

V.G. wishes to acknowledge partial support by CICYT under grant number AEN-96/1718.

References

[1] M. Lusignoli, L. Maiani, G. Martinelli and L. Reina, Nucl. Phys. B369 (1992) 139;

M. Ciuchini, E. Franco, G. Martinelli, L. Reina and L. Silvestrini, Z. Phys. C68 (1995)

239.

[2] E. Eichten, Nucl. Phys. B (Proc. Suppl.) 4 (1988) 170;

A. Abada et al., Nucl. Phys. B376 (1992) 172;

A. Soni, Nucl. Phys. B (Proc. Suppl.) 47 (1996) 43;

7



JLQCD Collaboration, S. Aoki et al., Nucl. Phys. B (Proc. Suppl.) 47 (1996) 433;

UKQCD Collaboration, A.K. Ewing et al., EDINBURGH-95-550. To appear in Phys. Rev.

D [hep-lat/9508030];

J. Christensen, T. Draper and C. McNeile, poster presented at Lattice ’96, St. Louis, USA.

To be published in Nucl. Phys. B (Proc. Suppl.);

T. Draper and C. McNeile, Nucl. Phys. B (Proc. Suppl.) 47 (1996) 429;
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