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1 Introduction

Lattice QCD is an unique tool to compute non-perturbatively from first prin-
ciples the mass spectrum, leptonic decay constants and in general hadronic
matrix elements of local operators. Renormalization constants, relating the
operators on the lattice to the continuum are necessary to extract physical
informations from Monte Carlo simulations. In this paper we study the renor-
malization properties of composite bilinear operators [1,2] with the quark ac-
tion discretized a lá Wilson.

In principle, the renormalization of quark bilinears can be computed in one-
loop perturbation theory, as there are no power divergences [3,4]. It is well
known, though, that lattice perturbation theory is ill behaved, due to the pres-
ence of tadpole-like diagrams [5,6] and at values of the coupling β = 6/g2

0 =
6.0 − 6.4, the higher-order corrections may not be small, thus introducing a
large uncertainty in the calculation of the renormalized matrix elements in
some continuum scheme. These problems are avoided using non-perturbative
(NP) renormalization techniques [7,8]. The procedure proposed in [7] allows
a full non-perturbative computation of the matrix elements of composite op-
erators in the Regularization Independent (RI) scheme [7,9]. The matching
between the RI scheme and MS, which is intrinsically perturbative, is com-
puted using only continuum perturbation theory, which is well behaved. This
method has been shown to be quite successful in reproducing results obtained
by other methods, such as chiral Ward Identities [10]. Quite impressive is
also the influence of the NP renormalization in the measurement of the quark
masses [11], the chiral condensate [12] and, for four-fermion operators, in the
restoration of the correct chiral behaviour of the B-parameters in weak decays
[13–15]. Moreover, any attempt to tackle the question of the ∆I = 1/2 rule
must rely on NP methods [16].

In this paper, we extend the exploratory computations done in [7] to a high
statistics study with both the standard Wilson action and the tree-level im-
proved SW-Clover action [17] at different values of the coupling in the quenched
approximation. We compare the dependence on the renormalization scale of
the renormalized operators with respect to the solution predicted from the
Renormalization Group Equation (RGE) at the next-to-next-to-leading-order
(NNLO). Moreover, we use this analysis to estimate the systematics due to
discretization errors on the renormalization constants.

Recently, there has been much progress in the Symanzik on-shell improvement
program [18], obtaining a non-perturbative determination of the renormaliza-
tion constants with a fully O(a) improved action [19,20]. An extension of this
program, to take into account all terms of O(a) including the ones proportional
to the quark mass, has been proposed in [21]. Whereas the non-perturbative
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improvement is the direction of future, it is true that Wilson and tree-level
Clover actions are still widely used, e.g. for four-fermion operators relevant to
weak decays (cf. for example ref. [22] and references therein). Moreover, the
study of the renormalization properties in the chiral limit with an unimproved
and partially improved action will provide further insight for the discretization
effects in lattice QCD.

The outline of this paper is as follows. In sec. 2 we review the non-perturbative
method (NPM) proposed in ref. [7] and set the notation for the remainder of
this work. The Renormalization Group (RG) analysis of the quark bilinears
is outlined in sec. 3, while in sec. 4 we present the numerical results for the
renormalization constants and discuss the systematic errors. In sec. 5 we apply
these results to the the computation of the leptonic decay constants of the
vector and pseudoscalar mesons. We finish with our conclusions in sec. 6.

2 Non-perturbative renormalization method

In this section we review the method of ref. [7], which we have used to com-
pute non-perturbatively the renormalization constants of quark bilinears in
the Regulatization Independent (RI) scheme [9]. The method imposes renor-
malization conditions non-perturbatively, directly on quark and gluon Green
functions, in a fixed gauge, with given off-shell external states of large vir-
tuality. Notice that in RI the renormalization conditions are independent of
the regularization scheme but they depend on the external states and on the
gauge used in the procedure.

The renormalization scale µ2, determined from the virtuality of the external
states p2, must satisfy the condition ΛQCD ≪ µ ≪ O(1/a), see [7].

We have worked in the lattice Landau gauge, defined by minimizing the func-
tional

Tr





4
∑

µ=1

(Uµ(x) + U †
µ(x))



 . (1)

The necessity to fix the gauge introduces a systematic uncertainty due to the
existence of both continuum and lattice Gribov copies [24] and the numerical
noise that they can generate. These effects are expected to die off at large
virtuality and on the renormalization of two-quark operators have been found
to be small, comparable to the statistical noise [23]. We are making the as-
sumption that the Landau lattice gauge-fixing procedure brings gauge fixed
lattice operators into the corresponding continuum ones as a → 0 [25].
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Let us consider a local lattice quark bilinear OΓ = q̄Γq, where Γ is a Dirac
matrix 1 . The renormalization condition is imposed on the amputated Green
function computed between off-shell quark states of momentum p in the Lan-
dau gauge

ΛΓ(pa) = Sq(pa)−1GΓ(pa)Sq(pa)−1 (2)

where GΓ(pa) and Sq(pa) are the non-amputated Green function and quark
propagator, calculated non-perturbatively via Monte Carlo simulations [7].
The renormalization constant ZRI

Γ (µa, g0) of OΓ, in the RI scheme, is deter-
mined by the condition

ZRI
Γ (µa)Z−1

q (µa)Tr IPΓΛΓ(pa)|p2=µ2 = 1, (3)

and the renormalized operator is related to the bare one by ÔRI
Γ = ZRI

Γ OΓ. In
eq. (3) IPΓ is a suitable projector on the tree-level amputated Green function.
In the case of the quark bilinears the projector is simply proportional to Γ†.
Zq is the wave function renormalization which can be defined from the Ward
Identity (WI) as [7]

Zq(µa) = −i
1

12
Tr

[

∂S(pa)−1

∂ 6p

]

|p2=µ2 . (4)

To avoid derivatives with respect to a discrete variable, we have used

Z ′
q(µa) = −i

1

12

Tr
∑

µ=1,4 γµ sin(pµa)S(pa)−1

4
∑

µ=1,4 sin2(pµa)

∣

∣

∣

∣

∣

p2=µ2

, (5)

which, in the Landau Gauge, differs from Zq by a finite term of order α2
s. The

matching coefficient can be computed using continuum perturbation theory
only, and up to order α2

s [26]

Zq

Z ′
q

= 1 −
α2

s

(4π)2∆(2)
q + . . . (6)

with, in the Landau gauge,

∆(2)
q =

(N2
c − 1)

16 N2
c

(

3 + 22N2
c − 4Ncnf

)

. (7)

1 In the following, we shall denote with Γ = A,V, P, S the axial and vector currents
and the pseudoscalar and scalar densities.
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where Nc is the number of colours and nf the number of active quarks. Eqs. (3)
and (5) define the constants Z

′RI
Γ . From eq. (6) we obtain for ZRI

Γ

ZRI
Γ (µa) =

(

1 −
α2

s(µ)

(4π)2
∆(2)

q

)

Z
′RI
Γ (µa) , (8)

which satisfy the Ward identities at the NNLO. The matching between RI
and MS, NDR requires continuum perturbation theory only [7,9]. Since both
RI and MS, NDR respect chirality and the renormalized operators with the
correct chiral behaviour are unique, we have ZRI

A = ZMS
A and ZRI

V = ZMS
V . For

the same reason

ZRI
S

ZMS
S

=
ZRI

P

ZMS
P

=
ZMS

m

ZRI
m

, (9)

where Zm is the quark mass renormalization. In ref. [26] ZMS
m /ZRI

m has been
computed up to order α2

s. Using eq. (9) one can compute at the same order
the matching coefficients of the scalar and pseudoscalar densities

ZMS
Γ (µ) =

(

1 +
αs(µ)

4π
C(1) +

α2
s(µ)

(4π)2
C(2)

)

ZRI
Γ (µ), (10)

where Γ = P, S and in the Landau gauge,

C(1) =
8 (N2

c − 1)

4 Nc

,

C(2) =
(N2

c − 1)

96 N2
c

(

−309 + 3029 N2
c (11)

−288 ζ3 − 576 N2
c ζ3 − 356 Nc nf

)

.

where ζ3 = 1.20206 . . .. The dependence on the gauge and the external states
of the RI scheme will cancel with the corresponding dependence of the match-
ing coefficients in eq. (10), up to higher orders in continuum perturbative
expansion and up to discretization errors.

3 Renormalization Group Analysis

The RGE expresses a general property of the Green’s functions of a renormal-
ized theory and therefore they are valid non-perturbatively. To study the RG
properties of bilinears we work in the MS scheme and in the Landau gauge.
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The generic, forward, renormalized two-point Green’s function, computed be-
tween quark states of virtuality p2 obeys the RGE

[

µ2 d

dµ2
+

γΓ

2

]

Γ

(

p

µ

)

=

[

µ2 ∂

∂µ2
+ β (αs)

∂

∂αs

+
γΓ

2

]

Γ

(

p

µ

)

= 0 , (12)

where the QCD β-function and the anomalous dimension of the renormalized
operator ÔΓ are gauge invariant to all orders in perturbation theory and are
defined as:

β(αs)

4π
= µ2 d

dµ2

(

αs

4π

)

= −
∞
∑

i=0

βi

(

αs

4π

)i+2

, (13)

γΓ(αs)=−2Z−1
Γ µ2 d

dµ2
ZΓ =

∞
∑

i=0

γ
(i)
Γ

(

αs

4π

)i+1

. (14)

In a continuum regularization which respects chirality the axial and vector
currents do not get renormalized, i.e. ZA = ZV = 1, as can be easily shown
through the Ward Identities that they satisfy. Since m(µ)P (µ), with P (µ)
the pseudoscalar density, is renormalization group invariant, the scalar and
pseudoscalar densities have renormalization constants which obey ZS = ZP =
1/Zm

2 . Therefore one can express the anomalous dimension γΓ of bilinear
operators as a function of γm:

γA = γV = 0 , (15)

γP = γS = −γm .

To solve the RGE’s in the NNLO approximation, the expansions of the β
function and anomalous dimension up to three loops is required.

The running of the coupling constant αMS
s is given by

αMS
s

4π
(q2)=

1

β0 ln(q2)
−

β1

β3
0

ln ln(q2)

ln2(q2)

+
1

β5
0 ln3(q2)

(

β2
1 ln2 ln(q2) − β2

1 ln ln(q2) + βMS
2 β0 − β2

1

)

, (16)

where q2 = (µ/ΛMS
QCD)2. For the continuum MS scale parameter ΛMS

QCD at

the NNLO, in the quenched approximation, we have used ΛMS
QCD = 0.251 ±

0.021 GeV [20]. The QCD β-function is scheme independent only up to two

2 We stress that we are studying the RGE evolution in a continuum renormalization
scheme.
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loops. The additional term of the expansion has been computed in the MS
scheme in [27]:

β0 =
11

3
Nc −

2

3
nf ,

β1 =
34

3
N2

c −
10

3
Ncnf −

(N2
c − 1)

Nc

nf , (17)

βMS
2 =

2857

54
N3

c +
(N2

c − 1)
2

4N2
c

nf −
205

36

(

N2
c − 1

)

nf

−
1415

54
N2

c nf +
11

18

(N2
c − 1)

Nc

n2
f +

79

54
Ncn

2
f

The mass anomalous dimension in the MS scheme up to three loops is given
by [28,29]:

γ(0)
m = 3

N2
c − 1

Nc

,

γ(1)
m =

N2
c − 1

N2
c

(

−
3

4
+

203

12
N2

c −
5

3
Ncnf

)

, (18)

γ(2)
m =

N2
c − 1

N3
c

[

129

8
−

129

8
N2

c +
11413

108
N4

c

+nf

(

23

2
Nc −

1177

54
N3

c − 12Ncζ3 − 12N3
c ζ3

)

−
35

27
N2

c n2
f

]

,

where ζ is the Riemann zeta function.

The evolution of the renormalized bilinear operators is determined by eqs. (12)
and (16). The solution can be expressed in the MS scheme in the form [30]

ÔMS
Γ (µ) =

cMS
Γ (µ)

cMS
Γ (µ0)

ÔMS
Γ (µ0), (19)

where

cMS
Γ (µ)=αs (µ)γ

(0)
Γ

{

1 +
αs

4π

(

γ
(1)
Γ − β1γ

(0)
Γ

)

(20)

+
1

2

(

αs (µ)

4π

)2 [
(

γ
(1)
Γ − β1γ

(0)
Γ

)2
+ γ

(2)
Γ + β

2

1γ
(0)
Γ − β1γ

(1)
Γ − β2γ

(0)
Γ

]







,

with βi = βi/β0 and γ
(i)
Γ = γ

(i)
Γ / (2β0).

By using the eqs. (9) and (19), the evolution of the bilinear quark operators
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at the NNLO in the RI scheme becomes

ÔRI
Γ (µ) =

cRI
Γ (µ)

cRI
Γ (µ0)

ÔRI
Γ (µ0), (21)

where

cRI
Γ (µ) =

ZRI
Γ (µ)

ZMS
Γ (µ)

cMS
Γ (µ) . (22)

Eqs. (21) and (22) define the evolution at NNLO in the RI scheme of the
renormalization constants with the scale µ. In order to compare with the
numerical NP results we define a Renormalization Group Invariant (RGI)
constant as

ZRGI
Γ (a) =

Z
′RI
Γ (µa, mqa = 0)

c
′RI
Γ (µ)

, (23)

where

c
′RI
Γ (µ) =

Z
′RI
Γ (µ)

ZRI
Γ (µ)

cRI
Γ (µ) (24)

takes into account the mismatch between Zq and Z ′
q, cf. eq (6). Up to higher

order terms in continuum perturbation theory and up to discretization errors,
ZRGI

Γ (a) should be independent of µ, in the region in which perturbation theory
is valid, i.e. µ ∼> 2 GeV, independent of the renormalization scheme, of the
external states and gauge invariant. Being the continuum evolution already
at NNLO, we assume any scale dependence to be dominated by discretization
effects. As an estimate of this systematic error we will take the semidispersion
of the values of the renormalization constants in the perturbative region.

4 Non-perturbative renormalization constants

The renormalization constants for the bilinears presented in this paper are
obtained at three different gauge couplings g2

0, corresponding to β = 6/g2
0 =

6.0, 6.2 and 6.4 using both the standard Wilson action and the tree-level im-
proved SW-Clover fermion action [17] 3 . A summary of the parameters used

3 We note that in our implementation of the tree-level improvement program the
relationship ZS = 1/Zm is not true anymore because we have used non-local “6D–
rotated” operators; we refer to [7,11] for details.
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β 6.0 6.0 6.2 6.2 6.4 6.4

Action SW Wilson SW Wilson SW Wilson

# Confs 100 100 180 100 60 60

Volume 163 × 32 163 × 32 163 × 32 163 × 32 243 × 32 243 × 32

κ 0.1425 0.1530 0.14144 0.1510 0.1400 0.1488

0.1432 0.1540 0.14184 0.1515 0.1403 0.1492

0.1440 0.1550 0.14224 0.1520 0.1406 0.1496

0.14264 0.1526 0.1409 0.1500

κcrit 0.14551 0.15683 0.14319 0.15337 0.14143 0.15058

Table 1
Summary of parameters used in the non-perturbative calculation of the renormal-
ization constants.

in the NP calculation of the renormalization constants is presented in tab. 1.
The errors have been obtained with the jacknife method, decimating 10 con-
figurations at a time. The lattice scale a−1 for the different couplings has been
determined from MK∗ [34] and is shown in tab. 5.

4.1 Axial and vector currents

Let us consider first the axial and vector currents. Since each obeys a chiral
Ward Identity [1] their renormalization constants are finite, i.e. scale inde-
pendent. In figs. 1 and 2 we show ZA and ZV , calculated in the RI scheme
in the chiral limit for both the SW and Wilson actions, as a function of the
renormalization scale µ. As explained in [7], we expect to find a “window” in
the range of values of µ in which the Z’s are scale independent. Since at large
values of µ the Z’s will be more sensible to discretization errors, we expect
the window to be wider as we approach the continuum.

We can clearly see that these expectations are satisfied by the data shown
in figs. 1 and 2, and also reported in tabs. 2 and 3. For the axial and vector
currents, the RGI values given in the tables are simply the values of the con-
stants calculated at µa ≃ 1, since c

′RI
Γ (µ) for ZA and ZV is totally negligible in

comparison with the final error. The first error is statistical, while the second
is the systematic error estimated as the semidispersion of the values in the
region in which we believe perturbation theory to be reliable, i.e. µ ∼> 2 GeV.
In the SW case, the axial current shows a more pronounced systematic effect
compared to the vector current, reflected in a reduced stability in µ of the
plots. In the Wilson case, on the other hand, it’s the vector current that is
more fluctuating in the scale µ. Moreover, as far the comparison between the

8



Fig. 1. Renormalization of the axial current for (a) SW and (b) Wilson action as a
function of µ for all couplings. The lattice spacing is determined from MK∗.

SW and Wilson actions is concerned (at the same value of β), we note that
for the axial current the Wilson action seems more stable than the SW one,
while for the vector current it’s the SW action which shows a more pronounced
plateau.

In tab. 4 we also give the values of ZA and ZV determined from the WI’s
[2,31,32]. Caution should be used in comparing the values obtained from the
NPM and the WI’s as the latter are sometimes available only for finite values
of the quark mass, but since the mass dependence is expected to be weak, it
is still a significant check. The agreement between the NPM and the WI’s is
good for the axial current in the SW case, around µa ≈ 1, as already found
in [7]. On the other hand, in the Wilson case the WI value at β = 6.0 is even
larger than the NPM at β = 6.4, although the error quoted from the WI is
so large (≈ 10%) that a significant comparison is not possible. For the vector
current, we notice that in SW case the NP values are slightly higher than the
WI although the discrepancy tends to diminish as β increases, whereas in the
Wilson case, the comparison is more complicated. This is due to the well-know
discretization errors which affect the hadronic matrix elements of the vector

9



Fig. 2. Renormalization of the vector current for (a) SW and (b) Wilson action as
a function of µ for all couplings. The lattice spacing is determined from MK∗ .

current, in particular of the conserved one [31]. We expect the values of ZA and
ZV to approach unity as move towards the continuum limit and the coupling
goes to zero. All the data obtained with the NPM support this conclusion.

In tab. 4 we also present the one-loop perturbative values [3,4], evaluated at
µa = 1 in the RI scheme according to eq. (10). We present both Stardard PT
(SPT), in which the bare coupling g2

0 is used as the expansion parameter, and
Boosted PT (BPT) in which the coupling used is [6]

αBPT
s =

1

〈✷〉
αlatt

s =
1

〈✷〉

g2
0

4π
(25)

where 〈✷〉 is the expectation value of the plaquette. In all the perturbative
calculations, the effects coming from the discretization of loop integrals on a
finite lattice have been ignored. As already emphasized in [7], perturbation
theory does not agree with the non-perturbative values, except in a number of
limited cases, as the vector current. In the case of the pseudoscalar density, the
failure is quite dramatic and has important phenomenological consequences on
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the determination of the quark masses and the quark condensate, as explained
in refs. [11]. Moreover, compared to the NPM, the perturbative values show
a less pronounced variation with the coupling. Thus, even if the agreement
improves as we approach the continuum, the discrepancy remains sizable even
at the smallest coupling.

The exploratory numerical calculations in [7] were carried out at β = 6.0
and a single value of the hopping parameter κ = 0.1425, corresponding to
mqa ≃ 0.07. We have checked that the results are compatible with ours within
statistical errors. We have chosen not to separate the time and space com-
ponents of the currents as they agree within errors. It is worth noting that
the sizable difference between the renormalization constants of the different
components and the large fluctuations found in [7] at large values of µ2a2 were
not due to strong discretization effects, but to the choice of the external mo-
menta. In fact, the components of the momenta p = (p0, p1, p2, p3) were chosen
with large differences among the pi’s, thus greatly enhancing the rotational
symmetry breaking on the hypercubic lattice.

Recently, the non-perturbative method of ref. [7] has also been applied to the
renormalization of bilinears in ref. [33], in which “momentum” sources and
sinks and translational invariance are used to reduce the statistical noise in
the determination of the Z’s. The method has been tested for Wilson fermions
at β = 6.0, and the values of the Z’s in the chiral limit calculated at µa ≃ 1
are ZA = 0.7807(8), ZV = 0.6822(7), ZP = 0.4357(17) and ZS = 0.6808(15).
The errors quoted are purely statistical and are much smaller than the sys-
tematic errors coming from the discretization effects, which are expected to be
quite large in the Wilson case. With this in mind, we find that the agreement
between the values of [33] and ours is resonable.

4.2 Pseudoscalar and scalar densities

The pseudoscalar and scalar densities differ from the axial and vector currents
in that their renormalization is not finite but scale dependent. We show in
figs. 3 and 4 the RGI values, computed according to eq. (23). We stress that
the RGI values are only reliable from values of µ ∼> 2 GeV, i.e. when continuum
perturbation theory is to be trusted. The RGI value in tabs. 2 and 3 has been
calculated from µa ≃ 1. The systematic error is calculated in the same fashion
as for the axial and vector currents. It is easily noticeable the difference in the
behaviour of ZP and ZS as a function of µ. The former approaches a plateau
only at relatively large values of µ, while the latter presents a very clear and
long plateau. This behaviour, also reflected in a much larger systematic error
for the pseudoscalar, does not depend on the choice of the action.
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β µ2a2 ZA ZV ZP ZS ZP /ZS

0.308 1.147(30) 0.839(12) 0.199( 8) 0.711(36) 0.293(20)

0.617 1.100(18) 0.874(12) 0.335(11) 0.799(24) 0.422(16)

0.964 1.047(18) 0.846(11) 0.409( 8) 0.834(18) 0.492(13)

1.272 1.039(10) 0.844( 4) 0.457( 6) 0.862(18) 0.531(12)

6.0 1.388 1.025(14) 0.837( 6) 0.467( 6) 0.871(18) 0.537(14)

1.851 1.015(10) 0.840( 5) 0.516( 6) 0.905(11) 0.570( 9)

2.467 1.008( 9) 0.835( 3) 0.555( 4) 0.943(12) 0.588(10)

4.010 0.998( 7) 0.829( 3) 0.610( 3) 0.993(11) 0.614( 8)

RGI 1.047(18)(25) 0.846(11)( 9) 0.278( 5)(40) 0.567(12)( 8) 0.492(13)(61)

0.308 1.069(12) 0.851( 9) 0.248( 8) 0.713(28) 0.372(20)

0.617 1.075(14) 0.882( 8) 0.401( 9) 0.837(21) 0.496(17)

0.964 1.023( 4) 0.846( 5) 0.466( 4) 0.851(11) 0.563( 8)

1.272 1.027( 7) 0.856( 4) 0.523( 4) 0.904( 7) 0.581( 6)

6.2 1.388 1.021( 5) 0.850( 4) 0.527( 4) 0.906(10) 0.590( 7)

1.851 1.004( 3) 0.842( 3) 0.564( 3) 0.928( 3) 0.608( 4)

2.467 0.992( 4) 0.843( 2) 0.602( 3) 0.950( 6) 0.630( 6)

4.010 0.978( 3) 0.834( 2) 0.642( 2) 0.983( 4) 0.654( 5)

RGI 1.023( 4)(24) 0.846( 5)(11) 0.295( 2)(32) 0.540( 7)( 9) 0.563( 8)(45)

0.313 1.042(12) 0.877(10) 0.405(11) 0.739(15) 0.549(18)

0.617 1.015(12) 0.859( 6) 0.498( 8) 0.810(17) 0.616(16)

0.964 1.012( 9) 0.863( 6) 0.555( 6) 0.852(13) 0.652(10)

1.169 1.003( 9) 0.856( 5) 0.572( 5) 0.869(15) 0.659(11)

6.4 1.439 1.003( 7) 0.861( 4) 0.597( 6) 0.896(15) 0.667(12)

1.782 0.997( 8) 0.860( 4) 0.618( 5) 0.918(13) 0.673(11)

2.467 0.991( 7) 0.856( 4) 0.646( 4) 0.946(13) 0.683( 9)

3.740 0.987( 6) 0.856( 3) 0.676( 4) 0.974(10) 0.694( 9)

RGI 1.012( 9)(12) 0.863( 6)( 4) 0.327( 4)(17) 0.502( 8)( 9) 0.652(10)(21)

Table 2
Non-perturbative values of ZRI

Γ (mq = 0) with the SW action, for all couplings at
several renormalization scales µ2a2. For the values at different scales the errors are
statistical. The RGI values are computed from that one at µa ≃ 1 according to the
eq. (23) and the first error is statistical, the second systematic as explained in text.
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β µ2a2 ZA ZV ZP ZS ZP /ZS

0.308 0.847(16) 0.681( 9) 0.241( 6) 0.559(13) 0.445(10)

0.617 0.843(10) 0.716( 7) 0.372( 3) 0.654( 7) 0.575(10)

0.964 0.808( 7) 0.707( 4) 0.447( 5) 0.682( 9) 0.657( 8)

1.272 0.807(10) 0.711( 7) 0.492( 6) 0.713(10) 0.692(10)

6.0 1.388 0.804( 8) 0.705( 5) 0.503( 4) 0.725(10) 0.695(10)

1.851 0.795( 7) 0.710( 4) 0.549( 3) 0.746(10) 0.736( 9)

2.467 0.797( 7) 0.722( 5) 0.588( 3) 0.762( 7) 0.772( 7)

4.010 0.809( 4) 0.744( 3) 0.649( 2) 0.795( 5) 0.816( 4)

RGI 0.808( 7)( 7) 0.707( 4)(19) 0.294( 3)(39) 0.448( 6)( 5) 0.657( 8)(80)

0.308 0.841( 8) 0.719( 8) 0.272( 8) 0.615(21) 0.463(25)

0.617 0.846( 8) 0.749( 6) 0.436(11) 0.708( 8) 0.629(19)

0.964 0.812( 6) 0.724( 4) 0.499( 5) 0.722( 7) 0.695(12)

1.272 0.820( 6) 0.734( 3) 0.539( 4) 0.755( 7) 0.718( 8)

6.2 1.388 0.813( 3) 0.732( 3) 0.548( 5) 0.755( 8) 0.742(10)

1.851 0.804( 3) 0.728( 3) 0.580( 3) 0.768( 5) 0.761( 6)

2.467 0.808( 4) 0.739( 4) 0.621( 3) 0.787( 4) 0.790( 5)

4.010 0.816( 4) 0.759( 3) 0.675( 3) 0.810( 4) 0.833( 4)

RGI 0.812( 6)( 8) 0.724( 4)(17) 0.310( 3)(31) 0.448( 5)( 5) 0.695(12)(69)

0.313 0.843( 7) 0.752( 6) 0.413( 7) 0.649( 9) 0.643(14)

0.617 0.831( 8) 0.747( 6) 0.516( 5) 0.710(12) 0.730(12)

0.964 0.825( 6) 0.748( 5) 0.572( 4) 0.742( 7) 0.773( 8)

1.169 0.820( 6) 0.745( 6) 0.590( 5) 0.754( 6) 0.785( 7)

6.4 1.439 0.824( 6) 0.753( 4) 0.617( 5) 0.774( 6) 0.797( 7)

1.782 0.823( 7) 0.755( 6) 0.637( 5) 0.787( 7) 0.810( 6)

2.467 0.825( 7) 0.762( 5) 0.669( 5) 0.803( 7) 0.833( 4)

3.740 0.840( 5) 0.784( 5) 0.710( 5) 0.830( 6) 0.855( 3)

RGI 0.825( 6)(10) 0.748( 5)(20) 0.333( 2)(21) 0.431( 4)( 4) 0.773( 8)(41)

Table 3
Non-perturbative values of ZRI

Γ (mq = 0) with the Wilson action, for all couplings
at several renormalization scales µ2a2. For the values at different scales the errors
are statistical. The RGI values are computed from that one at µa ≃ 1 according to
the eq. (23) and the first error is statistical, the second systematic as explained in
text.
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Action β Method ZA ZV ZP ZS ZP /ZS

6.0 SPT 0.98 0.90 0.74 0.91 0.82

6.0 BPT 0.97 0.83 0.56 0.84 0.67

6.0 WI [31] 1.10(2) 0.80(2) 0.61(2)

6.0 [This work] 1.05(3) 0.85(1) 0.41(6) 0.83(2) 0.49(6)

SW 6.2 SPT 0.98 0.90 0.75 0.91 0.83

6.2 BPT 0.97 0.84 0.59 0.85 0.70

6.2 WI [32] 1.05(1) 0.82(1) 0.69(4)

6.2 [This work] 1.02(2) 0.85(1) 0.47(5) 0.85(2) 0.56(5)

6.4 SPT 0.98 0.91 0.76 0.91 0.83

6.4 BPT 0.97 0.85 0.62 0.86 0.72

6.4 [This work] 1.01(1) 0.863(7) 0.55(3) 0.85(2) 0.65(2)

6.0 SPT 0.87 0.83 0.78 0.86 0.91

6.0 BPT 0.78 0.71 0.62 0.76 0.82

6.0 WI [2] 0.85(7) 0.79(4)

6.0 [This work] 0.81(1) 0.71(2) 0.45(6) 0.68(1) 0.66(8)

Wilson 6.2 SPT 0.87 0.83 0.78 0.86 0.91

6.2 BPT 0.79 0.73 0.65 0.73 0.84

6.2 [This work] 0.81(1) 0.72(2) 0.50(5) 0.72(1) 0.69(7)

6.4 SPT 0.87 0.84 0.79 0.86 0.91

6.4 BPT 0.80 0.74 0.67 0.79 0.85

6.4 WI [31] 0.71(1)

6.4 [This work] 0.82(1) 0.75(2) 0.57(4) 0.74(1) 0.77(5)

Table 4
Perturbative values (Standard and Boosted PT) of ZRI

Γ (mq = 0) and non-
perturbative values from the WI with the SW and Wilson action. The perturbative
Z’s are evaluated at µ2a2 = 1.

While ZP and ZS cannot be determined separately by imposing a Ward Iden-
tity, their ratio ZP/ZS can as it is scale independent. For this reason it can be
treated in a similar fashion to ZA and ZV and can be compared with the values
obtained from the WI. In fig. 5 we show ZP/ZS as function of µ. As expected,
the behaviour of the ratio is dominated by the behaviour of ZP and agreement
with the WI determination seems to be obtained at rather high values of the
renormalization scale, at which discretization effects should dominate.
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Fig. 3. RGI values for the renormalization of the pseudoscalar density for (a) SW
and (b) Wilson action as a function of µ for all couplings. The lattice spacing is
determined from MK∗.

5 Meson decay constants

There are several interesting phenomenological quantities which can be ex-
tracted from the matrix elements of quark bilinears, such as leptonic decay
constants and quark masses. The problem of a non-perturbative measurement
of quark masses has been addressed in [11] to which we refer the reader for all
details. A very interesting by-product of both quark masses and decay con-
stants is the estimate of the chiral condensate, which is of great phenomeno-
logical relevance. The issue will be addressed in a forthcoming paper [12],
together with a detailed theoretical analysis.

In the remainder of this section, we concentrate on the determination of the
leptonic decay constants of mesons. The pseudoscalar and vector decay con-
stants, fPS and fV , are defined as
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Fig. 4. RGI values for the renormalization of the scalar density for (a) SW and (b)
Wilson action as a function of µ for all couplings. The lattice spacing is determined
from MK∗.

〈0|A0|PS〉= i
fPS

ZA

MPS , (26)

〈0|Vi|V, r〉= ǫr
i

M2
V

fV ZV

, (27)

where ǫr
i is the vector-meson polarization, MPS and MV are the pseudoscalar

and vector masses, A0 and Vi the temporal and spatial components of the axial
and vector currents respectively, and ZV,A the corresponding renormalization
constants.

In tab. 5 we summarize the parameters used in the simulations. The bare
lattice decay constants have been extracted from the appropriate correlation
functions as described in ref. [34], to which we refer for details. In tab. 6
and 7 we present the results for the decay constants, both the bare unrenor-
malized values in lattice units and the renormalized ones in physical units,
obtained using the renormalization constants at µa ≃ 1. In the estimate of
the error on renormalized decay constants we have neglected the errors on the
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Fig. 5. Renormalization of the pseudoscalar to scalar density ratio for (a) SW and (b)
Wilson action as a function of µ for all couplings. The lattice spacing is determined
from MK∗.

renormalization constants. The non-perturbatively renormalized values and
the experimental values present roughly a 10 − 15% discrepancy, which is
to be expected, considering that we have performed all calculations in the
quenched approximation. It is important, though, to note that compared to
the values obtained with perturbative renormalization in ref. [34], the values
obtained with a non-perturbative renormalization are in general closer to the
experimental results. We have not attempted an extrapolation to the con-
tinuum limit as the physical volume at the smallest coupling is too small to
confidently extract hadronic matrix elements.

6 Conclusions

In this paper we have performed a systematic study of the renormalization of
quark bilinears, in a non-perturbative fashion. We have also analyzed the dis-
cretization effects, by performing our calculations with two different actions,
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β 6.0 6.0 6.2 6.2 6.4 6.4

Action SW Wilson SW Wilson SW Wilson

# Confs 490 320 250 250 400 400

Volume 183 × 64 183 × 64 243 × 64 243 × 64 243 × 64 243 × 64

κ 0.1425 0.1530 0.14144 0.1510 0.1400 0.1488

0.1432 0.1540 0.14184 0.1515 0.1403 0.1492

0.1440 0.1550 0.14224 0.1520 0.1406 0.1496

0.14264 0.1526 0.1409 0.1500

t1 − t2 15-28 15-28 18-28 18-28 24-30 24-30

a−1(K∗) 2.123(62) 2.258(50) 2.719(141) 2.993(94) 4.004(195) 4.149(161)

Table 5
Summary of the parameters used in the calculation of the matrix elements.

β 6.0 6.0 6.2 6.2 6.4 6.4

Action SW Wilson SW Wilson SW Wilson

(fK a)/ZA 0.0735(18) 0.0944(26) 0.0540(23) 0.0640(21) 0.0406(14) 0.0480(16)

(fπ a)/ZA 0.0661(21) 0.0878(31) 0.0470(28) 0.0568(24) 0.0370(16) 0.0438(19)

1/(fφZV ) 0.348(9) 0.451(11) 0.332(8) 0.417(8) 0.284(9) 0.363(8)

1/(fK∗ZV ) 0.366(14) 0.482(16) 0.359(20) 0.446(15) 0.290(13) 0.377(12)

1/(fρZV ) 0.384(20) 0.513(21) 0.386(33) 0.475(22) 0.297(17) 0.391(17)

Table 6
Lattice bare decay constants for all couplings and both actions.

β Exp 6.0 6.0 6.2 6.2 6.4 6.4

Action SW Wilson SW Wilson SW Wilson

fK 0.1598 0.163(12) 0.172(6) 0.150(8) 0.155(5) 0.164(9) 0.164(8)

fπ 0.1307 0.147(12) 0.160(7) 0.131(10) 0.138(6) 0.150(10) 0.150(10)

1/fφ 0.23 0.294(8) 0.319(8) 0.281(7) 0.302(6) 0.245(8) 0.271(6)

1/fK∗ 0.309(12) 0.341(11) 0.304(17) 0.323(11) 0.251(11) 0.282(9)

1/fρ 0.28 0.324(17) 0.363(15) 0.327(28) 0.344(16) 0.256(14) 0.293(12)

Table 7
Non-perturbatively renormalized decay constants (in GeV) for all couplings and
both actions.

the standard Wilson action and the tree-level improved SW-Clover action, at
three different values of the couplings. We have performed a RG analysis at
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the NNLO and defined RGI values for the scale dependent renormalization
constants. We have also used this approach to estimate the systematic error
induced by discretization. Finally, we have applied our results to the calcu-
lation of the pseudoscalar and vector decay constants and we find that the
non-perturbatively renormalized values, albeit with still sizable statistical er-
rors, show a trend towards the experimental values with respect to the ones
obtained with perturbative renormalization. With our data an extrapolation
to the continuum limit is not reliable as the physical volume at the smallest
coupling is too small to confidently extract hadronic matrix elements.
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