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Abstract

In this work, we find the expressions of continuum HQET four-fermion operators in
terms of lattice operators in perturbation theory. To do so, we calculate the one–loop
continuum–lattice HQET matching for the complete basis of ∆B = 2 and ∆B = 0
operators (excluding penguin diagrams), extending and completing previous studies.
We have also corrected some errors in previous evaluations of the matching for the
operator OLL. Our results are relevant to the lattice computation of the values of
unknown hadronic matrix elements which enter in many very important theoretical
predictions in B–meson phenomenology: B0-B̄0 mixing, τB and τBs lifetimes, SUSY
effects in ∆B = 2 transitions and the Bs width difference ∆ΓBs . We have reanalyzed
our lattice data for the BB parameter of the B0-B̄0 mixing on 600 lattices of size
243 × 40 at β = 6.0 computed with the SW-Clover and HQET lattice actions. We
have used the correct lattice–continuum matching factors and boosted perturbation
theory with tadpole improved heavy–light operators to reduce the systematic error in
the evaluation of the renormalization constants. Our best estimate of the renormal-
ization scale independent B–parameter is B̂B = 1.29 ± 0.08 ± 0.06, where the first
error is statistical and the second is systematic coming from the uncertainty in the
determination of the renormalization constants. Our result is in good agreement with
previous results obtained by extrapolating Wilson data. As a byproduct, we also ob-
tain the complete one–loop anomalous dimension matrix for four–fermion operators in
the HQET.
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1 Introduction and Motivation.

B–hadron decays are a very important source of information on the physics of the
standard model (SM) and beyond. In many important cases, long distance strong con-
tributions to these processes can be separated into matrix elements of local operators.
Lattice QCD can then be used to compute these non–perturbative parameters from first
principles. A list of some four–fermion operators relevant to B–meson phenomenology
is the following:

∆B = 2 operators

OLL(RR) = b̄ γµ (1 ∓ γ5) q b̄ γµ (1 ∓ γ5) q

OS
LL(RR) = b̄ (1 ∓ γ5) q b̄ (1 ∓ γ5) q

OLR(RL) = b̄ γµ (1 ∓ γ5) q b̄ γµ (1 ± γ5) q

OS
LR(RL) = b̄ (1 ∓ γ5) q b̄ (1 ± γ5) q (1)

∆B = 0 operators

QLL(RR) = b̄ γµ (1 ∓ γ5) q q̄ γµ (1 ∓ γ5) b

QS
LL(RR) = b̄ (1 ∓ γ5) q q̄ (1 ∓ γ5) b

QLR(RL) = b̄ γµ (1 ∓ γ5) q q̄ γµ (1 ± γ5) b

QS
LR(RL) = b̄ (1 ∓ γ5) q q̄ (1 ± γ5) b (2)

where q denotes a light quark u, d or s. The corresponding operators with a ta (the
generator of the SU(3) group) insertion, denoted by OtLL . . . etc, will also be consid-
ered.

As is well known, OLL determines the theoretical prediction of the B0-B̄0 mixing
in the SM. Moreover, OLL together with OS

LL(RR), ORR and OS
LR, parameterize SUSY

effects in ∆B = 2 transitions [1]. OLL and OS
LL determine the Bs width difference

∆ΓBs [2]. The ∆B = 0 operators QLL and QS
LR, parameterize spectator effects in the

τB and τBs lifetimes [3]. For the four–fermion operators with a ta insertion: OtSLL(RR)
and OtSLR contribute to SUSY effects in ∆B = 2 transitions [1], and QtLL and QtSLR

to spectator effects in the B-meson lifetimes [3].
Our aim is to non-perturbatively evaluate the matrix elements between B–meson

states of all the operators in eqs.(1) and (2), using lattice simulations of the b–quark in
the HQET. These non perturbative parameters can also be measured in principle with
propagating b quarks by simulating in the charm mass region and extrapolating to the
b quark mass. The procedure to perform the transition from QCD to lattice HQET,
a combination of analytic and numerical calculations, can be split into the following
four steps:

First Step: the continuum QCD – HQET matching.

The QCD operators are expressed as linear combinations of HQET ones in the
continuum at a given high scale, say, µ = mb.
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Second Step: running down to µ = a−1 in the HQET.

The HQET operators obtained in step 1 at the high scale µ = mb are evolved
down to a lower scale µ = a−1, appropriate for lattice simulations, using the
HQET NLO renormalization group equations.

Third Step: continuum–lattice HQET matching.

Having obtained the continuum HQET operators at the scale µ = a−1, they are
expressed as a linear combination of lattice HQET operators at this scale. The
procedure is very similar to step 1: two amplitudes are matched at one-loop order,
one in the continuum HQET and the other in the lattice HQET.

Fourth Step: lattice computation of the matrix elements.

The matrix elements of the lattice HQET operators in Step 3, are measured
by Monte Carlo numerical simulations on the lattice. Using these values and the
chain of matching equations in steps 1 to 3, the matrix elements of the continuum
QCD operators relevant to phenomenology can be determined.

In this work, we deal with step 3, i.e. we find the expressions of the continuum
HQET operators in terms of lattice HQET ones using continuum and lattice perturba-
tion theory at one loop. The calculation of steps 1 and 2, and the numerical simulation
in step 4 are in progress and will be published elsewhere.

We would like to stress that a non perturbative determination of the lattice renor-
malization constants would be preferable because at the values of the coupling at which
the simulations are performed, the one–loop perturbative corrections are not small, due
to the appearance of tadpole diagrams. In principle, the Martinelli’s et al [4] method
for non perturbative renormalization may be utilized to avoid the problems with per-
turbation theory. Unfortunately, however, the application of the former to the HQET
is not straightforward [5]. The key observation here is that HQET lattice simulations
suggest that the finite heavy quark propagator in the Landau gauge has the form [6]

S(~x, t) = δ(~x) θ(t)A(t) e−(λ−δm̄) t (3)

where A(t) is a smooth unknown function of t, λ is a constant and δm̄ is the residual
mass (also called the HQET mass counter–term). The latter is needed to remove the
linear divergence in λ. On the one hand, the difference mS ≡ λ− δm̄ should be small
in order to reduce O(mSa) terms. On the other hand, however, a too small mS implies
that the heavy quark propagator goes to a constant. This fact makes its numerical
Fourier transform, a necessary ingredient in the Martinelli’s et al method, very prob-
lematic due to the appearance of huge finite time effects of O(e−mS T ), where T is
the lattice time length. Therefore, the non perturbative calculation of renormalization
constants in the HQET is difficult and requires more careful studies.

The paper is organized as follows. We begin by introducing the lagrangian of
the HQET in the continuum and its discretized version which we will use in lattice
simulations. The corresponding Feynman rules are derived for both heavy quarks
and antiquarks. In section 3, we give the lattice lagrangian for light quarks and the
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corresponding Feynman rules. The strategy of the calculation is presented in section
4. In this section, our renormalization prescription is discussed in detail. Moreover,
we study the subtle point of the presence of evanescent operators and their effect on
the matching and higher–order calculations. Then, we present the calculation details
of the Feynman diagrams in the continuum and on the lattice HQET using several
renormalization schemes. In section 6, our results for the one–loop continuum–lattice
matching are given and compared with previous partial calculations. We also discuss
the effects of a change of the continuum renormalization scheme. Then we reanalyze the
B0-B̄0 mixing using the correct matching factors. Finally, we present our conclusions
in section 8. In addition, we include one appendix where the relevant formula used in
our calculation are collected.

2 Feynman rules for the continuum and discre-

tized HQET lagrangians.

The Minkowski continuum lagrangian for a field h(x) which annihilates a static heavy
quark and for a field h̃(x) which annihilates a static heavy antiquark is

Lcont
HQET (x) = h†(x) iD0 h(x) + h̃(x) iD0 h̃

†(x) (4)

where iDµ is the covariant derivative i ∂µ + g taAa
µ(x) with Aa

µ(x) the gluon field and

ta = λa/2 the generators of the SU(3) color group normalized by tr(tatb) = δab/2. A
very important property of the HQET fields h and h̃ is the fact that γ0 h = h and
h̃ γ0 = − h̃. We will make extensive use of these properties in our calculation.

On the lattice, in Euclidean space, we have first to choose a discretization for the
continuum covariant derivative Dµ, which has the correct continuum limit. Obviously
there are many equivalent possibilities. The point is that the discretization we use in
the perturbative calculation of the lattice operators must be the same as the one with
which we perform the numerical simulation. Otherwise, the mismatch will generate
spurious uncontrolled finite contributions to the final results. Our convention is to
discretize backward in time, as first proposed by Eichten [7], so that the lattice HQET
action is

SHQET = a3
∑

n

{

h†(n)
[

h(n) − U †
4 (n− 4̂)h(n − 4̂)

]

+ h̃(n)
[

U4(n) h̃†(n+ 4̂) − h̃†(n)
]}

(5)

where n denotes a lattice site, 4̂ is the unit vector in the Euclidean time direction and
U is defined in eq.(6) bellow.

From eqs.(4) and (5), it is easy to find the Feynman rules which are collected in
Table 1. Some remarks are in order here. To perform a weak–coupling expansion in
terms of g of the lattice lagrangian, we have parameterized the link variables as

U †
µ(x) = e−iag Aa

µ(x) ta (6)

3



Quark Minkowski HQET Lattice HQET

Propagator i
p0 + i ǫ

a
1 + ǫ − e−i p4 a

quark-gluon vertex + i g taβ α g
µ0 − i g taβ α δµ4 e

− i p′
4

a

seagull vertex does not exist − 1/2 a g2 δµ4 δν4 { ta, tb }β α e
− i p′

4
a

Antiquark Minkowski HQET Lattice HQET

Propagator i
p0 + i ǫ

a
1 + ǫ − e−i p4 a

quark-gluon vertex − i g taα β g
µ0 + i g taα β δµ4 e

− i p′
4

a

seagull vertex does not exist + 1/2 a g2 δµ4 δν4 { ta, tb }α β e
− i p′

4
a

Table 1: Feynman rules for the continuum Minkowski HQET and the discretized Euclidean
HQET. Our conventions are discussed in the text.

where Aa
µ(x) is the gluon field and a is the lattice spacing. In Table 1, the propaga-

tor corresponds to a quark (antiquark) of momentum p, and a color conservation is
understood. The quark–gluon vertex corresponds to an incoming quark (antiquark) of
color α and momentum p, outgoing quark (antiquark) of color β and momentum p′

and incoming gluon of color index a and Lorentz index µ. The lattice seagull vertex,
which will give rise to tadpole diagrams, is defined as the quark–gluon vertex except
for an additional incoming gluon with color index b and Lorentz index ν.

3 The light–quark Wilson and Clover actions.

The operators in eqs.(1) and (2) contain both a heavy and a light quark. The dynamics
of the former is governed by the HQET lagrangian described in section 2. In this
section, we consider the dynamics of the light degrees of freedom.

In the continuum, we use the standard QCD lagrangian for light quarks, which
Feynman rules can be found in many text books (see, for example, ref.[8]).

On the lattice, and in our numerical simulations, light quark propagation is de-
scribed through the Wilson action [9]

SW = SG[U ] + a4
∑

n,µ

{

− 1

2 a

[

ψ̄(n) (r − γµ)Uµ(n)ψ(n + µ̂)

+ ψ̄(n+ µ̂) (r + γµ)U †
µ(n)ψ(n)

] }

+ a4
∑

n

[

ψ̄(n) (m0 +
4r

a
)ψ(n)

]

(7)

where SG[U ] is the standard Wilson plaquette action [9], r is the Wilson parameter
and m0 is the bare light fermion mass.
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An important source of systematic error in lattice simulations is the finiteness of the
lattice spacing, a. It is well–known that hadronic matrix elements computed with the
Wilson action differ from the corresponding continuum ones by terms of O(a). Some
methods have been devised to reduce the cut–off dependence of the lattice hadronic
matrix elements involving Wilson fermions. In this paper, we will apply the method of
improvement first proposed by B. Sheikholeslami and R. Wohlert (SW) long ago [10],
which has been deeply studied in ref.[11]. The main idea of this technique is to use the
freedom we have in the definition of the discretized quark action to eliminate all terms
of O(a) from the lattice matrix elements, by adding some irrelevant O(a) terms to the
action (7) and redefining the lattice fields ψ.

The first recipe is to perform all calculations with the so–called SW-Clover action,
given by

SI = SW − a4
∑

n,µ,ν

[

i g
ar

4
ψ̄(n)σµν Pµν(n)ψ(n)

]

(8)

where Pµν(n) is the discretized field strength tensor defined by

Pµν =
1

4a2

4
∑

i=1

1

2ig
(Ui − U †

i ) (9)

and the sum is over the four plaquettes in the µ–ν plane, stemming from the point n
and taken counterclockwise.

The second recipe is the rule for constructing improved operators: the quark fields
in lattice operators must be rotated

ψ′ =

(

1 − a
r

2

[

z
~
D
/

− (1 − z)m0

])

ψ (10)

where
~
D
/

is the symmetric lattice covariant derivative and z is an arbitrary real number.

It can be demonstrated that on–shell lattice matrix elements of improved operators
computed with the SW–Clover action do not contain O((g2)n a logn a) terms for any
value of z. We will take z = 1 so that the rotated operator do not depend on m0. The
reason for this choice is that in this case perturbative calculations are more accurate
[11].

The same method can be applied to the Eichten’s action for heavy quarks in eq.(5).
In ref.[12], it is shown, however, that for O(a) improvement of on–shell matrix ele-
ments, no modification of the static quark propagator is needed. Therefore, in order to
eliminate O(a) terms from on–shell matrix elements of heavy–light operators, we have
to perform the calculation with the SW-Clover action and rotate the light quark fields
only. For heavy quarks, the usual unimproved Eichten’s action (5) can be used.

For practical reasons, instead of rotating the fields in the numerical simulation, a ro-
tation of the light–quark propagator is done [13]. This technique is equivalent to a new
definition of the lattice quark fields and automatically improves the operators. Since
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Propagator
[

1/a
∑

µ (i γµ sin(pµa)) +
(

m0 + 2 ra
∑

µ sin2((pµa)/2)
) ]−1

Wilson quark-gluon vert. (−i g) λ
a
βα
2

[

γρ cos((p + p′)ρ
a
2) − i r sin((p + p′)ρ

a
2)
]

e−ip′ρ
a
2 eipρ

a
2

Impr. quark-gluon vert. −g λ
a
βα
2

r
2

[

∑

ν ( σρν sin((p − p′)νa) ) cos((p − p′)ρ
a
2)
]

e−ip′ρ
a
2 eipρ

a
2

Impr. quark-quark vert. −r4 δαβ
∑

µ γµ
[

eipµa − e−ipµa
]

quark-gluon-quark vert. (−i g a)r4
λa

βα
2 γρ

[

e±ipρa + e∓ipρa e−iqρa
]

Table 2: Feynman rules for the lattice Wilson and SW–Clover actions for light quarks.

this method is much easier to be implemented on the computer than the improvement
with rotated fields, we will apply it in this paper.

To be definite, let us consider a generic ∆B = 2 effective operator with arbitrary
Γ1 and Γ2 dirac matrices

Õ(n) =
(

h†(n) Γ1 ψ(n)
) (

h̃(n) Γ2 ψ(n)
)

(11)

The improved operator ÕI is obtained by rotating the light–quark fields according to
eq.(10), keeping terms of order O(a2) for the second method of improvement [13],

ÕI(n) = Õ(n) − a
r

2

[(

h†(n) Γ1
~
D
/

ψ(n)

)

(

h̃(n) Γ2 ψ(n)
)

+
(

h†(n) Γ1 ψ(n)
)

(

h̃(n) Γ2
~
D
/

ψ(n)

)]

+ a2
(

r

2

)2 (

h†(n) Γ1
~
D
/

ψ(n)

) (

h̃(n) Γ2
~
D
/

ψ(n)

)

(12)

Similarly, we can improve the ∆B = 0 operators.
From eqs.(7), (8) and (12), we can obtain the Feynman rules which are given in

Table 2. In this Table, the propagator corresponds to a quark of momentum p and bare
mass m0, and color conservation is understood. Both the Wilson and the improved
quark–gluon vertex, the latter coming from the SW term in action (8), correspond
to an incoming quark of color α and momentum p, outgoing quark of color β and
momentum p′ and incoming gluon of color index a and Lorentz index ρ. The other
two vertices in Table 2 come from the rotation of the four–quark operators in eq.(12).
In the improved quark–quark vertex we have an incoming or outgoing light–quark of
color α and momentum p. In the quark–gluon–quark vertex, we have in addition an
incoming gluon with momentum q, color index a and Lorentz index ρ and the sign of
the momentum p in the exponentials is + for an incoming light quark and − for an
outgoing one. For the gluon, we use the standard Wilson action [9].
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4 The strategy: the subtle point of the renor-

malization scheme dependence.

Our aim is to express the continuum HQET operators at the scale µ = a−1 as a linear
combination of lattice HQET operators at this scale in such a way that all continuum
matrix elements be equal to their corresponding lattice counterparts up to one–loop
order in perturbation theory.

The procedure is well known. The relation between the continuum and lattice
operators to one–loop can be written as

Ocon
i =

∑

j

[ δij +
g2

16π2 Zij ]Olat
j (13)

By sandwiching eq.(13) between appropriate, but arbitrary, initial and final states, one
can obtain the renormalization constants Z. In fact, some amplitudes are evaluated
up to one–loop in perturbation theory both in the continuum and the lattice theory.
After renormalization one gets

〈Ocon(lat)
i 〉 =

∑

j

[ δij +
g2

16π2 c
con(lat)
ij ] 〈Ocon(lat)

j 〉(0) (14)

where (0) denotes the bare matrix element. Thus, the constants Z are obtained by
simply subtracting at the scale given, Zij = ccon

ij − clat
ij ; this is the matching procedure.

Note that the amplitudes can be regularized and renormalized using, in general,
different schemes in both theories. Some subtle points to be stressed are the following:

1. the matching must be calculated with the same action as for the numerical sim-
ulation because the matching coefficients depend on the action to be simulated.

2. due to the breaking of chiral symmetry induced by the Wilson term for light
quarks, the original operators can mix with lattice operators with different chi-
rality.

3. the matching constants Z’s depend on the renormalization procedure chosen to
define the operators in the continuum. This dependence will cancel with the
remaining scheme dependence of the running in step 2 of the Introduction. This
subtle point will be studied in detail in a forthcoming paper.

Therefore, it is very important to clearly define the regularization and renormalization
schemes we utilize in our calculation. Many prescriptions can be chosen to regular-
ize the corresponding Feynman integrals: NDR (Näıve Dimensional Regularization),
DRED (Dimensional Reduction), HV (the ’t Hooft–Veltman scheme) . . . etc. Differ-
ent regularization schemes will give rise to different finite parts in the amplitudes and
hence to different matching coefficients. Having selected the regularization procedure,
we have to choose the renormalization scheme to eliminate ultraviolet divergences, for
example MOM (momentum subtraction), MS . . . etc.

7



Apparently, the continuum operators are now completely defined. A more careful
analysis demonstrates, however, that this is not the case. In fact, there is another
prescription to be set, namely, how to deal with the evanescent operators which un-
avoidably are generated [14]. We will explicitly show that different treatments of the
evanescent operators will give rise to different finite contributions to the amplitude even
when we return to four dimensions. The mechanism is clear: evanescent operators are
operators which vanish in four dimensions, in other words, they are operators of order
O(n − 4), with n = 4 + 2ǫ. When an evanescent operator is produced in a divergent
diagram, terms of the form 1/ǫ × evanescent arise. Therefore, O(ǫ0) contributions are
generated and their value depend on the prescription we use to subtract the evanescent
operators.

To sum, it is not sufficient to specify the scheme we use to renormalize our Feynman
diagrams, we have also to define the prescription to eliminate the evanescent operators
[14]. This fact results in the existence of families of MS schemes which members differ
in the treatment applied to the evanescent operators: we can, for instance, simply
subtract them together with the divergent pole or project the amplitudes onto some
convenient, but arbitrary, operator basis using some well–defined projectors. Note
that in the second case, the projectors can be chosen in many different ways, each of
which will define a different member in the corresponding scheme family. Of course,
we can use our favourite prescription. It is immaterial with which one we perform the
calculation. At the end, when the continuum QCD operator will be constructed in
terms of HQET lattice operators, all dependence on the intermediate renormalization
scheme used to define continuum HQET operators will drop and the final result will
depend on the definition of the QCD operators only. The key point here is to be
consistent during the whole procedure so that no spurious scheme dependence creep
into our calculation.

5 The calculation.

We compute the matrix elements of the ∆B = 2 operators in eq.(1) between an initial
B0(b̄q) state and a B̄0(q̄b) final state. For the ∆B = 0 operators in eq.(2) we calculate
the matrix elements between an initial and a final B̄0(q̄b) state neglecting penguin dia-
grams [3]. We set the light–quark mass to zero and take our momentum configuration
to be vanishing incoming and outgoing momenta of both light and heavy quarks. To
eliminate the infrared divergences which appear at zero external momenta, we give the
gluon a mass, λ. This procedure is justified at one loop order.

On the lattice, the Feynman diagrams to be evaluated are depicted in fig. 1. The
box represents an insertion of the four–fermion operator. The cross vertex stands for
the contribution coming from the rotated part of the improved operator (see the entries
for the improved quark-quark and quark-gluon-quark vertices in Table 2). Note that
each light quark–gluon vertices in all diagrams consists of the Wilson vertex plus the
improved contribution coming from the Clover action (see entries for the Wilson and
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Improved quark-gluon vertices in Table 2). Ultraviolet divergences are regulated by
the lattice cut–off, a.

In practice, we project the lattice amplitudes onto the Dirac basis B = {γ∓, γ∓±,
γs
∓, γs

∓±, σ∓ }, where γ∓ denotes the Dirac structure γµ(1 ∓ γ5) ⊗ γµ(1 ∓ γ5), γ∓± is
γµ(1∓ γ5)⊗ γµ(1± γ5), γ

s
∓ is (1∓ γ5)⊗ (1∓ γ5), γ

s
∓± is (1∓ γ5)⊗ (1± γ5) and finally

σ∓ is σµν(1∓γ5)⊗σµν(1∓γ5). Notice also that σ∓± vanishes in four dimensions. The
projectors are defined by (the sign is + in Euclidean space and − in Minkowski space)

Pγ∓(Γ1 ⊗ Γ2) = Tr [ Γ1 γ
µ ( 1 ± γ5 ) Γ2 γµ ( 1 ± γ5 ) ] /(32n (2 − n))

Pγ∓±(Γ1 ⊗ Γ2) = Tr [ Γ1 ( 1 ∓ γ5 ) Γ2 ( 1 ± γ5 ) ] /(32n)

Pγs
∓
(Γ1 ⊗ Γ2) = Tr [ Γ1 ( 1 ∓ γ5 ) Γ2 ( 1 ∓ γ5 ) ] (−n2 + 9n− 16)/(256 (n − 2))

± Tr [ Γ1 σ
µν ( 1 ∓ γ5 ) Γ2 σµν ( 1 ∓ γ5 ) ] /(256 (2 − n))

Pγs
∓±

(Γ1 ⊗ Γ2) = Tr [ Γ1 γ
µ ( 1 ± γ5 ) Γ2 γµ ( 1 ∓ γ5 ) ] /(32n)

Pσ∓(Γ1 ⊗ Γ2) = Tr [ Γ1 σ
µν ( 1 ∓ γ5 ) Γ2 σµν ( 1 ∓ γ5 ) ] /(256n (n − 1) (2 − n))

± Tr [ Γ1 ( 1 ∓ γ5 ) Γ2 ( 1 ∓ γ5 ) ] /(256 (2 − n)) (15)

where n = 4 (n = 4 + 2ǫ) for a four (n) dimensional gamma algebra and Γ1,2

are arbitrary Dirac matrices. On the lattice, γµ are the Euclidean gamma matri-
ces satisfying the anticommutation relation {γµ, γν} = 2 δµν in four dimensions and
σµν = 1/2 [γµ, γν ]. With our definition, all operators in the basis B project back onto
themselves.

Since HQET fields h satisfy γ0 uh = uh and γ0 vh = −vh, where uh and vh are the
spinors for a heavy quark and antiquark, we can reduce the number of independent
lattice amplitudes through the following Euclidean–space relationships

[ūh σ
µν (1 ∓ γ5) vq v̄h σµν (1 ∓ γ5)uq] =

−4 ([ūh (1 ∓ γ5) vq v̄h (1 ∓ γ5)uq] + [ūh γ
µ (1 ∓ γ5) vq v̄h γµ (1 ∓ γ5)uq])

[ūh σ
µν (1 ∓ γ5) vq v̄q σµν (1 ∓ γ5)uh] = (16)

+4 ([ūh (1 ∓ γ5) vq v̄q (1 ∓ γ5)uh] − [ūh γ
µ (1 ∓ γ5) vq v̄q γµ (1 ± γ5)uh])

where uq and vq are the light quark and antiquark spinors. The first relation can be
used to reduce ∆B = 2 amplitudes and the second for ∆B = 0 ones.

Moreover, since Fierz transformations are well defined in four dimensions, we have
for ∆B = 2 operators

F [γµ (1 ∓ γ5) ⊗ γµ (1 ∓ γ5)] = − [γµ (1 ∓ γ5) ⊗ γµ (1 ∓ γ5)]

F [γµ (1 ∓ γ5) ⊗ γµ (1 ± γ5)] = 2 [(1 ± γ5) ⊗ (1 ∓ γ5)]

F [(1 ∓ γ5) ⊗ (1 ∓ γ5)] = [(1 ∓ γ5) ⊗ (1 ∓ γ5)]

+
1

2
[γµ (1 ∓ γ5) ⊗ γµ (1 ∓ γ5)] (17)

where F denotes the Fierz transformation and we have omitted for simplicity the
external spinors.
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In the continuum, only diagrams D1 to D6 contribute to the amplitude, for neither
improved nor tadpole vertices appear (see Table 1). Ultraviolet divergences will be reg-
ulated using dimensional regularization. Unlike the lattice case, evanescent operators
do arise in the continuum so that we have to give a prescription to deal with them.

If the gamma algebra is in n dimensions, as in NDR, the relations in eq.(17) are not
valid because Fierz transformations are not well defined. Moreover, since the ”magic”
formulae for reducing the product of three gamma matrices is correct only in four
dimensions, eq.(16) holds up to evanescent operator contributions. For instance, the
continuation of the first relation in eq.(16) to n dimensions can be defined by

[σµν (1 ∓ γ5) ⊗ σµν (1 ∓ γ5)] =

f(n) ([γµ (1 ∓ γ5) ⊗ γµ (1 ∓ γ5)] + [(1 ∓ γ5) ⊗ (1 ∓ γ5)]) + σf (18)

where f(n) depends on the choice of the evanescent operator σf . A näıve prescription
is to impose that f(n) = 4 as in four dimensions (notice that there is a change of sign
between Minkowski and Euclidean spaces). However, we can equally well take f(n) = n
by redefining σf . A very interesting choice is f(n) = 4(1 + 1/6 ǫ). This prescription
is useful because leads to results which are Fierz symmetric. Notice that all three
prescriptions are valid and differ only in the definition of the evanescent operator σf .

If we use DRED, where the positions and momenta are continued to n dimen-
sions whereas all other tensors, in particular the gamma algebra, are leaving in four
dimensions [15], eqs.(16) and (17) hold but new independent operators arise [16]

γ̄∓ ≡ [γµ (1 ∓ γ5) ⊗ γν (1 ∓ γ5)] g
(n)
µν ≡ n

4
γ∓ + γf

∓

γ̄∓± ≡ [γµ (1 ∓ γ5) ⊗ γν (1 ± γ5)] g
(n)
µν ≡ n

4
γ∓± + γf

∓±

σ̄∓ ≡ [σµν (1 ∓ γ5) ⊗ σρτ (1 ∓ γ5)] g
(4)
µρ g

(n)
ντ ≡ n

4
σ± + σf

∓ (19)

where g
(4)
µν and g

(n)
µν are the metric tensors in four and n dimensions respectively. The

Dirac structures γ∓, γ∓± and σ∓ are defined similarly to those with a bar except for
the fact that Lorentz indices are contracted in four dimensions only. We have also
defined three evanescent operators γf

∓, γf
∓± and σf

∓ which will prove to be useful in the
calculation. Notice that the operator σ̄±∓, with the same notation as in eq.(19), is an
evanescent operator because σ±∓ vanishes in four dimensions.

In the scheme proposed by ’t Hooft and Veltman (HV) [17], γ5 anticommutes with
the gamma matrices in four dimensions but commutes with those in n− 4 dimensions.
In addition, the rule to consistently define the coupling to chiral fields in the Stan-
dard Model implies that Dirac matrices in the four–fermion operators must be in four
dimensions.

In order to show the dependence of the matching on the prescription chosen to
define the continuum operators, we will perform the calculation in several schemes,
namely,
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NDRξ: NDR–MS, where we project onto the basis B in n dimensions with eq.(15).
The HQET magic relation for ∆B = 2 operators (18), used to reduce the number
of independent amplitudes, is taken with f(n) = 4 ( 1 + ξ ǫ ), where ξ is an
arbitrary real number. A similar prescription is used for ∆B = 0 operators.

DRED I: DRED–MS, where we subtract with the basis B plus the evanescent oper-
ators { γ∓ − γ̄∓, γ∓± − γ̄∓±, σ∓ − σ̄∓, σ̄∓± }.

DRED II: DRED–MS, where we subtract with the basis B plus the evanescent op-
erators { γf

∓, γf
∓±, σf

∓, σ̄∓± }.
HV: HV–MS, where we project onto the basis B in four dimensions with eq.(15).

Notice that DRED II is equivalent to eliminate the evanescent operators by simply
projecting them out because Pi(γf ) = 0 (γf being any of the evanescent operators in
the basis) for all projectors Pi in four dimensions in eq.(15).

6 The Results.

The continuum HQET operators ÕLL, ÕLR, ÕS
LL and ÕS

LR can be written in terms of
lattice operators as

ÕLL(µ) =

(

1 +
g2
s

16π2

[

−4 ln

(

λ2

µ2

)

+
4 + 3 z + 3 z′′′

3

]

+
g2
lat

16π2

[

4 ln(λ2a2) + (DLL + DI
LL + DII

LL)
]

)

Olat
LL

+
g2
lat

16π2 (DRR + DI
RR + DII

RR)Olat
RR

+
g2
lat

16π2 (DN + DI
N )Olat

N (20)

ÕLR(µ) =

(

1 +
g2
s

16π2

[

−7/2 ln

(

λ2

µ2

)

+
23 + 18 z − z′ + 14 z′′′

12

]

+
g2
lat

16π2

[

7/2 ln(λ2a2) + (DLR + DI
LR + DII

LR)
]

)

Olat
LR

+

(

g2
s

16π2

[

3 ln

(

λ2

µ2

)

+
−1 + 2 z − z′ − 2 z′′′

2

]

+
g2
lat

16π2

[

−3 ln(λ2a2) + (D̄S
RL + D̄S I

RL + D̄S II
RL )

]

)

Olat S
RL

+
g2
lat

16π2 (DM + DI
M )Olat

M (21)

ÕS
LL(µ) =

(

1 +
g2
s

16π2

[

−4/3 ln

(

λ2

µ2

)

+
1 + 4 z + z′ + z′′ + 3 z′′′

3

]

11



+
g2
lat

16π2

[

4/3 ln(λ2a2) + (DS
LL + DS I

LL + DS II
LL )

]

)

Olat S
LL

+

(

g2
s

16π2

[

2/3 ln

(

λ2

µ2

)

− 3 + z′ + z′′ + 3 z′′′

24

]

+
g2
lat

16π2

[

−2/3 ln(λ2a2) + (D̄LL + D̄I
LL + D̄II

LL)
]

)

Olat
LL

+
g2
lat

16π2 (D̄RR + D̄I
RR + D̄II

RR)Olat
RR

+
g2
lat

16π2 (DP + DI
P )Olat

P (22)

ÕS
LR(µ) =

(

1 +
g2
s

16π2

[

−7/2 ln

(

λ2

µ2

)

+
22 + 19 z + 15 z′′′

12

]

+
g2
lat

16π2 +
[

7/2 ln(λ2a2) + (DS
LR + DS I

LR + DS II
LR )

]

)

Olat S
LR

+

(

g2
s

16π2

[

3/4 ln

(

λ2

µ2

)

+
− 2 + 3 z − z′′′

8

]

+
g2
lat

16π2

[

−3/4 ln(λ2a2) + (D̄RL + D̄I
RL + D̄II

RL)
]

)

Olat
RL

+
g2
lat

16π2 (DQ + DI
Q)Olat

Q (23)

where the analytical expressions for the lattice constants, D, can be found in the
appendix A. Their numerical values for the Wilson parameter r = 1.0 are given in
Table 3. In obtaining these numbers, we have used a reduced value of the heavy–quark
self–energy constant e = 4.53 (to be compared with the non reduced one e = 24.48)
which is consistent with fitting the time dependence of the Monte Carlo data through
AeB t. Notice that we have explicitly separated the contributions coming from the
Wilson action (denoted by DLL . . . etc), the Clover action with improved operators
not including O(a2) terms (denoted by DI

LL . . . etc) and including O(a2) corrections
(denoted by DII

LL . . . etc). The new lattice operators ON , OM , OP and OQ are defined
by

Olat
N = Olat

LR + Olat
RL + 2 (Olat S

LR + Olat S
RL )

Olat
M = 3/2 (Olat

LL + Olat
RR ) + 4 (Olat S

LL + Olat S
RR )

Olat
P = Olat

LR + Olat
RL + 6 (Olat S

LR + Olat S
RL )

Olat
Q = Olat

LL + Olat
RR + 8 (Olat S

LL + Olat S
RR ) (24)

As can be seen from eqs.(20) to (23), the lattice transcriptions of the continuum
operators depend on the renormalization scheme used to define the latter, including
the prescription to deal with the evanescent operators. If fact, z to z′′′ parameterize

12



Constant Wilson Impr. I Impr. II Constant Wilson Impr. I Impr. II

DLL −41.24 16.30 0.20 DS
LL −30.87 16.50 0.04

DRR −1.60 −0.40 −1.23 D̄LL 2.59 0.05 −0.04
DN −14.44 0.62 0 D̄RR 0.40 0.10 0.31

DP 1.81 −0.08 0

DLR −37.83 13.33 −0.94 DS
LR −37.83 13.33 −0.94

D̄S
RL 9.80 1.10 −0.73 D̄RL 2.45 0.28 −0.18

DM −7.22 0.31 0 DQ 1.81 −0.08 0

Table 3: Numerical values of the constants D for the Wilson parameter r = 1.0.

Scheme z z′ z′′ z′′′

NDRξ 1 0 ξ 0
DRED I 0 0 0 0
DRED II 0 1 0 0
HV 0 0 0 1

Table 4: Values of the scheme dependent parameters z’s.

the scheme dependence in the continuum and are defined in Table 4. A interesting par-
ticular value of ξ is ξ = 1/3 which corresponds to a NDR scheme which preserves Fierz
symmetry, i.e. renormalization and Fierz transformations commutate in the continuum
scheme NDR1/3 at one–loop order.

Notice that the results in eqs.(20) to (23) are expressed in terms of two coupling
constants, namely, the continuum, gs, and the lattice, glat, ones. At one loop, how-
ever, we can consistently identify these two coupling constants because the difference is
O(α2

s). In this case, the logarithms combine giving log(a2 µ2) so that the infrared regu-
lator λ disappears, as it should be. Several recipes for improving the convergence of the
lattice perturbative series by choosing a convenient perturbative expansion parameter
have been proposed [19]. The choice of the optimal coupling constant is discussed for
the particular case of the operator OLL in the next section.

The lattice counterpart of the operator ÕLL is already known. It was determined
by Flynn et al [21] for the Wilson action and by Borrelli and Pittori [12] for the SW-
Clover action. We have extended the calculation to all the HQET operators in eq.(1).
Our results for ÕLL agree with ref.[21] but disagree with ref.[12] in the sign of the
contribution proportional to Olatt

RR coming from the Feynman diagram D6 in fig. 1.
This error propagates to the constant DI

RR which correct value is given in Table 3 (to
be compared with the value quoted in ref.[12], DI

RR = −2.58.)
The operators with a ta insertion, denoted by Õti, can be readily obtained from the
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corresponding expressions in eqs.(20) to (23) by simply replacing the lattice operators
Õi with the operators Õti and the operators ON , OM , OP and OQ, defined in eq.(24),
with ON ′ , OM ′ , OP ′ and OQ′ given by

Olat
N ′ = −1

2
(Olat

LR + Olat
RL ) − (Olat S

LR + Olat S
RL )

Olat
M ′ = −3/2 (Olat

LL + Olat
RR ) − 2 (Olat S

LL + Olat S
RR )

Olat
P ′ = Olat

LR + Olat
RL − 6 (Olat S

LR + Olat S
RL )

Olat
Q′ = Olat

LL + Olat
RR − 4 (Olat S

LL + Olat S
RR ). (25)

For the continuum HQET ∆B = 0 operators, the results we have obtained are the
following

Q̃LL(µ) =

(

1 +
g2
s

16π2

[

−4 ln

(

λ2

µ2

)

+
6 + 4 z + 4 z′′′

3

]

+
g2
lat

16π2

[

4 ln(λ2a2) + (ELL + EI
LL)

]

)

Qlat
LL

+

(

g2
s

16π2

[

3 ln

(

λ2

µ2

)

− 1 + 4 z + z′

2

]

+
g2
lat

16π2

[

−3 ln(λ2a2) + (EtLL + EtILL + EtII
LL)

]

)

Qtlat
LL

+
g2
lat

16π2 [Ēt
S
RL + Ēt

S I
RL + Ēt

S II
RL ]Qtlat S

RL

+
g2
lat

16π2 (ER + EI
R)Qlat

R

+
g2
lat

16π2 (EtR + EtIR)Qtlat
R (26)

Q̃LR(µ) =

(

1 +
g2
s

16π2

[

−4 ln

(

λ2

µ2

)

+
6 + 4 z + 4 z′′′

3

]

+
g2
lat

16π2

[

4 ln(λ2a2) + (ELR + EI
LR)

]

)

Qlat
LR

+

(

g2
s

16π2 [2 − 2 z + 2 z′′′] +
g2
lat

16π2 [EtLR + EtILR + EtII
LR]

)

Qtlat
LR

+
g2
lat

16π2 [EtRL + EtIRL + EtII
RL) ]Qtlat

RL

+
g2
lat

16π2 (ES + EI
S)Qlat

S

+
g2
lat

16π2 (EtS + EtIS)Qtlat
S (27)
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Q̃S
LL(µ) =

(

1 +
g2
s

16π2

[

−4 ln

(

λ2

µ2

)

+
6 + 4 z + 4 z′′′

3

]

+
g2
lat

16π2

[

4 ln(λ2a2) + (ES
LL + ES I

LL)
]

)

Qlat S
LL

+

(

g2
s

16π2

[

4 ln

(

λ2

µ2

)

+
− 5 + z′ + z′′ + z′′′

2

]

+
g2
lat

16π2

[

−4 ln(λ2a2) + (EtSLL + EtS I
LL + EtS II

LL )
]

)

Qtlat S
LL

+

(

g2
s

16π2

[

− ln

(

λ2

µ2

)

+
3 − z′ − z′′

2

]

+
g2
lat

16π2

[

ln(λ2a2) + (ĒtLR + ĒtILR + ĒtII
LR)

]

)

Qtlat
LR

+
g2
lat

16π2 [ĒtRL + ĒtIRL + ĒtII
RL]Qtlat

RL

+
g2
lat

16π2 (ET + EI
T )Qlat

T

+
g2
lat

16π2 (EtT + EtIT )Qtlat
T (28)

Q̃S
LR(µ) =

(

1 +
g2
s

16π2

[

−4 ln

(

λ2

µ2

)

+
6 + 4 z + 4 z′′′

3

]

+
g2
lat

16π2

[

4 ln(λ2a2) + (ES
LR + ES I

LR)
]

)

Qlat S
LR

+

(

g2
s

16π2

[

3 ln

(

λ2

µ2

)

− 2 + 3 z − z′′′

2

]

+
g2
lat

16π2

[

−3 ln(λ2a2) + (EtSLR + EtS I
LR + EtS II

LR )
]

)

Qtlat S
LR

+
g2
lat

16π2 [EtRR + EtIRR + EtII
RR]Qtlat

RR

+
g2
lat

16π2 (EU + EI
U )Qlat

U

+
g2
lat

16π2 (EtU + EtIU )Qtlat
U (29)

where the analytical expressions for the lattice constants E can be found in the ap-
pendix A. Their numerical values for the Wilson parameter r = 1.0 and a reduced
heavy–quark self–energy, are given in Table 5. Notice that, as before, we have ex-
plicitly separated the contributions coming from the Wilson action (denoted by ELL

. . . etc), the Clover action with improved operators not including O(a2) terms (de-
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Constant Wilson Impr. I Impr. II Constant Wilson Impr. I Impr. II

ELL −38.40 13.41 0 ES
LL −38.40 13.41 0

EtLL 10.60 1.30 −0.11 EtSLL 11.29 4.62 0.05

Ēt
S
RL 4.80 1.19 3.69 ĒtLR −0.69 −3.32 −0.16

ER 9.63 −0.41 0 ĒtRL 1.20 0.30 0.92
EtR 7.22 −0.31 0 ET 9.63 −0.41 0

EtT 7.22 −0.31 0

ELR −38.40 13.41 0 ES
LR −38.40 13.41 0

EtLR 8.53 −8.67 −0.60 EtSLR 10.60 1.30 −0.11
EtRL 4.80 1.19 3.69 EtRR 1.20 0.30 0.92
ES 9.63 −0.41 0 EU 9.63 −0.41 0
EtS 7.22 −0.31 0 EtU 7.22 −0.31 0

Table 5: Numerical values of the constants E for the Wilson parameter r = 1.0.

noted by EI
LL . . . etc) and including O(a2) corrections (denoted by EII

LL . . . etc). The
new lattice operators QR, QS, QT and QU are defined by

Qlat
R = −Qlat

LR − Qlat
RL + 2 (Qlat S

LL + Qlat S
RR )

Qlat
S = −Qlat

LL − Qlat
RR + 2 (Qlat S

LR + Qlat S
RL )

Qlat
T = Qlat S

LR + Qlat S
RL

Qlat
U = Qlat S

LL + Qlat S
RR (30)

The operators QtR,S,T,U , with a ta insertion, are defined as those in eq.(30) simply
replacing Q with Qt.

The expressions of the ∆B = 0 continuum HQET operators with a ta can be
obtained from eqs.(26) to (29) through the following procedure. Let Q̃t be a generic
continuum Q̃–operator with a ta insertion. In terms of lattice operators, it can be
written as

Q̃t =
∑

i

FtiQt
lat
i +

∑

i

FiQ
lat
i

where Fti and Fi are related to the corresponding constants of Q̃ as follows

Fti = Ei + 7/6Eti
Fi = 2/9Eti

}

if i 6= R,S, T, U

Fti = −1/2Eti
Fi = 1/6Ei

}

if i = R,S, T, U (31)

As a byproduct of our calculation, we have also obtained the anomalous dimension
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matrix, γ̂, at one loop, γ̂(0), defined by

γ̂ =

(

g2

16π2

)

γ̂(0) +

(

g2

16π2

)2

γ̂(1) · · · (32)

for both the ∆B = 2 and ∆B = 0 operators. In the continuum dimensional regular-
ization γ̂(0) is simply twice the residue of the 1/ǫ pole and on the lattice it is twice the
coefficient of the log(λ2 a2). Therefore, we get for the ∆B = 2 operators,

γ̂(0) =















−3 (N − 1
N ) 0 0 0

(1 + 1
N ) −3N + 4 + 7

N 0 0

0 0 −3(N − 2
N ) 6

0 0 3/2 −3(N − 2
N )















(33)

in the basis {ÕLL, ÕS
LL, ÕLR, ÕS

RL} and where N is the number of colors.
For the ∆B = 0 operators, we obtain the submatrices

γ̂(0) =















−3 (N − 1
N ) 6 0 0

3
2(1 − 1

N2 ) − 3
N 0 0

0 0 −3(N − 1
N ) 6

0 0 3
2(1 − 1

N2 ) − 3
N















(34)

in the basis {Q̃LL, Q̃tLL, Q̃S
LR, Q̃t

S
LR}, and

γ̂(0) =















−3(N − 1
N ) 0 0 0

0 −3(N − 1
N ) 0 0

0 −2 −3(N − 1
N ) 8

−1
2(1 − 1

N2 ) −(N − 2
N ) 2 (1 − 1

N2 ) (N − 5
N )















(35)

in the basis {Q̃LR, Q̃tLR, Q̃S
LL, Q̃t

S
LL}.

7 Reanalysis of the B0-B̄0 mixing

As we said in the previous section, the value of the lattice constant DI
RR quoted in

ref.[12], is incorrect. This constant enters the continuum–lattice matching of the QCD
operator OLL, which matrix element between B0 and B̄0 states determines the the-
oretical prediction of the B0-B̄0 mixing through the so-called B–parameter BB [22].
In this section, we re–calculate the relevant renormalization constants and give the
correct value of the B–parameter.
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The B–parameter BB is the ratio of the matrix element of the operator OLL to its
vacuum insertion approximation

BB(µ) ≡ 〈B̄0 | OLL(µ) | B0〉
8
3 | 〈0 | A0 | B0〉 |2

(36)

The continuum QCD–lattice HQET matching for the operator OLL and the heavy–light
axial current Aµ = b̄ γµ γ5 q can be written as

OLL = ZOL
Olat

LL + ZOR
Olat

RR + ZON
Olat

N + ZOS
Olat S

LL

Aµ = ZAA
lat
µ (37)

where the Z’s are matching (renormalization) factors which explicit expressions up to
one–loop order are obtained by combining the results of steps 1 and 2 in the Intro-
duction (we refer the reader to ref.[22] and references therein, where all the relevant
formula are collected 2) and eq.(20) which corresponds to step 3 in the Introduction.
The values of the constants D’s which enter eq.(20) are given in Table 3. Notice
that in all previous Clover HQET computations of BB , the incorrect value of the con-
stant DR = DRR +DI

RR +DII
RR = −5.4 was used, to be compared to the correct one

DR = −3.23. The physical value of the B–parameter is then given by

BB(µ) =
∑

i=LL,RR,N,S

ZOi
(µ)Z−2

A (µ)
〈B̄0 | Olat

i (a) | B0〉
8
3 | 〈0 | Alat

4 (a) | B0〉 |2
≡
∑

i

BOi
(38)

The numerical determination of the relevant lattice matrix elements, step 4 in the
Introduction, is also discussed in detail in ref.[22]. We will take the values quoted in
ref.[22] as input for our reanalysis.

We now turn to the delicate point of the improvement of our lattice perturbation
theory results. We start by discussing the choice of the expansion parameter. Many dif-
ferent, but equivalent at one–loop level, definitions of the lattice coupling constant can
be used in the perturbative calculation of the lattice–continuum matching. At scales
a−1 ≈ 2−4 GeV of our numerical simulations, we expect small non–perturbative effects
in the renormalization constants because of asymptotic freedom. However, tadpole di-
agrams, which appear in lattice perturbation theory, give rise to large corrections and
then to large uncertainties in the matching procedure. In refs.[18, 19], some recipes,
usually refer to as Boosted Perturbation Theory (BPT), for choosing an optimal lattice
coupling constant which would absorb many of the unwanted gluonic tadpole contribu-
tions are suggested. The claim is that the perturbative estimate of the renormalization
constants obtained from BPT at low orders, is closer to the non–perturbative result
than its Standard Perturbation Theory (SPT) counterpart. Unfortunately, there are
several different prescriptions which application is, in some cases, ambiguous. In this
work, we will calculate the renormalization constants for the B–parameter with the
following definitions of the coupling constant:

2In eq.(19) of ref.[22] there is a misprint: the correct value of γ̂
(0)
22 is γ̂

(0)
22 = −8/3.
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SPT: Standard Perturbation Theory, αSPT
s = g2/(4π) = 6/(4π β). It is well known

that this coupling leads to poor convergent perturbative series due to tadpole
effects [18, 19]. We will use this coupling only for the sake of comparison.

NBPT(✷): Näıve Boosted Perturbation Theory based on the plaquette; α
NBPT (✷)
s =

αSPT
s /u4

0, where u0 = (1/3Tr(U✷))1/4, was first introduced by Parisi [18]. In our
simulation at β = 6.0, 1/3Tr(U✷) = 0.5937.

NBPT(κc): Näıve Boosted Perturbation Theory based on the the critical Wilson

hopping parameter, κc; α
NBPT (κc)
s = αSPT

s /u4
0, where u0 = (8κc)

−1. In our
simulation at β = 6.0, κc = 0.14543 [22].

BPT(ln(✷)): Non–perturbative Boosted Perturbation Theory based on the plaque-

tte’s logarithm, ln(✷). Following ref.[19], to obtain the coupling α
BPT (ln(✷))
s (q∗)

1. we solve for αV (3.41/a) the expansion of the plaquette’s logarithm

ln(
1

3
Tr(U✷)) = −4π

3
αV (3.41/a) [ 1 − (1.19 + 0.025nf )αV (3.41/a) ] ;

2. then we evolve αV (3.41/a) down to the Lepage–Mackenzie’s optimal scale
q∗ (see below) through the two–loop renormalization group equation with
the number of flavours nf = 0 because our simulation is performed in the
quenched approximation.

Having defined the coupling, it remains to fix the scale at which it will be evalu-

ated. Since αSPT
s , α

NBPT (✷)
s and α

NBPT (κc)
s do not run, no scale setting is necessary

in contrast to the Lepage–Mackenzie’s α
BPT (ln(✷))
s (q∗). Taking into account that q∗ is

only meant to be a typical scale of the process under consideration, we may guess the
scale through some physical arguments or, when the two–loop contributions are known,
choose q∗ so that the one–loop coefficient of the perturbative expansion vanishes. How-
ever, Lepage and Mackenzie have suggested a prescription to set q∗ which consists in
calculating the expectation value of ln(q2) in the one–loop perturbative lattice contribu-
tion (the integrand of the integral defining the coefficient in front of g2/16π2 in eqs.(20)
to (23) and eqs.(26) to (29) ). It is clear that for divergent (µ dependent) renormal-
ization constants, q∗ depends on µ. Hernandez and Hill [25], however, have estimated
q∗ for heavy–light two–fermion operators using the Lepage–Mackenzie’s prescription
without including the divergent terms proportional to ln(µ2 a2). Thus q∗ is indepen-
dent of the renormalization scale µ. We will use this scheme to determine the optimal
scale q∗ for ZA. Further, the Lepage–Mackenzie’s prescription is non ambiguous only
if the operator under consideration does not mix with others under renormalization.
In fact, if there is mixing, one can either calculate all renormalization constants at the
same scale q∗ or determine a separate scale for each mixing coefficient [20]. Since, in
our case, the operators are divergent and do mix under renormalization, we do not
know how to implement the Lepage–Mackenzie’s prescription. In view of these diffi-
culties, we choose to determine q∗ for the heavy–light axial current renormalization
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constant, ZA, following ref.[25], but for four–fermion operators we will vary q∗ in the
range 1 ≤ aq∗ ≤ π, studying the dependence of BB on this scale. In this study, for
simplicity, we will use the same scale q∗ for all mixing coefficients. Moreover, we will
use the results from the range of q∗ to estimate a systematic error.

Following Lepage and Mackenzie, we now construct tadpole improved lattice oper-
ators by non–perturbatively redefining the hopping parameter κ, κ̃ = κu0, where the
mean–field parameter u0 can be taken to be the plaquette or 1/8κc. This redefinition
leads to the rescaling of the standard normalization of lattice quark fields,

√
2κ, with√

u0,
√

2κ
√
u0, which is expected to remove tadpole contributions in the fermionic

sector [19]. Notice that tadpole contributions appear even when a good expansion
parameter is used. To be consistent, the one–loop perturbative tadpole contributions
must be subtracted from our perturbative expressions by multiplying by 1/

√
u0 ex-

panded up to one–loop. Moreover, all links operators U(x) that appear in our lattice
composite operators, should be rescaled with u0, U(x)/u0, for the same reason as
above. This method, usually referred to as Tadpole Improvement (TD), is expected to
reorganize the perturbation series in such a way that TD lattice operators have smaller
discretization errors and the lattice–to–continuum renormalization factors are nearer
to unity. For the Wilson action, TD has been studied in ref.[19]. Its HQET counterpart
is described in refs.[24, 25] to which we refer the reader for details. An important point
to note is that for HQET quarks TD leads to a final result which is equivalent to the
reduction of the heavy–quark self–energy constant e, already performed in the previ-
ous section. Therefore, heavy quark fields are already tadpole improved in our case.
Light quark fields, however, are not. As explained before, TD involves multiplying all

light–quark fields by
√
u0/

√

u
(1)
0 where u

(1)
0 is the one–loop perturbative estimate of

the mean–field parameter u0. For example, consider a generic heavy–light four–quark
operator Õ. Its expression in terms of lattice operators is

Õ = (u0)

[

1 +
gs

16π2 (DO − Du0
)

]

Olat TD +
∑

i

ZOi
Olat

i (39)

where, to one–loop order, u
(1)
0 = 1 + gs

16π2 Du0
. For two–quark heavy–light operators,

like the Axial current Aµ, (u0) in eq.(39) should be replaced with
√
u0 and Du0

by
Du0

/2, because now Õ contains only one light field. We will implement TD for both
two and four–quark heavy–light operators and for all choices of the coupling constant
except for SPT.

As can be seen from eq.(39), the value of q∗ for the tadpole improved ZA depends on
the choice of the mean–field parameter u0. We have used two definitions of u0, namely
the plaquette and 1/8κc. Following ref.[25], where the calculation for the Wilson action
was performed, and taking into account the contribution from the Clover action, we
readily obtain for r = 1.0, q∗Aµ

(✷) a = 2.29 for u4
0 = 1/3Tr(U✷) and q∗Aµ

(κc) a = 2.63
for u0 = 1/8κc, to be compared to the Wilson result q∗Aµ

(κc) a = 2.18 [25].
Finally, we would like to discuss our estimation of the systematic error due to the

truncation of the perturbative series. The matching factors Z’s are the products of the
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renormalization factors calculated in steps 1 to 3 in the Introduction, which have been
computed independently up to O(αs). In fact, the QCD operator OLL at the scale mb

can be written in terms of HQET operators as follows

OLL(mb) = CL(µ) ÕLL(µ) + CS(µ) ÕS
LL(µ)

CL(µ) = 1 +
g2

16π2 XL(µ)

CS(µ) =
g2

16π2 XS(µ) (40)

where µ is the renormalization scale in the HQET and the functions XL(µ) and XS(µ)
have been calculated at NLO in refs.[26] (see also [22, 23]). The HQET operators ÕLL

and ÕS
LL can, in turn, be expressed in terms of lattice HQET operators using eqs.(20)

and (22),

ÕLL(µ) =

(

1 +
g2

16π2 YLL(aµ)

)

Olat
LL(a) +

g2

16π2 YRRO
lat
RR(a)

+
g2

16π2 YN Olat
N (a)

ÕS
LL(µ) =

(

1 +
g2

16π2 Y
S
LL(aµ)

)

Olat S
LL (a) +

g2

16π2 ȲLL(aµ)Olat
LL(a)

+
g2

16π2 ȲRRO
lat
RR(a) +

g2

16π2 ȲP O
lat
P (a) (41)

Adding all together, we get the QCD–HQET lattice matching for OLL,

OLL(mb) =



 1 +
g2

16π2 (XL + YLL) +

(

g2

16π2

)2

(XLYLL + XS ȲLL)



 Olat
LL(a)

+





g2

16π2 YRR +

(

g2

16π2

)2

(XLYRR + XS ȲRR)



 Olat
RR(a)

+





g2

16π2 YN +

(

g2

16π2

)2

XLYN



 Olat
N (a)

+





g2

16π2 XS +

(

g2

16π2

)2

XSY
S
LL



 Olat S
LL (a)

+





(

g2

16π2

)2

XSYP



 Olat
P (a) (42)

with obvious notation. We can organize the renormalization constants in two ways:
including O(α2

s) contributions coming from the products of the factors expanded sepa-
rately to O(αs) (method M1) or excluding O(α2

s) terms in eq.(42) (method M2). Notice
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that the method M1, in contrast to method M2, leads to results which depend on the
renormalization scheme used in the definition of the intermediate continuum HQET
operators. Since the lattice perturbative corrections are large, different prescriptions
may result in rather big discrepancies in the final value of BB(mb). We will view these
differences as an estimation of the systematic error on BB due to unknown higher
order contributions to the perturbative renormalization constants. In refs.[22, 23], the
method M1 excluded terms of O(α2

s) coming from the operator ÕS
LL, i.e. they take

Y S
LL = ȲLL = ȲRR = YP = 0 in eq.(42). This is inconsistent because there is no reason

for excluding these contributions when estimating the systematic error. Numerically
the difference is very small except for the contribution proportional to Olat

P due to the
large value of its matrix element between B–meson states. This has been measured on
the lattice using the same sample of gauge configurations as for OLL, ORR, ON and
OS

LL. We refer the reader to ref.[27] for details.
Now we give our final results. In Tables 6 and 7, we present the numerical values

of the renormalization constants and the B–parameter BB(mb) for different choices of
the coupling constant, the Lepage–Mackenzie’s scale q∗ and different ways in which we
can organize the perturbative series (methods M1 and M2) [22]. Our results have been

obtained using αs(µ) at NLO, mb = 5 GeV, Λ
nf =4
QCD = 200 MeV and four active quark

flavours, nf = 4. As can be seen, ZOP
reduces the value of BB from method M2 by

an amount smaller than the statistical errors (3-4%) and resulting in a reduction of
the discrepancy between methods M1 and M2. Further, the inclusion of the correct
DR gives a value of ZOR

which is roughly one–half of the one used in refs.[22, 23].
Its non–negligible effect on BB is to increase its value by an amount slightly larger
than the statistical errors (about 6 – 8 %). By comparing the results obtained without
and with TD in options 2 to 5 of Tables 6 and 7 for NBPT couplings, it is clear that
the Tadpole improvement of the operators significantly reduces the difference between
methods M1 and M2 and hence the systematic error. In fact, when TD is implemented
results from methods M1 and M2 are completely compatible within statistical errors.
We have also implemented TD for αBPT (ln(✷))(q∗) with two definitions of the mean–
field parameter u0: using the plaquette or the hopping parameter. Again we found that
the two definitions give results which are in perfect agreement within statistical errors.
Moreover, the values of BB obtained with αBPT (ln(✷))(q∗) are almost independent of q∗

in the range 2 ≤ q∗ ≤ π and compatible within statistical errors with those calculated
with αNBPT (✷) and αNBPT (κc) for both methods M1 and M2. For this reason, we
estimate our final value of the B–parameter for the coupling αBPT (ln(✷)) from the
results in the interval 2 ≤ q∗ ≤ π. Finally, we have made the exercise of removing TD
for this coupling. The main consequences are the following:

1. the value of the B parameter significantly depends on q∗. For instance, from
method M1, BB varies from 0.74(5) at q∗a = 2 to 0.86(5) at q∗a = π.

2. the discrepancy between methods M1 and M2 is much larger than with TD.
For instance, from method M2, BB = 0.65(5) at q∗a = 2 and BB = 0.80(5) at
q∗a = π, to be compared to the values from method M1 given above.
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Options ZOL
ZOR

ZON
ZOS

ZOP
ZA

αSPT
s M1 0.7935 -0.0196 -0.0812 -0.1130 -0.0013 0.9045

0.0796 M2 0.7658 -0.0236 -0.1008 -0.1229 0.0000 0.8999

α
NBPT (✷)
s M1 0.7022 -0.0330 -0.1367 -0.1063 -0.0023 0.8145
0.1341 M2 0.6539 -0.0397 -0.1698 -0.1229 0.0000 0.8067

α
NBPT (κc)
s M1 0.6824 -0.0359 -0.1487 -0.1048 -0.0025 0.7950
0.1458 M2 0.6297 -0.0432 -0.1847 -0.1229 0.0000 0.7866

α
NBPT (✷)
s TD M1 0.7302 -0.0330 -0.1367 -0.1084 -0.0023 0.8312

0.1341 M2 0.7163 -0.0397 -0.1698 -0.1229 0.0000 0.8264

α
NBPT (κc)
s TD M1 0.7446 -0.0359 -0.1487 -0.1111 -0.0025 0.8326

0.1458 M2 0.7387 -0.0432 -0.1847 -0.1229 0.0000 0.8282

q∗a α
BPT (ln(✷))
s

M1 0.7092 -0.0603 -0.2497 -0.1148 -0.0041 0.7993
1.000 0.2449

M2 0.6977 -0.0725 -0.3102 -0.1229 0.0000 0.7957

M1 0.7061 -0.0396 -0.1636 -0.1111 -0.0030 0.7993
2.000 0.1812

M2 0.7099 -0.0480 -0.2054 -0.1184 0.0000 0.7957

M1 0.7026 -0.0370 -0.1528 -0.1104 -0.0028 0.7993
2.290 0.1727

M2 0.7083 -0.0449 -0.1921 -0.1177 0.0000 0.7957

M1 0.6986 -0.0347 -0.1430 -0.1098 -0.0027 0.7993
2.630 0.1648

M2 0.7060 -0.0421 -0.1800 -0.1170 0.0000 0.7957

M1 0.6944 -0.0327 -0.1347 -0.1093 -0.0025 0.7993
3.000 0.1580

M2 0.7033 -0.0397 -0.1698 -0.1163 0.0000 0.7957

M1 0.6929 -0.0320 -0.1320 -0.1091 -0.0025 0.7993
π 0.1557

M2 0.7023 -0.0389 -0.1664 -0.1161 0.0000 0.7957

Table 6: Renormalization constants for different choices of the lattice coupling constants, q∗

and options, see the text. The value of ZA for the coupling αBPT (ln(✷))
s has been calculated at

q∗Aµ
= 2.63. For this coupling, TD is computed using u0 = 1/8κc.

3. the average value of BB is smaller than the TD one.

From Table 7, our best estimates of BB(mb) and the renormalization invariant
B–parameter, B̂B, are

BB(mb) = 0.81 ± 0.05 ± 0.03 ± 0.02

B̂B(mb) = 1.29 ± 0.08 ± 0.05 ± 0.03 (43)

where the first error is statistical, the second is an estimate of the uncertainty due to
the choice of the coupling constant and the optimal scale q∗ and the third takes into
account the contribution of higher–order terms to the renormalization constants. We
have computed BB(mb) using the NLO formulae.
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Options BOL
BOR

BON
BOS

BOP
BBd

αSPT
s M1 0.912(43) -0.023(1) -0.097(6) 0.083(4) -0.013(0) 0.862(44)

0.0796 M2 0.889(42) -0.027(1) -0.122(7) 0.091(4) 0.000(0) 0.831(43)

α
NBPT (✷)
s M1 0.995(47) -0.047(2) -0.202(13) 0.096(5) -0.027(0) 0.816(49)
0.1341 M2 0.945(45) -0.057(2) -0.256(16) 0.113(6) 0.000(0) 0.745(48)

α
NBPT (κc)
s M1 1.015(48) -0.053(2) -0.231(15) 0.099(5) -0.030(0) 0.800(51)
0.1458 M2 0.957(45) -0.066(3) -0.293(19) 0.119(6) 0.000(0) 0.718(50)

α
NBPT (✷)
s TD M1 0.993(47) -0.045(2) -0.194(12) 0.094(5) -0.026(0) 0.823(49)

0.1341 M2 0.986(47) -0.055(2) -0.244(15) 0.108(5) 0.000(0) 0.796(50)

α
NBPT (κc)
s TD M1 1.010(48) -0.049(2) -0.210(13) 0.096(5) -0.028(0) 0.819(50)

0.1458 M2 1.012(48) -0.059(2) -0.264(17) 0.107(5) 0.000(0) 0.797(51)

q∗a α
BPT (ln(✷))
s

M1 1.043(49) -0.089( 4) -0.383(25) 0.108( 5) -0.050( 0) 0.629(56)
1.0000 0.2449

M2 1.036(49) -0.108( 5) -0.480(31) 0.116( 6) 0.000( 0) 0.564(59)

M1 1.039(49) -0.058( 2) -0.251(16) 0.104( 5) -0.036( 0) 0.798(52)
2.0000 0.1812

M2 1.054(50) -0.071( 3) -0.318(20) 0.112( 5) 0.000( 0) 0.777(55)

M1 1.034(49) -0.054( 2) -0.234(15) 0.104( 5) -0.034( 0) 0.814(52)
2.2900 0.1727

M2 1.052(50) -0.067( 3) -0.297(19) 0.112( 5) 0.000( 0) 0.799(54)

M1 1.028(49) -0.051( 2) -0.219(14) 0.103( 5) -0.032( 0) 0.828(51)
2.6300 0.1648

M2 1.048(50) -0.062( 2) -0.279(18) 0.111( 5) 0.000( 0) 0.818(53)

M1 1.022(48) -0.048( 2) -0.207(13) 0.103( 5) -0.031( 0) 0.839(51)
3.0000 0.1580

M2 1.044(50) -0.059( 2) -0.263(17) 0.110( 5) 0.000( 0) 0.833(53)

M1 1.019(48) -0.047( 2) -0.202(13) 0.102( 5) -0.030( 0) 0.842(50)
π 0.1557

M2 1.043(49) -0.058( 2) -0.258(16) 0.110( 5) 0.000( 0) 0.837(53)

Table 7: Values of each operator contribution to the B–parameter, and the total result, for

different choices of the lattice coupling constants, q∗ and options, see the text.

We have repeated the same analysis with the lattice data for the B–B̄ mixing from
the UKQCD Collaboration obtained using the SW-Clover and HQET lattice actions
at β = 6.2 [28]. The conclusions presented above remain the same and the final results
turn out to be in perfect agreement with ours in eq.(43),

BB(mb) = 0.79 ± 0.04 ± 0.03 ± 0.02

B̂B(mb) = 1.26 ± 0.06 ± 0.05 ± 0.03 (44)

Note also that we do not see any dependence of our results on the lattice spacing a,
within errors.

These numbers are to be compared with our previous result [22]: B̂B(mb) =
1.08 ± 0.06 ± 0.08, obtained with the same lattice data but with the incorrect values of
the renormalization constants and without tadpole improvement for the four–fermion
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operators. Unlike our previous result, our best estimates in eq.(43) are now in good
agreement with previous determinations of the B–parameter calculated by extrapolat-
ing Wilson data from the charm to the bottom mass (see Table 4 of ref.[22]).

8 Conclusions

In this paper we have determine the expressions of all ∆B = 2 and ∆B = 0 four–
fermion HQET continuum operators in terms of HQET lattice ones using perturbation
theory up to one loop. This calculation is a necessary ingredient in the procedure to
measure the unknown values of some important matrix elements of QCD four–fermion
operators by simulating them with lattice HQET. The calculation has been performed
in four continuum renormalization schemes, NDR, DRED I, DRED II and HV, and for
three lattice actions, Wilson, SW-Clover with rotated fermion fields and SW-Clover
with rotated propagators.

We have also discussed the subtleties associated with the renormalization scheme
dependence of our results. The effects of evanescent operators which appear in inter-
mediate steps of the computation have been identified and clarified.

As a byproduct of our calculation, we have also obtained the one–loop anomalous
dimension matrices for both the ∆B = 2 and ∆B = 0 HQET operators.

We have found and corrected an error in the one–loop result quoted in [12] for the
lattice–continuum matching of the operator OLL, which matrix element between B–
meson states determines the value of the BB parameter of the B–B̄ mixing. Then we
have reanalyzed the lattice data measured in ref.[22] with the correct renormalization
constant. We have used Boosted perturbation theory with tadpole improvement to
reduce the systematic uncertainties in the renormalization constants due to the trun-
cation of the perturbative series. Our value for the BB parameter turns out to be
larger and has a smaller systematic error than in previous studies with static heavy
quarks. Further, it is compatible with the results obtained by extrapolating lattice
Wilson data.
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Appendix A Analytical expressions of the con-

stants.

In this appendix we give the analytical expressions for the lattice constants which enter
the continuum–lattice matching relations.

∆B = 2 operators.

Operator OLL

DLL = −1/3 v − 10/3 d1 − 1/3 c − 4/3 e − 4/3 f

DI
LL = −1/3 vI + 8/3 (l +m) + 1/3 s − 4/3 f I − 10/3n

DII
LL = δL

DRR = 4/3w

DI
RR = 4/3wI − 2/3 (l +m) + 1/3 s

DII
RR = δR

DN = 2 d2

DI
N = −4 dI − 2 q + 2h (A.1)

Operator OLR

DLR = w + 1/6J1 − 7/3 d1 + 1/6 c − 4/3 e − 4/3 f

DI
LR = wI + 13/6 (l +m) + 1/4 s + 1/6J2 − 4/3 f I − 7/3n

DII
LR = 3/4 δR + 1/6J3

D̄S
RL = 2/3w + J1 + 2 d1 + c

D̄S I
RL = 2/3wI − 1/3 (l +m) + 1/6 s + J2 + 2n

D̄S II
RL = 1/2 δR + J3

DM = d2

DI
M = −2 dI − q + h (A.2)

Operator OS
LL

DS
LL = −2/9 v + 8/9J1 − 4/3 d1 + 2/3 c − 4/3 e − 4/3 f

DS I
LL = −2/9 vI + 8/3 (l +m) + 2/9 s + 8/9J2 − 4/3 f I − 4/3n

DS II
LL = 2/3 δL + 8/9J3

D̄LL = 1/36 v + 2/9J1 + 1/2 d1 + 1/4 c

D̄I
LL = 1/36 vI − 1/36 s + 2/9J2 + 1/2n
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D̄II
LL = −1/12 δL + 2/9J3

D̄RR = −1/3w

D̄I
RR = −1/3wI + 1/6 (l +m) − 1/12 s

D̄II
RR = −1/4δR

DP = −1/4 d2

DI
P = 1/2 dI + 1/4 q − 1/4h (A.3)

Operator OS
LR

DS
LR = w + 1/6J1 − 7/3 d1 + 1/6 c − 4/3 e − 4/3 f

DS I
LR = wI + 13/6 (l +m) + 1/4 s + 1/6J2 − 4/3 f I − 7/3n

DS II
LR = 3/4 δR + 1/6J3

D̄RL = 1/6w + 1/4J1 + 1/2 d1 + 1/4 c

D̄I
RL = 1/6wI − 1/12 (l +m) + 1/24 s + 1/4J2 + 1/2n

D̄II
RL = 1/8 δR + 1/4J3

DQ = −1/4 d2

DI
Q = 1/2 dI + 1/4 q − 1/4h (A.4)

∆B = 0 operators.

Operator QLL

ELL = − 8/3 d1 − 4/3 e − 4/3 f

EI
LL = 8/3 (l +m) − 8/3n − 4/3 f I

EtLL = J1 + 2 d1 + c

EtILL = J2 + 2n

EtII
LL = J3

Ēt
S
RL = − 4w

Ēt
S I
RL = − 4wI + 2 (l +m) − s

Ēt
S II
RL = − 3 δR

ER = − 4/3 d2

EI
R = 4/3 (2 dI + q − h)

EtR = − d2

EtIR = 2 dI + q − h (A.5)

Operator QLR
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ELR = − 8/3 d1 − 4/3 e − 4/3 f

EI
LR = 8/3 (l +m) − 8/3n − 4/3 f I

EtLR = v + 2 d1 + c

EtILR = vI − s + 2n

EtII
LR = − 3 δL

EtRL = − 4w

EtIRL = − 4wI + 2 (l +m) − s

EtII
RL = − 3 δR

ES = − 4/3 d2

EI
S = 4/3 (2 dI + q − h)

EtS = − d2

EtIS = 2 dI + q − h (A.6)

Operator QS
LL

ES
LL = − 8/3 d1 − 4/3 e − 4/3 f

ES I
LL = 8/3 (l +m) − 4/3 f I − 8/3n

EtSLL = 4/3J1 − 1/3 v + 2 d1 + c

EtS I
LL = − 1/3 vI + 1/3 s + 4/3J2 + 2n

EtS II
LL = δL + 4/3J3

ĒtLR = − 1/3J1 + 1/3 v

Ēt
I
LR = 1/3 vI − 1/3 s − 1/3J2

Ēt
II
LR = − δL − 1/3J3

ĒtRL = −w

Ēt
I
RL = −wI + 1/2 (l +m) − 1/4 s

Ēt
II
RL = − 3/4 δR

ET = − 4/3 d2

EI
T = 4/3 (2 dI + q − h)

EtT = − d2

EtIT = 2 dI + q − h (A.7)

Operator QS
LR

ES
LR = − 8/3 d1 − 4/3 e − 4/3 f
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Constant r = 1 r = 0.75 r = 0.50 r = 0.25 r = 0

J1 −4.85 −4.93 −5.18 −6.08 −8.24
J2 −0.16 −0.21 −0.28 −0.25 0.00
J3 −0.11 −0.09 −0.06 −0.01 0.00
δL 0.20 0.15 0.09 0.02 0.00
δR −1.23 −0.58 −0.17 −0.01 0.00

Table A.1: Numerical values of the new integrals for various values of the Wilson parameter
r.

ES I
LR = 8/3 (l +m) − 8/3n − 4/3 f I

EtSLR = J1 + 2 d1 + c

EtS I
LR = J2 + 2n

EtS II
LR = J3

EtRR = −w

EtIRR = −wI + 1/2 (l +m) − 1/4 s

EtII
RR = − 3/4 δR

EU = − 4/3 d2

EI
U = 4/3 (2 dI + q − h)

EtU = − d2

EtIU = 2 dI + q − h (A.8)

where the expressions and values for the constants d1, d2, f , v, w, c and e which
determine the matching in the Wilson case, can be found in ref.[21]. The Clover con-
stants l, m, n, q, h, s, dI , f I , vI and wI are defined in ref.[12] whereas the analytical
expressions of δL and δR are given in ref.[13]. We have found small numerical discrep-
ancies between our estimates for dI , f I , h and vI and the values quoted in ref.[12].
Our results for r = 1.0 are dI = −4.13, f I = −3.64, h = −9.97 and vI = −6.72 to
be compared to dI = −4.04, f I = −3.63, h = −9.88 and vI = −6.69 from Table 3
of ref.[12]. We have used the former to obtain all our results which agree with those
recently and independently obtained in ref.[29].

The only new constants are J1, J2 and J3 defined as

J1 =
1

π2

∫ π

−π
d4k

[

θ(1 − k2)

k4 − ∆4

4∆1∆
2
2

+
∆5

4∆1∆
2
2

− r4∆2
1

∆2
2

− r2∆4

2∆2
2

]

J2 =
1

π2

∫ π

−π
d4k

[

r2∆2
4

8∆1∆2
2

− r2(∆4 − ∆5)

2∆2
2

]

29



J3 =
1

π2

∫ π

−π
d4k

[

r4∆2
4

16∆2
2

− r4∆1(∆4 − ∆5)

4∆2
2

]

(A.9)

where

∆1 =
∑

µ

sin2 qµ
2

∆2 =
∑

µ

sin2 qµ + 4 r2 ∆2
1

∆4 =
∑

µ

sin2 qµ

∆5 =
∑

µ

sin2 qµ sin2 qµ
2

(A.10)

In Table A.1, we give the numerical values of Ji, i = 1, 2, 3 for several values of the
Wilson parameter r. We also give the constants δL and δR because in ref.[13] they are
not presented explicitly.
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D1 D2 D3 D4

D5 D6 D7 D8

D9 D10 D11 D12

D13 D14 D15 D16

D17 D18 D19 D20

Figure 1: Feynman Diagrams for the continuum–lattice matching. Up-down replicas and

t–channel diagrams are not shown. For the ∆B = 0 operators only s–channel diagrams

contribute, penguin diagrams are not considered and the arrows in the lower fermionic lines

must be inverted.
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