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Abstract
The four–quark system cc̄nn̄ is studied in the framework of the constituent quark model. Using

different types of quark-quark potentials, we solve the four–body Schrödinger equation by means of

the hyperspherical harmonic formalism. Exploring the low laying JPC states for different isospin

configurations no four-quark bound states have been found. Of particular interest is the possible

four-quark structure of the X(3872). We rule out the possibility that this particle is a compact

tetraquark system, unless additional correlations, either in the form of diquarks or at the level of

the interacting potential, not considered in simple quark models do contribute.
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I. INTRODUCTION

In the last few years the discovery of several new heavy hadrons containing charm quarks
has renewed the interest in heavy quark spectroscopy. In 2003 a new resonance named
X(3872) was reported by the Belle Collaboration in the invariant mass distribution of
J/ψπ+π− mesons produced in B± → K±X(3872) → K±J/ψπ+π− decays. It appeared
as a narrow peak with a mass 3871.2 ± 0.5 MeV and a width Γ < 2.3 MeV, consistent
with the detector resolution [1]. This state was confirmed by BaBar [2], CDF [3] and D0
Collaborations [4]. In 2004 Belle reported the observation of a new charmonium state in the
ωJ/ψ invariant mass distribution for exclusive B → KωJ/ψ decays [5]. This state, named
Y (3940), has a mass and width of 3943± 11± 13 MeV and 87± 22± 26 MeV, respectively,
and it has not been seen in the decay modes Y (3940) → DD̄ and DD̄∗. In July 2005 Belle
claimed the observation of a second charmonium resonance named X(3940) with a mass of
3943± 6± 6 MeV and total width of less than 52 MeV [6]. This state has been measured in
the e+e− → J/ψX(3940) reaction and it has been seen to decay to DD̄∗ and not to ωJ/ψ or
DD̄. A third state, Z(3940), was reported almost simultaneously by Belle in γγ → DD̄ with
a mass of 3931±4±2 MeV and a width of 20±8±3 MeV [7]. Being its helicity distribution
consistent with J = 2, an identification with the excited χc2 seems to be natural. Up to
now, the last experimental neighbor of the charmonium tribe has been reported by BaBar,
the Y (4260) [8]. This state, with quantum numbers JPC = 1−−, is a broad resonance in
the invariant mass spectrum of π+π−J/ψ with mass 4259±8±4 MeV and width 83± 23± 5
MeV.

While some members of this new hadronic zoo may fit in the simple quark model descrip-
tion as quark-antiquark pairs (X(3940), Y (3940), and Z(3940) may fit into the χc0, χc1,
and χc2 quark model structure) others appear to be more elusive (X(3872) and Y (4260)).
With the advent of all these new resonances, theoretical speculations about the existence
of four-quark states mixed with cc̄ quark-antiquark bound states have been reinforced, the
X(3872) being the main responsible for that. Before its discovery, only a few attempts
were made to look for cc̄nn̄ states. In the early 80’s, Gelmini [9] studied the S−wave cc̄nn̄
states using the one-gluon-exchange potential and virtual annihilation of color pairs, ob-
taining some candidates that could lie below any of the dissociation channels. Chao [10]
explored the decay, hadronic production, production in e+e− annihilation, and photopro-
duction of various types of cc̄nn̄ states using the quark-gluon model proposed by Chan and
Hogaasen [11]. Using a potential derived from the MIT bag model in the Born-Oppenheimer
approximation Chao also concluded that cc̄nn̄ states lie in the 3.2−3.7 GeV energy range,
and therefore below the lowest two-meson thresholds [12]. Silvestre-Brac and Semay [13]
analyzed L = 0 four-quark systems by means of the Bhaduri potential through a variational
method in a harmonic oscillator basis, suggesting the existence of several (Q1Q̄2)(nn̄) bound
states, among them the JP = 0+ and JP = 1+ cc̄nn̄. After the discovery of the X(3872) the
question about the possible existence of cc̄nn̄ bound states was posed again. Maiani et al.

[14] constructed a model of the X(3872) in terms of diquark-antidiquark degrees of freedom.
Using the X(3872) as input they predict other cc̄nn̄ states with quantum numbers 0++,
1+−, and 2++. Ebert et al. [15] addressed heavy tetraquarks with hidden charm and beauty
in a diquark-antidiquark relativistic quark model, concluding that the X(3872) could be
identified with the 1++ neutral charm tetraquark state. The existence of the X(3872) would
imply another three four-quark states close in energy. Hogaasen et al. [16] explained the
mass and coupling properties of the X(3872) resonance as a 1++ four-quark state using a
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chromomagnetic interaction once all spin-color configurations compatible with these quan-
tum numbers were included. Matheus et al. [17] used QCD spectral sum rules to test the
nature of the X(3872) within a diquark-antidiquark scheme, identified as a possible 1++

cc̄nn̄ candidate.
Analogous alternatives have been scrutinized to interpret the experimental data of the

open-charm meson sector. Several new states with intriguing properties hard to accommo-
date in a standard quark-antiquark scheme were reported in recent years. In 2003 BaBar
reported a charm-strange state, the D∗

sJ(2317), with a mass of 2316.8±0.4±3 MeV and a
width of less than 4.6 MeV [18]. It was confirmed by CLEO Collaboration [19] and also
by Belle [20]. Besides, BaBar had also pointed out the existence of another charm-strange
meson, the DsJ(2460) [18]. This resonance was measured by CLEO [19] and confirmed by
Belle [20] with a mass of 2457.2±1.6±1.3 MeV and a width less than 5.5 MeV. Belle results
are consistent with the spin-parity assignments of JP = 0+ for the D∗

sJ(2317) and JP = 1+

for the DsJ(2460). In the nonstrange sector Belle reported the observation of a nonstrange
broad scalar resonance, named D∗

0, with a mass of 2308 ± 17 ± 15 ± 28 MeV and a width
276 ± 21 ± 18 ± 60 MeV [21]. A state with similar properties has been suggested by FO-
CUS Collaboration [22] during the measurement of excited charm mesons D∗

2. Although
there are several theoretical interpretations for these states (see Ref. [23]), the difficulties
to identify some of them with conventional mesons (rather similar to those appearing in the
light-scalar meson sector) were interpreted as signals indicating that other configurations,
for example four-quark contributions, could be playing a significant role [24, 25]. The idea
behind this interpretation is rather simple. Physical mesons are easily identified with qq
states when virtual quark loops are not important. This is the case of the pseudoscalar and
vector mesons, mainly due to the P−wave nature of the hadronic dressing. However, in
the positive parity sector it is the qq pair the one in a P−wave state, whereas quark loops
may be in a S−wave. In this case the intermediate hadronic states that are created may
play a crucial role in the composition of the resonance, in other words unquenching may be
important. The vicinity of these components to the lightest qq̄ state implies that they have
to be considered either as mixed states or compact structures [26]. This has been shown as
a possible interpretation of the low-lying light-scalar mesons [27].

As a consequence, the solution of the four–body problem to analyze the contribution
of four-quark components to the meson spectra has become recently a basic tool. Most
of the approaches found in the literature are variational calculations with different types
of trial wave functions. The rather important interest of this problem requires numerical
methods able to provide with solutions free of numerical uncertainties. Recently, a new
approach based on the hyperspherical formalism was proposed to solve exactly the four-
quark problem [28]. The idea is to perform an expansion of the trial wave function in terms
of hyperspherical harmonic (HH) functions. This allows to generalize the simplicity of the
spherical harmonic expansion for the angular functions of a single particle motion to a system
of particles by introducing a global length ρ, called the hyperradius, and a set of angles,
Ω. For the HH expansion to be practical, the evaluation of the potential energy matrix
elements must be feasible. The main difficulty of this method is to construct HH functions
of proper symmetry for a system of identical particles. This is a difficult problem that may be
overcome by means of the HH formalism based on the symmetrization of the N−body wave
function with respect to the symmetric group using the Barnea and Novoselsky algorithm
[29]. This method, widely used in nuclear physics, was applied in Ref. [28] to the analysis
of four-charm quark systems.
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In this work we present a study of the cc̄nn̄ ground states using the HH technique. For
this purpose we have generalized the HH formalism of Ref. [28] to describe four-quark
states of different flavor. The manuscript is organized as follows. In Sect. II the procedure
necessary to generalize the hyperspherical formalism for studying quark systems of different
flavors is described. In Sect. III we review two different quark models we will make use of to
test our method and compare with existing results and experiment. In Sect. IV we present
the results and the analysis of the cc̄nn̄ spectroscopy. Finally, we summarize in Sect. V our
conclusions.

II. TECHNICAL DETAILS

A. Basis functions

Within the HH expansion, the four–quark wave function can be written as a sum of outer
products of color, isospin, spin and configuration terms

|φCISR〉 = |Color〉|Isospin〉 [|Spin〉 ⊗ |R〉]JM , (1)

such that the four-quark state is a color singlet with well defined parity, isospin and total
angular momentum. In the following we shall present the construction of the basis functions
for the QQn̄n̄ and QQ̄nn̄ tetraquark systems. We shall assume that particles 1 and 2 are
the Q-quarks and particles 3 and 4 are the n-quarks. In the QQn̄n̄ case particles 1 and 2
are identical, and so are 3 and 4. Consequently, the Pauli principle leads to the following
conditions,

P̂12|φCISR〉 = P̂34|φCISR〉 = −|φCISR〉 , (2)

P̂ij being the permutation operator of particles i and j.
Coupling the color states of two quarks (antiquarks) can yield two possible represen-

tations, the symmetric 6-dimensional, 6 (6̄), and the antisymmetric 3-dimensional, 3̄ (3).
Coupling the color states of the quark pair with that of the antiquark pair must yield a color
singlet. Thus, there are only two possible color states for a QQq̄q̄ system [30],

|Color〉 = |C12C34〉 = {|3̄12334〉, |6126̄34〉} . (3)

These states have well defined symmetry under permutations, Eq. (2). Spin states with
such symmetry can be obtained coupling the particle spins in the following way,

|Spin〉 = |((s1, s2)S12, (s3, s4)S34)S〉 = |(S12S34)S〉 . (4)

The same holds for the isospin, |Isospin〉 = |(i3, i4)I34〉, which applies only to the n-quarks,
thus I = I34.

As said, we use the HH expansion to describe the spatial part of the wave function. We
choose for convenience the H-type Jacobi coordinates (see Fig. 1),

η1 = µ1,2(r2 − r1)

η2 = µ12,34

(

m3r3 +m4r4

m34

− m1r1 +m2r2

m12

)

η3 = µ3,4(r4 − r3), (5)
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FIG. 1: H–type Jacobi vectors.
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where mij = mi + mj , µi,j =
√

mimj/mij , and m1234 = m1 + m2 + m3 + m4. Using
these vectors, it is easy to obtain basis functions that have well defined symmetry under
permutations of the pairs (12) and (34). The hyperspherical coordinates (ρ,Ω) are defined
through the relation

η1 = ρ cosα2 cosα1 η̂1

η2 = ρ cosα2 sinα1 η̂2

η3 = ρ sinα2 η̂3 , (6)

where

ρ =
√

η2
1 + η2

2 + η2
3 , (7)

is the hyperradius, η̂j ≡ (θj , φj) is the unit vector of ηj , and Ω ≡ (α1, α2, η̂1, η̂2, η̂3) is a
hyperangle that represents the location on the 8-dimensional sphere.

By using hyperspherical coordinates one can write the Laplace operator as a sum of two
terms

∆ =
1

ρ8

∂

∂ρ
ρ8 ∂

∂ρ
− 1

ρ2
K̂2 , (8)

where the hyperspherical, or grand angular momentum, operator K̂2 is the 9 dimensional
analogous of the angular momentum operator associated with the 3-dimensional Laplacian.

The hyperspherical harmonic functions Y[K] are the eigenfunctions of this hyperangular
momentum operator, labeled by the quantum numbers [K] ≡ {K3K2L3M3L2ℓ3ℓ2ℓ1}. The
quantum number K3 is the grand hyperangular momentum associated with the 3 Jacobi
vectors, L3M3 are the usual orbital angular momentum quantum numbers of the system,
and ℓi is the angular momentum associated with the Jacobi vector ηi. The quantum numbers
K2, L2 correspond to intermediate coupling of η1 and η2. The explicit expression for the
HH functions is given by [31]

Y[K](Ω) =
[

∑

m1,m2,m3

〈ℓ1m1ℓ2m2|L2M2〉〈L2M2ℓ3m3|L3M3〉

×
3
∏

j=1

Yℓj , mj
(η̂j)

]

×
[

3
∏

j=2

N aj ,bj

nj
(sinαj)

ℓj (cosαj)
Kj−1

×P (aj ,bj)
nj

(cos(2αj))
]

, (9)

where Yℓ, m are the spherical harmonic functions, P
(a,b)
n are the Jacobi polynomials, aj =

ℓj + 1
2
, bj = Kj−1 + 3j−5

2
and N aj ,bj

nj are normalization constants given by [32]:

N ajbj

nj
=

[

2(2nj + aj + bj + 1)nj!Γ(nj + aj + bj + 1)

Γ(nj + aj + 1)Γ(nj + bj + 1)

]
1

2

. (10)
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The quantum numbers Kj are given by

Kj = 2nj +Kj−1 + ℓj ; n1 ≡ 0 , (11)

where the nj ’s are non–negative integers. In the following we shall use the notations K ≡ K3

and L ≡ L3 for the total hyperangular and angular quantum numbers. By construction,
ρKY[K] is a harmonic polynomial of degree K, therefore the HH function Y[K] is an eigen-

function of K̂2 with eigenvalues K(K + 7).
The HH functions are a complete basis set for the hyperangular coordinate Ω. For the

hyperradial coordinate our basis functions read

Ln(ρ) =

√

n!

(n + ν)!
ρ
−9/2
0

(

ρ

ρ0

)(ν−8)/2

Lν
n

(

ρ

ρ0

)

e
− 1

2

ρ

ρ0 , (12)

where Lν
n(x) are the associated Laguerre polynomials. The range parameter ρ0 and the

parameter ν are varied to get optimal results.
By inspection it can be verified that the spatial basis states, given by

〈ρΩ|R〉 ≡ 〈ρΩ|n[K]〉 = Ln(ρ)Y[K](Ω) , (13)

have the following symmetry properties with respect to particle permutations

P̂12|n[K]〉 = (−1)ℓ1|n[K]〉 ; P̂34|n[K]〉 = (−1)ℓ3 |n[K]〉 (14)

Application of the Pauli principle, Eq. (2), to the basis function

|φCISR〉 = |C12C34〉|(S12S34)S〉|I34〉|n[K]〉 (15)

leads to the following restrictions on the allowed combinations of basis states,

(i) (−1)S12+ℓ1 = +1, (−1)S34+I+ℓ3 = −1 for the |6126̄34〉 color state.

(ii) (−1)S12+ℓ1 = −1, (−1)S34+I+ℓ3 = +1 for the |3̄12334〉 color state.

In the QQ̄nn̄ case particle 2 is the antiparticle of particle 1, and particle 4 is the an-
tiparticle of particle 3. Assuming that C−parity is a good symmetry of QCD we can regard
quarks and antiquarks as identical particles and impose the symmetry condition, Eq. (2),
on the QQ̄nn̄ system as well. Coupling the color states of a quark and an antiquark can
yield two possible representations: the singlet and the octet. These representations should
be combined in the following way {|112134〉, |812, 834〉} to yield a total color singlet state [30].
However, these states have no definite symmetry under the particle permutations (12) and
(34). To construct symmetrized states for the QQ̄ pair we consider the following combina-
tions,

|CΓ12

12 〉 =
1√
2
(|C12〉 + Γ12|C21〉 , (16)

where C12 = {112, 812}, and Γ12 = +1 for a symmetric combination and −1 for antisymmet-
ric. For light quarks the color and isospin states should be combined together to form states
with well defined symmetry. For Iz = 0, as an example, these states take the form,

|(C34 I34)
Γ34〉 = +

1

2

[

|C34〉
(

|uū〉 ± |dd̄〉
)

+ Γ34|C43〉
(

|ūu〉 ± |d̄d〉
)]

, (17)

where the plus sign stands for I34 = 0 state and the minus sign for the I34 = 1 state. As
before, C34 stands for either the singlet or the octet representation. The total color–isospin
states, |CΓ12

12 (C34 I34)
Γ34〉 are not only good symmetry states, but also good C−parity states

with, C = Γ12Γ34. Imposing the Pauli principle for the QQ̄nn̄ system we get the following
restrictions, Γ12(−1)S12+ℓ1 = +1, Γ34(−1)S34+ℓ3 = +1, on the basis states.
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B. Calculation of the matrix elements

Due to the recursive nature of the HH functions, evaluation of potential matrix elements
become simpler for the pair (34). In this case, the matrix elements of a isoscalar two-body
potential

Vij =
∑

p

Vp(rij)O
S
pO

I
pO

C
p , (18)

written as a sum of products of spatial, spin, isospin and color operators respectively, are
diagonal in the quantum numbers ℓ1, ℓ2, L2, K2, S12, C12, I34. The matrix elements of central
potentials are further diagonal also in the quantum numbers ℓ3, L, S34, S thus reducing the
calculation of the matrix elements

〈φCISR|V34|φ′
CSIR〉 =

∑

p

〈nK|Vp|n′K ′〉K2ℓ3

× 〈S34|OS
p |S34〉〈I34|OI

p|I34〉〈C34|OC
p |C34〉 , (19)

into a product of the internal matrix elements times a two dimensional integral

〈nK|Vp|n′K ′〉K2ℓ3 =
N a,b

n3
N a,b

n′

3

2a+b+2

∫

ρ8dρLn(ρ)Ln′(ρ)

×
∫ 1

−1

dx(1 − x)a(1 + x)bP (a,b)
n3

(x)P
(a,b)
n′

3

(x)Vp(ρ
√

1 − x) (20)

where x = cos(2α2), a = ℓ3 + 1
2
, and b = K2 + 2. Non–central potentials lead to similar

expressions after rearrangement of the angular momentum couplings.
Direct evaluation of the potential matrix elements for other pairs will lead to multidi-

mensional integrals much more complicated than Eq. (20). These complicated integrals can
be avoided through rearrangement of the basis functions. If we denote by |φCSIR(1234)〉
the basis function defined in Eq. (15), and by |φCSIR(ijkl)〉 basis function associated with
the particles arranged in the order ijkl, then the interaction matrix element for the pair
(ij) 6= (34) can be evaluated in the following way,

〈φCISR(1234)|Vij|φ′
CSIR(1234)〉 =

∑

〈φCISR(1234)|φ′′
CISR(klij)〉

×〈φ′′′
CISR(klij)|φ′

CISR(1234)〉 × 〈φ′′
CISR(klij)|Vij |φ′′′

CSIR(klij)〉 . (21)

The potential matrix element on the rhs of Eq. (21) can be calculated now using Eqs. (19)
and (20). The permutation matrix elements are trivial for the isospin and can be calculated
using standard SU(2) recoupling techniques for the spin part. The color terms can be
obtained for the QQn̄n̄ from the relation

|113124〉 =

√

1

3
|3̄12334〉 +

√

2

3
|6126̄34〉

|813824〉 = −
√

2

3
|3̄12334〉 +

√

1

3
|6126̄34〉 , (22)

and for the QQ̄nn̄ from the relations

|3̄13324〉 =

√

1

3
|112134〉 −

√

2

3
|812834〉
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|6136̄24〉 =

√

2

3
|112134〉 +

√

1

3
|812834〉 ; (23)

and

|132114〉 =

√

1

9
|112134〉 +

√

8

9
|812834〉

|832814〉 =

√

8

9
|112134〉 −

√

1

9
|812834〉 . (24)

In the last case we should also consider the symmetrized states, Eqs. (16) and (17). For
these states it can be easily shown that

〈(CI)|Γ12Γ34(1234)|(C ′I ′)|Γ
′

12
Γ′

34(ijkl)〉
= δΓ12,Γ′

12
δΓ34,Γ′

34
δI,I′〈C(1234)|C ′(ijkl)〉 . (25)

Thus reducing the rearrangement matrix elements to Eqs. (23) and (24).
The permutation matrix elements for the HH functions are obtained using a numerical

trick due to Efros [33]. Consider the particle positions ri. Using Eqs. (5) and (6) these
positions are translated into a hyperradius ρ and a point on the hypersphere Ω. Under
particle permutations (1234) −→ (ijkl) the point on the hypersphere will move to a new
position, i.e., Ω −→ Ωijkl, where the hyperradius remains invariant. Using the completeness
of the HH basis and the fact the subspace defined by the quantum numbers K,L is invariant
under particle permutations, we can express the HH functions of Ωijkl in the following way

Y[K](Ωijkl) =
∑

[K ′]∈KL

〈[K ′]|P̂ijkl|[K]〉Y[K ′](Ω) , (26)

where P̂ijkl is the permutation operator. The sum contains NKL terms, which amounts to
the number of HH states with hyperspherical angular momentum K and orbital angular
momentum L. Eq. (26) is valid for any hyperangular point Ω. Therefore we can choose
NKL hyperangular points Ω(p), p = 1 . . .NKL and get a set of NKL equations which can be
inverted to yield

〈[K ′]|P̂ijkl|[K]〉 =

NKL
∑

p=1

Y[K](Ωijkl(p))(Y[K ′](Ω(p)))−1 . (27)

Here (Y[K ′](Ω(p)))−1 stands for the inverse of the NKL × NKL matrix M whose entries are
defined as M[K ′],p = Y[K ′](Ω(p)).

III. CONSTITUENT QUARK MODELS

For our study we will use two standard constituent quark models providing a reason-
able description of the hadron spectra. A summary of the energies obtained within both
models for selected meson states is given in Table I, in comparison with the correspond-
ing experimental energies. In the following we draw the basic properties of the interacting
potentials.
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A. Bhaduri, Cohler and Nogami model (BCN)

This model was proposed in the early 80’s by Bhaduri et al. in an attempt to obtain a
unified description of meson and baryon spectroscopy [35]. It was later on applied to study
the baryon spectra [36] and four-quark (qqq̄q̄) systems [13]. The model retains the most
important terms of the one-gluon exchange interaction proposed by de Rújula et al. [37],
namely coulomb and spin-spin terms, and a linear confining potential, having the form

V (~rij) = − 3

16
(~λc

i · ~λc
j) ×

(

rij

a2
− κ

rij
−D +

κ

mimj

e−rij/r0

rijr2
0

(~σi · ~σj)

)

, (28)

where ~σi are the Pauli matrices and ~λc
i are the SU(3) color matrices. The parameters

κ = 102.67 MeV fm, D=913.5 MeV, a =0.0326 MeV−1/2 fm1/2, r0 = 2.2 fm, mu,d =337
MeV, and mc = 1870 MeV are taken from Ref. [13].

B. Constituent Quark Cluster model (CQC)

This model was proposed in the early 90’s in an attempt to obtain a simultaneous de-
scription of the nucleon-nucleon interaction and the baryon spectra [38]. It was later on
generalized to all flavor sectors giving a reasonable description of the meson [39] and baryon
spectra [40]. The possible existence of four-quark states within this model has also been
addressed [25, 27, 28].

The model is based on the assumption that the light-quark constituent mass appears
because of the spontaneous breaking of the original SU(3)L ⊗ SU(3)R chiral symmetry at
some momentum scale. In this domain of momenta, quarks interact through Goldstone
boson exchange potentials. QCD perturbative effects are taken into account through the
one-gluon-exchange (OGE) potential as the one used in the BCN model. Finally, it incor-
porates confinement as dictated by unquenched lattice calculations predicting, for heavy
quarks, a screening effect on the linearly dependent interquark potential when increasing
the interquark distance [41].

The model parameters have been taken from Ref. [39] with the exception of the OGE
regularization parameter. This parameter, taking into account the size of the system, was
fitted for four–quark states in the description of the light scalar sector [27], being r̂0 = 0.18
fm for mesons and r̂0 = 0.38 fm for four-quark systems. Let us also notice that the CQC
model contains an interaction generating flavor mixing between nn̄ and ss̄ components. It
allows to exactly reproduce the masses of the η and η′ mesons. In the four–quark case this
contribution would mix isospin zero QQ̄nn̄ and QQ̄ss̄ components. Such contributions were
explicitly evaluated in the variational approach of Ref. [27] for the light isocalar tetraquarks,
giving a negligible effect. Therefore, such a flavor mixing components will not be consider in
the present calculation. In order to make a proper comparison between thresholds and four–
quark states we have recalculated the meson spectra of Ref. [39] with the same r̂0 value and
interaction used in the four-quark calculation, neglecting therefore the flavor–mixing terms.
The results are summarized in Table I for the original meson parametrization (CQC18) and
for the one used in this work (CQC) (note that in this case the η(547) would corresponds
to a pure nn̄ state). Explicit expressions of the interacting potentials and a more detailed
discussion of the model can be found in Ref. [39].
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IV. RESULTS

A. Threshold determination

The existence of the color degree of freedom gives rise to an important difference between
four-quark systems and standard baryons or mesons. For baryons and mesons it is not
possible to construct a color singlet using a subset of the constituents, thus only qq̄ or qqq
states are proper solutions of the two- or three-quark interacting hamiltonian and therefore,
all solutions correspond to bound states. However, this is not the case for four-quark systems.
The color rearrangement of Eqs. (22) and (24), (qq̄)1 ⊗ (qq̄)1 = (qqq̄q̄)1, makes that two
isolated mesons are also a solution of the four-quark hamiltonian. In order to discriminate
between four–quark bound states and simple pieces of the meson-meson continuum, one
has to analyze the two-meson states that constitute the thresholds for each set of quantum
numbers.

These thresholds must be determined assuming quantum number conservation within
exactly the same scheme used in the four-quark calculation. Dealing with strongly interact-
ing particles, the two-meson states should have well defined total angular momentum (J),
parity (P ) and C−parity (C). When noncentral forces are not considered, orbital angular
momentum (L) and total spin (S) are also good quantum numbers. As the systems studied
could dissociate either into (cc̄)(nn̄) or (cn̄)(nc̄), we indicate the lowest two-meson threshold
in both channels, quoting also the final state relative angular momentum. We give in Table
II the lowest thresholds requiring J , P , and C conservation, while in Tables III, IV, and
V we quote those when L and S are also preserved. We give the experimental thresholds,
corresponding to the energies in Ref. [34], the thresholds obtained with the BCN model,
and those calculated with the CQC model as described in Sect. III.

A property of cc̄nn̄ states, that is crucial for the discussion on the possible existence of
bound states, is that two different physical thresholds can always be constructed for any
set of quantum numbers, corresponding to the (cc̄)(nn̄) and (cn̄)(nc̄) couplings. We show
an example in Table VI, where we give the JPC = 1++ lowest threshold in the two possible
couplings. This is not a general property for any four-quark system, note for instance that a
ccn̄n̄ four-quark state only has one allowed physical threshold, corresponding to the coupling
(cn̄)(cn̄).

B. The four-quark cc̄nn̄ spectra

Once we have developed a method to study four-quark systems of different flavor, we
will address an important physical question making contact with the actual experimental
situation: Does the quark model naturally predict the existence of cc̄nn̄ bound states? For
this purpose we have performed an exhaustive analysis of the cc̄nn̄ spectra by means of the
two different quark models, CQC and BCN, described in Section III. We have considered all
isoscalar states with total orbital angular momentum L ≤ 1. For positive parity, the lowest
states correspond to L = 0, while L = 1 for negative parity ground states. The reason is
that the parity of a four-quark state can be written in terms of the relative angular momenta
associated with the Jacobi coordinates as P = (−)ℓ1+ℓ2+ℓ3. This makes that P = −1 states
need three units of relative angular momentum to obtain L = 0 (ℓ1 = ℓ2 = ℓ3 = 1) while
only one is needed for L = 1. The same reasoning applies for P = +1 states. The calculation
has been done up to the maximum value of K within our computational capabilities, Kmax.
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The absolute energy obtained for each state does not provide much information regarding
the stability of the system. The relevant quantity is ∆E , defined as the energy difference
between the mass of the four-quark system and that of the lowest corresponding threshold,

∆E = E4q − E(M1,M2) . (29)

Here, E4q stands for the four-quark energy and E(M1,M2) for the energy of the correspond-
ing threshold. Using this definition, ∆E < 0 will indicate that all fall–apart strong decays
are forbidden, i.e., one has a proper bound state. On the other hand, ∆E = 0 will indicate
that the four-quark solution corresponds to an unbound threshold (two free mesons) state.

One of the main difficulties in studying four-quark states was discussed in Ref. [28], i.e.,
the slow convergence to the asymptotic two free mesons unbound states. This makes the
identification of threshold states a cumbersome task, demanding large values of K. In Ref.
[28] it was proposed that this problem could be overcome by means of an extrapolation of
the four-quark energy using the expression

E(K) = E(K = ∞) +
a

Kb
, (30)

where E(K = ∞), a and b are fitted parameters.
Although the study of the energy is the most powerful way to distinguish between bound

and unbound four-quark states we have taken a step further analyzing in detail the structure
of the wave function. In particular, it is possible to determine if a four-quark system behaves
as a pure meson-meson state or if it has a more involved structure through the analysis of
the dominant components of the wave function. Any solution of the four-quark problem
that could be identified with a threshold should verify not only that ∆E =0 but also that
the probability of the threshold within the four-quark wave function should be unity. One
can also study the behavior of the root mean square radius (RMS) of the four-quark system
as compared to the radii of the two-mesons threshold. The RMS is defined in the usual way
for four (two) quark systems

RMS|4(2) =

(

∑4(2)
i=1 mi〈(ri − RCM)2〉

∑4(2)
i=1 mi

)1/2

. (31)

Combining all this information it could be claimed that any four-quark state with the fol-
lowing characteristics: (i) ∆E → 0 with K; (ii) RMS → ∞ with K, (its value should at
least exceed the value corresponding to the threshold system); (iii) The wave-function tends
to a single singlet-singlet physical channel; should be considered as an unbound threshold
state.

We present in Table VII the results obtained for all possible L ≤ 1 isoscalar channels
with both quark models, CQC and BCN. We indicate the maximum value of K used, Kmax.
We also indicate the probability of the basis vector corresponding to the lowest physical
threshold. Let us first of all concentrate on the results of the two quark models used,
we will comment later on the comparison with the experimental data. There is a first
general conclusion immediately derived looking at this table, namely that no bound state
is observed for any set of quantum numbers in any of the models, in all cases ∆E > 0. Let
us analyze the results in detail. The convergence of the results is illustrated in Table VIII,
where we show the evolution of the energy, radius and probabilities as a function of K for
two different channels with both quark models. We have denoted by PC12C34

(S12, S34) the
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probability of the basis vector with color state C12 ⊗ C34 and spin S = S12 ⊗ S34 in the
(cc̄)(nn̄) coupling. For each model, we compare in the bottom part of the table with the
lowest energy threshold and its RMS (the sum of the RMS’s of the two mesons). One can
see how the four-quark energies do converge to the lowest possible threshold at the same
time that the radius increases linearly and the probability of the vector that characterizes
the threshold tends to unity. When the extrapolation (30) is used, we observe how the
four-quark energies reproduce those of the lowest threshold allowed for each set of quantum
numbers. This is illustrated in Table IX, where we indicate E(K = ∞) as a function of the
initial and final values of K used for the fitting. The thresholds are perfectly reproduced
within a difference, due to the extrapolation, of a few MeV. These are general features for
all the states in Table VII.

Let us emphasize the importance of comparing the four-quark energies with the proper
mathematical threshold, if this is not done it could easily lead to the misidentification of
bound states. This is made evident on the last columns of Table VII, where we have quoted
the experimental thresholds. Looking at column ∆E under the epigraph Exp., one can see the
abundance of spurious bound states predicted by the BCN model (five) if the experimental
thresholds are considered instead the correct, theoretical, ones.

Special attention must also be paid to some numerical approximations used for solving
the four-quark problem. In the numerical procedure described in Section II one can easily
restrict the method to perform a calculation considering only a limited set of relative angular
momenta between the quarks. We show in Table X the results obtained neglecting large
relative orbital angular momenta (

∑

i ℓi ≤ 1) for two different set of quantum numbers. As
can be seen, this approximation is excellent for those states whose solution can be expressed
exclusively in terms of (cc̄) and (nn̄) mesons (the ℓi are the relative angular momenta
associated to the Jacobi coordinates in the coupling (cc̄)(nn̄)), as it is the case of JPC = 1++,
while it fails for those states with a more involved structure. Since one does not know a
priori the behavior of a particular channel it is inadvisable to perform such an approximation
and therefore, a full calculation is required for any global analysis of four-quark states. A
similar effect related with the restriction of the Hilbert space can also be observed in Ref.
[13], where an analysis of the four-quark problem was performed with a variational solution
of the BCN model in a harmonic oscillator basis up to N = 8, obtaining 3409 and 3468 MeV
for the JPC = 0++ and 1+− states, respectively. Being the hyperspherical harmonic basis
for K = 8 roughly equivalent to the N = 8 harmonic oscillator basis, we have obtained 3380
and 3436 MeV, respectively, for these states when we restrict ourselves to K = 8. However,
once we allow K to take larger values, the energy decreases more than 200 MeV until the
lowest threshold for each channel is obtained.

Among all channels presented in Table VII, three of them deserve a careful analysis:
(L, S) = (1, 0) for CQC, and (L, S) = (1, 2) for CQC and BCN. Their energies, probabilities,
and radius are resumed in Tables XI and XII as a function of K. We observe that they have
a dominant octet–octet color component that could be interpreted as evidence of a compact
four–quark system. However, since the lowest threshold in all three cases corresponds to a
DD̄ or D∗D̄∗ state, the coupling where the numerical calculation is done, (cc̄)(nn̄), is not
the most appropriate one to identify threshold solutions. Once the states are re-expressed
in the proper basis, (cn̄)(nc̄), it can be easily observed how they converge to the lowest
available threshold as nicely as the other sets of quantum numbers.

From the discussion above it is clear that no bound state exist either for CQC or for
BCN. Let us now address the question if it is possible to generate a bound state by means of
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reasonable assumptions in the interacting hamiltonian, i.e., would a different thoughtful two-
body quark-quark interaction be able to generate a bound state? The answer is that it does
not seem to be possible. The reason for that is simple, whenever one modifies the interacting
potential, not only the four-quark energy but also the two-body energy is affected. This has
been illustrated in Table XIII for two particular cases, (L, S) = (0, 0) JPC = 0++ CQC, and
(L, S) = (1, 0) BCN. In both cases the relative strength of the interactions has been tailored
in such a way that the lowest threshold is modified in a significant quantum number (spin,
color,...). In particular, we have fine tuned the one-gluon exchange interaction by means
of the regularization parameter r0 to modify the threshold from J/ψ ω|S to ηc η|S (Table
XIII upper part) and from hc η|P to D D̄|P (Table XIII lower part). In both cases we show
the values of energies, radius and the relevant probabilities for some values of K. It can be
clearly seen that the alternative sets of parameters do converge to the new lowest threshold.

This behavior makes evident the main difference between cc̄nn̄ and cn̄cn̄ systems. For the
later there is a consensus that there would be stable channels against dissociation into two
mesons if the ratio of the mass of the heavy to the light quark is large enough [13, 42]. One
should notice that for these states no other combination than a (cn̄)(cn̄) two-meson system
is allowed for the threshold and therefore, any modification in the interaction between the
two-charm quarks or the two-light antiquarks, for instance the ratio of the masses, would
not translate into a modification of the energy of the threshold [43].

Once it has been observed that no bound state can be obtained by means of any thoughtful
two-body potential, one should reformulate the question we made at the beginning of this
section into, Is it possible that cc̄nn̄ bound states naturally exist or other restrictions must be

imposed to bind them? Two main possibilities have been discussed in the literature in order to
force four-quark states to be bound. On the one hand three- and four-quark interactions that
would not be factorizable as a sum of two-body potentials could be included in the four-quark
hamiltonian. Among these interactions, three alternatives have been thoroughly discussed:
color three- and four-quark interactions depending on the color SU(3) quadratic and cubic
Casimir operators [44], flip-flop confining interactions [45], and string model approaches [46].
On the other hand one could choose to directly restrict the Hilbert space in the few-body
problem, selecting a priori those components that may favor the binding of the system,
the so-called diquarks [48]. A diquark (antidiquark) is an S−wave bound state of two
quarks (antiquarks) with particular quantum numbers, i.e., antisymmetric in color, flavor,
and spin. This has been explored in recent years not only for four-quark systems, but also
for three- and five-quark states [49]. Technically, the effect of both hypothesis is the same,
migrating probability from the color singlet-singlet components to the octet-octet ones. This
makes that the two asymptotically free mesons are no longer a solution of the four-quark
hamiltonian and therefore the interaction can be tailored to create a compact four-quark
bound state.

Let us finally notice that when this work was finished Ref. [47] has analyzed the stability
of QQq̄q̄ and QQ̄qq̄ systems in a simple string model considering only a multiquark confining
interaction giving by the minimum of a flip-flop or a butterfly potential. The ground state
of systems made of two quarks and two antiquaks of equal masses was found to be below
the dissociation threshold. While for the flavor exotic QQq̄q̄ the binding increased when
increasing the mass ratio mQ/mq, for the cryptoexotic QQ̄qq̄ the effect of symmetry break-
ing is opposite, the system being unbound whenever mq/mq > 1. Altough more realistic
calculations are needed before establishing a definitive conclusion, the conclusions of Ref.
[47] strengtened our result about the doubtful existence of cc̄nn̄ compact states.
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C. Isoscalar JPC = 1++ and 2−+ quantum numbers and the X(3872)

Since the X(3872) was first reported by Belle in 2003 [1] it has gradually become the
flagship of a new group of states whose properties make their identification as traditional
qq̄ states unlikely. In this heterogeneous group we could include states like the Y (2460)
reported by BaBar, and the DsJ(2317) and DsJ(2460) reported by BaBar and CLEO. All
these states deserve full discussions on their own, however in this section we are going to
focus only on the properties of the aforementioned X(3872).

An average mass of 3871.2±0.5 MeV and a narrow width of less than 2.3 MeV have
been reported for the X(3872). Note the vicinity of this state to the D0D∗0 threshold,

M(D0D∗0) = 3871.2±1.2 MeV [34] (3871.81±0.36 MeV according to the last measurement
by CLEO [50]). With respect to the X(3872) quantum numbers, neither D0 nor BaBar have
been able to offer a clear prediction about its JPC . The isovector nature of this state has
been excluded by BaBar due to the negative results in the search for a charged partner in the
decay B → X(3872)−K, X(3872)− → J/ψπ−π0 [51]. CDF has performed a determination of
JPC of the X(3872) using dipion invariant mass distribution and angular analysis, obtaining
that only the assignments 1++ and 2−+ are able to describe data [52]. On the other hand,
recent studies by Belle combining angular and kinematic properties of the π+π− invariant
mass, strongly favor a JPC = 1++ state [53], and the observation of the X(3872) → D0D0π0

also prefers the 1++ assignment compared to the 2−+ [54]. Therefore, although some caution
is still required until better statistic is obtained [55], an isoscalar JPC = 1++ state seems to
be the best candidate to describe the properties of the X(3872). All these properties have
triggered intense theoretical speculations about the nature of this state. Among the possible
structures that have been explored one can find tetraquarks, cusps, hybrids, glueballs, and
molecular states, although in most cases these works have been devoted to the study of a
limited set of quantum numbers in an attempt to determine the viability of describing its
energy together with its width and decay modes [23].

Although our main conclusion also applies for these quantum numbers, i.e., the non-
existence of four-quark bound states, we summarize in detail in this section the results
obtained for the isoscalars 1++ and 2−+ (Table XIV) four-quark states. In this case we
illustrate the convergence plotting the energies as a function of K in Fig. 2. It can be
observed how the BCN 1++ state does not converge to the lowest threshold for small values
of K, being affected by the presence of an intermediate J/ψ ω|S threshold with an energy of
3874 MeV. Once sufficiently large values of K are considered the system follows the usual
convergence to the lowest threshold (see insert in Fig. 2). This behavior can also be observed
in the wave function probabilities (right hand side of Table XIV). This is the only case where
this happens and can be traced back to the unique nature of the intermediate threshold,
two S−wave mesons in a relative S−wave. Values of K sufficiently large would generate the
correct solution.

Once all possible quantum numbers of the X(3872) have been analyzed and discarded
very few alternatives remain. If this state is experimentally proved to be a compact four-
quark state this will point either to the existence of non two-body forces or to the emergence
of strongly bound diquark structures within the tetraquark. Both possibilities are appeal-
ing, does the interaction becomes more involved with the number of quark or does the
Hilbert space becomes simpler? On the one hand, some Lattice QCD collaborations [46]
have reported the important role played by three- and four-quark interactions within the
confinement (the Y− and H−shape). On the other hand, diquark correlations have been
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FIG. 2: Energy of the 1++ state using the CQC (solid line) and BCN models (dashed line) as a

function of K. The insert in the upper-right corner magnifies the large values of K to show the

convergence to the corresponding threshold showed by a straight line.
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proposed to play a relevant role in several aspects of QCD, from baryon spectroscopy to
scaling violation [48]. The spontaneous formation of diquark components can be checked
within our formalism. The four-quark state can be explicitly written in the (cn)(c̄n̄) cou-
pling in order to isolate the diquark-antidiquark configurations. In the particular case of the
(L, S) = (0, 1) JPC = 1++ of all possible components of the wave function only two of them
have the proper quantum numbers to be identified with a diquark, being the total diquark
probability less than 3%. Therefore, it is clear that without any further hypothesis two-body
potentials do not favor the presence of diquarks and any description of these states in terms
of diquark-antidiquark components would be selecting a restricted Hilbert space.

V. SUMMARY

In this work we present for the first time a generalization of the hyperspherical harmonic
formalism to study systems made of quarks and antiquarks of different flavor. We have
focused our analysis on hidden-charm systems, namely states containing charm quarks and
antiquarks with charm quantum number equal to zero. This formalism opens the door to
an exact study of several other multiquark systems containing quarks with different masses
and/or flavors, like the sc̄nn̄ or the cc̄ss̄, up to now sparsely analyzed in the literature.

We have performed a systematic analysis of all cc̄nn̄ isoscalar ground states. This includes
positive parity L = 0 and negative parity L = 1 systems with S =0,1, and 2. We have
used two standard quark models in the literature, both leading to the same conclusions.
The relevance of a careful analysis of the numerical thresholds together with the numerical
approximations involved has been emphasized in order to avoid misidentification of bound
states.

We have not found any compact four–quark bound state for any set of quantum numbers.
We have studied the possibility of generating a bound state by means of a modification of
the interacting hamiltonian. We conclude that no refitting of the models would be able to
force a bound state if only two-body color-dependent forces are considered. The reason has
been traced back to the particular singlet-singlet decomposition available to the cc̄nn̄ states,
namely, the possibility of constructing (cc̄)(nn̄) or (cn̄)(nc̄) two-meson states in such a way
that any modification of the two-body potential in the four-quark problem is automatically
translated into the two-meson final state. Concerning the X(3872) we have explicitly dis-
cussed the quantum numbers favored by experiment, 1++ and 2−+, obtaining that none of
them is bound.

It has been said that when you have eliminated the impossible, whatever remains, however
improbable, must be the truth [56]. Therefore, the non-existence of bound cc̄nn̄ states
together with the experimental observation of suggested non-qq̄ states like the X(3872),
seems to be clearly emphasizing the need of considering new structures not based in naive
two-body interactions, like for example diquarks configurations or few-body potentials, in
order to improve our understanding of the hadron spectra.
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TABLE I: Meson energies (in MeV) obtained with the quark models described in Section III.

Experimental data (Exp.) are taken from Ref. [34], except for the state denoted by a dagger that

has been taken from Ref. [21]. See text for the meaning of the different columns.

(L,S, J, I) State Exp. CQC18 CQC BCN

nn̄

(0,0,0,1) π 139.0 139 496 136

(0,0,0,0) η(547) 547.51±0.18 572 772 136

(0,1,1,1) ρ(770) 775.5±0.4 772 744 777

(0,1,1,0) ω(782) 782.65±0.12 691 651 777

(1,0,1,1) b1(1235) 1229.5±3.2 1234 1232 1118

(1,0,1,0) h1(1170) 1170±20 1257 1253 1118

(1,1,0,1) a0(980) 984.7±1.2 1079 1269 1254

(1,1,0,0) f0(600) 400−1200 648 1262 1254

(1,1,1,1) a1(1269) 1230±40 1221 1269 1254

(1,1,1,0) f1(1285) 1281.8±0.6 1289 1262 1254

(1,1,2,1) a2(1320) 1318.3±0.6 1315 1269 1254

(1,1,2,0) f2(1270) 1275.4±1.1 1298 1262 1254

cn̄

(0,0,0,0) D 1864.5±0.4 1883 1936 1886

(0,1,1,0) D∗(2007) 2006.7±0.4 2010 2001 2020

(1,1,0,0) D∗
0 2308.0±17±12† 2465 2498 2491

(1,0,1,0) D1(2420) 2422.3±1.3 2492 2490 2455

(1,1,1,0) D∗
1(2430) 2427±40 2504 2498 2491

(1,1,2,0) D∗
2(2460) 2461.1±1.6 2496 2498 2491

cc̄

(0,0,0,0) ηc(1S) 2980.4±1.2 2990 3032 3038

(0,1,1,0) J/ψ(1S) 3096.916±0.011 3097 3094 3097

(1,0,1,0) hc(1P ) 3525.93±0.27 3507 3506 3502

(1,1,0,0) χc0(1P ) 3414.76±0.35 3443 3509 3519

(1,1,1,0) χc1(1P ) 3510.66±0.07 3496 3509 3519

(1,1,2,0) χc2(1P ) 3556.20±0.09 3525 3509 3519
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TABLE II: Lowest two-meson thresholds requiring J , P , and C quantum number conservation.

Energies are in MeV.

Experiment CQC BCN

JPC I = 0 I = 1 I = 0 I = 1 I = 0 I = 1

0++ ηc η|S ηc π|S J/ψ ω|S,D ηc π|S ηc η|S ηc π|S
3528 3119 3745 3528 3174 3174

0+− J/ψf0|P hc π|P χcJ ω|P hc π|P hc η|P hc π|P
3697 3665 4160 4002 3638 3638

1++ ηc f0|P χc0 π|P J/ψ ω|S,D J/ψ ρ|S,D χcJ η|P χcJ π|P
3580 3554 3745 3838 3655 3655

1+− J/ψ η|S,D J/ψ π|S,D ηc ω|S,D J/ψ π|S,D J/ψ η|S,D J/ψ π|S,D

3644 3236 3683 3590 3233 3233

2++ ηc η|D ηc π|D J/ψ ω|S,D ηc π|D ηc η|D ηc π|D
3528 3119 3745 3528 3174 3174

2+− J/ψ η|D J/ψ π|D ηc ω|D J/ψ π|D J/ψ η|D J/ψ π|D
3644 3236 3683 3590 3233 3233

0−+ ηc f0|S χc0 π|S,D J/ψ ω|P J/ψ ρ|P χcJ η|S,D χcJ π|S,D

3580 3554 3745 3838 3655 3655

0−− J/ψ η|P J/ψ π|P ηc ω|P J/ψ π|P J/ψ η|P J/ψ π|P
3644 3236 3683 3590 3233 3233

1−+ ηc η|P ηc π|P J/ψ ω|P ηc π|P ηc η|P ηc π|P
3528 3119 3745 3528 3174 3174

1−− J/ψ η|P J/ψ π|P ηc ω|P J/ψ π|P J/ψ η|P J/ψ π|P
3644 3236 3683 3590 3233 3233

2−+ ηc f0|D χc0 π|D J/ψ ω|P J/ψ ρ|P χcJ η|S,D χcJ π|S,D

3580 3554 3745 3838 3655 3655

2−− J/ψ η|P J/ψ π|P ηc ω|P J/ψ π|P J/ψ η|P J/ψ π|P
3644 3236 3683 3590 3233 3233

3−+ J/ψ ω|P χc1 π|D J/ψ ω|P J/ψ ρ|P χcJ η|D χcJ π|D
3880 3650 3745 3838 3655 3655

3−− J/ψ f0|D hc π|D D∗ D̄∗|P D∗ D̄∗|P hc η|D hc π|D
3697 3665 4002 4002 3638 3638
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TABLE III: Lowest two-meson experimental thresholds imposing L, S, J , P , and C quantum

number conservation. Energies are in MeV

Experiment

JPC I = 0 I = 1

(L,S) = (0, 0) (L,S) = (0, 1) (L,S) = (0, 2) (L,S) = (0, 0) (L,S) = (0, 1) (L,S) = (0, 2)

0++ ηc η|S − − ηc π|S − −
3528 − − 3119 − −

0+− J/ψf0|P − − hc π|P − −
3697 − − 3665 − −

1++ − ηc f0|P − − χc0 π|P −
− 3580 − − 3554 −

1+− − J/ψ η|S − − J/ψ π|S −
− 3644 − − 3236 −

2++ − − J/ψ ω|S − − J/ψ ρ|S
− − 3880 − − 3873

2+− − − J/ψ f0|P − − J/ψ a0|P
− − 3697 − − 4082

(L,S) = (1, 0) (L,S) = (1, 1) (L,S) = (1, 2) (L,S) = (1, 0) (L,S) = (1, 1) (L,S) = (1, 2)

0−+ − ηc f0|S − − χc0 π|S −
− 3580 − − 3554 −

0−− − J/ψ η|P − − J/ψ π|P −
− 3644 − − 3236 −

1−+ ηc η|P D D̄∗|P J/ψ ω|P ηc π|P χc1 π|S,D J/ψ ρ|P
3528 3871 3880 3119 3650 3873

1−− J/ψ f0|S,D J/ψ η|P J/ψ f0|S,D hc π|S,D J/ψ π|P D∗ D̄∗|P
3697 3644 3697 3665 3236 4018

2−+ − ηc f0|D J/ψ ω|P − χc0 π|S J/ψ ρ|P
− 3580 3880 − 3554 3873

2−− − J/ψ η|P J/ψ f0|D − J/ψ π|P D∗ D̄∗|P
− 3644 3697 − 3236 4018

3−+ − − J/ψ ω|P − − J/ψ ρ|P
− − 3880 − − 3873

3−− − − J/ψ f0|D − − D∗ D̄∗|P
− − 3697 − − 4018
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TABLE IV: Same as Table III for CQC.

CQC

JPC I = 0 I = 1

(L,S) = (0, 0) (L,S) = (0, 1) (L,S) = (0, 2) (L,S) = (0, 0) (L,S) = (0, 1) (L,S) = (0, 2)

0++ J/ψ ω|S − − ηc π|S − −
3745 − − 3528 − −

0+− χcJ ω|P − − hc π|P − −
4160 − − 4002 − −

1++ − J/ψ ω|S − − J/ψ ρ|S −
− 3745 − − 3838 −

1+− − ηc ω|S − − J/ψ π|S −
− 3683 − − 3590 −

2++ − − J/ψ ω|S − − J/ψ ρ|S
− − 3745 − − 3838

2+− − − χcJ ω|P − − χcJ ρ|P
− − 4160 − − 4253

(L,S) = (1, 0) (L,S) = (1, 1) (L,S) = (1, 2) (L,S) = (1, 0) (L,S) = (1, 1) (L,S) = (1, 2)

0−+ − J/ψ ω|P − − J/ψ ρ|P −
− 3745 − − 3838 −

0−− − ηc ω|P − − J/ψ π|P −
− 3683 − − 3590 −

1−+ J/ψ ω|P J/ψ ω|P J/ψ ω|P ηc π|P J/ψ ρ|P J/ψ ρ|P
3745 3745 3745 3528 3838 3838

1−− D D̄|P ηc ω|P D∗ D̄∗|P D D̄|P J/ψ π|P D∗ D̄∗|P
3872 3683 4002 3872 3590 4002

2−+ − J/ψ ω|P J/ψ ω|P − J/ψ ρ|P J/ψ ρ|P
− 3745 3745 − 3838 3838

2−− − ηc ω|P D∗ D̄∗|P − J/ψ π|P D∗ D̄∗|P
− 3683 4002 − 3590 4002

3−+ − − J/ψ ω|P − − J/ψ ρ|P
− − 3745 − − 3838

3−− − − D∗ D̄∗|P − − D∗ D̄∗|P
− − 4002 − − 4002
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TABLE V: Same as Table III for BCN.

BCN

JPC I = 0 I = 1

(L,S) = (0, 0) (L,S) = (0, 1) (L,S) = (0, 2) (L,S) = (0, 0) (L,S) = (0, 1) (L,S) = (0, 2)

0++ ηc η|S − − ηc π|S − −
3174 − − 3174 − −

0+− hc η|P − − hc π|P − −
3638 − − 3638 − −

1++ − χcJ η|P − − χcJ π|P −
− 3655 − − 3655 −

1+− − J/ψ η|S − − J/ψ π|S −
− 3233 − − 3233 −

2++ − − J/ψ ω|S − − J/ψ ρ|S
− − 3874 − − 3874

2+− − − χcJ ω|P − − χcJ ρ|P
− − 4296 − − 4296

(L,S) = (1, 0) (L,S) = (1, 1) (L,S) = (1, 2) (L,S) = (1, 0) (L,S) = (1, 1) (L,S) = (1, 2)

0−+ − χcJ η|S,D − − χcJ π|S −
− 3655 − − 3655 −

0−− − J/ψ η|P − − J/ψ π|P −
− 3233 − − 3233 −

1−+ ηc η|P χcJ η|S,D J/ψ ω|P ηc π|P χcJ π|S,D J/ψ ρ|P
3174 3655 3874 3174 3655 3874

1−− hc η|S,D J/ψ η|P D∗ D̄∗|P hc π|S,D J/ψ π|P D∗ D̄∗|P
3638 3233 4040 3638 3233 4040

2−+ − χcJ η|S,D J/ψ ω|P − χcJ π|S,D J/ψ ρ|P
− 3655 3874 − 3655 3874

2−− − J/ψ η|P D∗ D̄∗|P − J/ψ π|P D∗ D̄∗|P
− 3233 4040 − 3233 4040

3−+ − − J/ψ ω|P − − J/ψ ρ|P
− − 3874 − − 3874

3−− − − D∗ D̄∗|P − − D∗ D̄∗|P
− − 4040 − − 4040
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TABLE VI: (L,S) = (0, 1) JPC = 1++ lowest two-meson thresholds for S−, P−, and D−wave final

state relative angular momentum. Both possible couplings, (cn̄)(nc̄) and (cc̄)(nn̄), are considered.

Energies are in MeV.

(cn̄)(nc̄) (cc̄)(nn̄)

Experiment D D̄∗|S D D̄∗
0|P D1 D̄

∗
0|D J/ψ ω|S ηc f0|P χc1 f0|D

3871 4176 4731 3880 3580 4111

CQC D D̄∗|S D D̄∗
J |P D1 D̄

∗
J |D J/ψ ω|S hc ω|P χcJ fJ |D

3937 4434 4988 3745 4157 4771

BCN D D̄∗|S D D̄∗
J |P D1 D̄

∗
J |D J/ψ ω|S χcJ η|P χcJ fJ |D

3906 4377 4946 3874 3655 4773
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TABLE VII: Energy, E4q ≡ E4q(Kmax) (in MeV) and probability, PT , of the basis vector cor-

responding to the lowest threshold for CQC and BCN models. T (M1,M2) indicates the lowest

physical threshold, ET its energy as obtained from Tables III, IV, and V and ∆E is defined in Eq.

(29). We also quote in the last three columns the experimental thresholds.

Kmax (L,S)JPC E4q PT T(M1,M2) ET ∆E T(M1,M2) ET ∆E

CQC CQC Exp.

24 (0, 0) 0++ 3779 0.9954 J/ψ ω|S 3745 +34 ηc η|S 3528 +251

22 (0, 0) 0+− 4224 0.9995 χcJ ω|P 4160 +64 J/ψf0|P 3697 +438

20 (0, 1) 1++ 3786 0.9968 J/ψ ω|S 3745 +41 ηc f0|P 3580 +206

22 (0, 1) 1+− 3728 0.9983 ηc ω|P 3683 +45 J/ψ η|S 3644 +84

28 (0, 2) 2++ 3774 0.9989 J/ψ ω|S 3745 +29 J/ψ ω|S 3880 −106

28 (0, 2) 2+− 4214 0.9997 χcJ ω|P 4160 +54 J/ψ f0|P 3697 +517

19 (1, 0) 1−+ 3829 0.9998 J/ψ ω|P 3745 +84 ηc η|P 3528 +301

19 (1, 0) 1−− 3969 0.9451 D D̄|P 3872 +97 J/ψ f0|S,D 3697 +272

17 (1, 1) (0, 1, 2)−+ 3839 0.9998 J/ψ ω|P 3745 +94 ηc f0|S,D
a 3580 +259

D D̄∗|P b 3871 −32

17 (1, 1) (0, 1, 2)−− 3791 0.9997 ηc ω|P 3683 +108 J/ψ η|P 3644 +147

21 (1, 2) (1, 2, 3)−+ 3820 0.9999 J/ψ ω|S 3745 +75 J/ψ ω|P 3880 −60

21 (1, 2) (1, 2, 3)−− 4054 0.9999 D∗ D̄∗|P 4002 +52 J/ψ f0|D 3697 +357

BCN BCN Exp.

Kmax (L,S)JPC E4q PT T(M1,M2) ET ∆E T(M1,M2) ET ∆E

26 (0, 0) 0++ 3249 0.9993 ηc η|S 3174 +75 ηc η|S 3528 −279

24 (0, 0) 0+− 3778 0.9997 hc η|P 3638 +140 J/ψf0|P 3697 +81

22 (0, 1) 1++ 3808 0.9997 χcJ η|P 3655 +153 ηc f0|P 3580 +228

22 (0, 1) 1+− 3319 0.9993 J/ψ η|S 3233 +86 J/ψ η|S 3644 −325

26 (0, 2) 2++ 3897 0.9987 J/ψ ω|S 3874 +23 J/ψ ω|S 3880 +17

28 (0, 2) 2+− 4328 0.9998 χcJ ω|P 4296 +32 J/ψ f0|P 3697 +631

21 (1, 0) 1−+ 3331 0.9999 ηc η|P 3174 +157 ηc η|P 3528 −197

21 (1, 0) 1−− 3732 0.9934 hc η|S,D 3638 +94 J/ψ f0|S,D 3697 +35

19 (1, 1) (0, 1, 2)−+ 3760 0.9950 χcJ η|S,D 3655 +105 ηc f0|S,D1 3580 +180

D D̄∗|P 2 3871 −111

19 (1, 1) (0, 1, 2)−− 3405 0.9998 J/ψ η|P 3233 +172 J/ψ η|P 3644 −239

21 (1, 2) (1, 2, 3)−+ 3929 0.9999 J/ψ ω|S 3874 +55 J/ψ ω|P 3880 +49

21 (1, 2) (1, 2, 3)−− 4092 0.9999 D∗ D̄∗|P 4040 +52 J/ψ f0|D 3697 +395

aS−wave for the J = 0 threshold and D−wave for the J = 2
bJ = 1 state
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TABLE VIII: Energy (MeV), radius (fm), and probability of the different components of the four-

quark wave function as a function of K for the JPC = 2++ and JPC = 2+− (L,S) = (0, 2) channels.

The lowest threshold is quoted in the bottom part of the table.

JPC = 2++ JPC = 2+−

K E RMS P11(1, 1) P88(1, 1) K E RMS P11(1, 1) P88(1, 1)

CQC

0 4140 0.3418 1.0000 0.0000 0 − − − −
2 3986 0.3697 0.9890 0.0110 2 4689 0.4851 0.9998 0.0002

4 3912 0.4010 0.9884 0.0116 4 4508 0.5183 0.9962 0.0038

6 3872 0.4337 0.9913 0.0087 6 4414 0.5567 0.9961 0.0039

8 3846 0.4669 0.9934 0.0066 8 4359 0.5967 0.9974 0.0026

10 3828 0.5001 0.9951 0.0049 10 4321 0.6372 0.9981 0.0019

12 3815 0.5329 0.9962 0.0038 12 4295 0.6775 0.9987 0.0013

14 3805 0.5652 0.9970 0.0030 14 4275 0.7175 0.9990 0.0010

16 3798 0.5970 0.9975 0.0025 16 4260 0.7570 0.9992 0.0008

18 3792 0.6283 0.9980 0.0020 18 4248 0.7959 0.9994 0.0006

20 3787 0.6590 0.9983 0.0017 20 4239 0.8342 0.9995 0.0005

22 3783 0.6889 0.9985 0.0015 22 4231 0.8718 0.9996 0.0004

24 3779 0.7185 0.9987 0.0013 24 4224 0.9087 0.9997 0.0003

26 3776 0.7475 0.9989 0.0011 26 4219 0.9451 0.9997 0.0003

28 3774 − − − 28 4214 − − −
J/ψ ω|S 3745 0.5745 1 0 χcJ ω|P 4160 0.6873 1 0

BCN

0 4196 0.3393 1.0000 0.0000

2 4057 0.3778 0.9862 0.0138 2 4732 0.4628 0.9943 0.0057

4 3999 0.4168 0.9865 0.0135 4 4557 0.5127 0.9929 0.0071

6 3968 0.4568 0.9899 0.0101 6 4478 0.5639 0.9939 0.0061

8 3948 0.4972 0.9923 0.0077 8 4433 0.6163 0.9964 0.0036

10 3935 0.5375 0.9944 0.0056 10 4405 0.6694 0.9977 0.0023

12 3925 0.5775 0.9957 0.0043 12 4385 0.7226 0.9986 0.0014

14 3918 0.6168 0.9966 0.0034 14 4371 0.7758 0.9990 0.0010

16 3913 0.6561 0.9973 0.0027 16 4360 0.8288 0.9993 0.0007

18 3908 0.6946 0.9978 0.0022 18 4352 0.8816 0.9995 0.0005

20 3905 0.7309 0.9981 0.0019 20 4345 0.9341 0.9996 0.0004

22 3902 0.7720 0.9984 0.0016 22 4340 0.9863 0.9997 0.0003

24 3899 0.8091 0.9987 0.0013 24 4335 1.0382 0.9998 0.0002

26 3897 − − − 26 4332 1.0899 0.9998 0.0002

28 28 4328 − − −
J/ψ ω|S 3874 0.6133 1 0 χcJ ω|P 4296 0.7259 1 0
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TABLE IX: Energies (in MeV) obtained using the extrapolation Eq. (30) for the states of Table

VIII.

JPC = 2++ JPC = 2+−

(Ko,Kf ) E(K = ∞) (Ko,Kf ) E(K = ∞)

CQC

(2,28) 3657 (2,28) 4042

(4,28) 3704 (4,28) 4106

(6,28) 3720 (6,28) 4124

(8,28) 3727 (8,28) 4135

(10,28) 3731 (10,28) 4141

(12,28) 3734 (12,28) 4145

(14,28) 3736 (14,28) 4148

(16,28) 3737 (16,28) 4150

(18,28) 3739 (18,28) 4151

(20,28) 3739 (20,28) 4153

(22,28) 3740 (22,28) 4154

(24,28) 3741 (24,28) 4156

Threshold 3745 Threshold 4160

BCN

(2,26) 3816 (2,28) 4242

(4,26) 3848 (4,28) 4268

(6,26) 3859 (6,28) 4277

(8,26) 3864 (8,28) 4282

(10,26) 3867 (10,28) 4286

(12,26) 3869 (12,28) 4288

(14,26) 3871 (14,28) 4290

(16,26) 3872 (16,28) 4291

(18,26) 3872 (18,28) 4292

(20,26) 3873 (20,28) 4293

(22,26) 3874 (22,28) 4294

(24,28) 4296

Threshold 3874 Threshold 4296

TABLE X: Comparison of the energies (MeV) and probability of the dominant components of

the four-quark wave function for JPC = 1++ (L,S) = (0, 1) (K = 8) and JPC = (1, 2, 3)−−

(L,S) = (1, 2) (K = 7) states either using
∑

i ℓi = ∞ or
∑

i ℓi ≤ 1 using the CQC model.
∑

i ℓi = ∞ ∑

i ℓi ≤ 1

Energy Probability Energy Probability

L = 0 S = 1 3844 P11(1, 1) = 0.9871 3850 P11(1, 1) = 1.0000

L = 1 S = 2 4199 P88(1, 1) = 0.8779 4275 P11(1, 1) = 0.7088
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TABLE XI: Energy (MeV), radius (fm) and probability of the different components of the four-

quark wave function as a function of K for the JPC = 1−− (L,S) = (1, 0) using the CQC model.

K E RMS P11(0, 0) P11(1, 1) P8,8(0, 0) P8,8(1, 1)

1 4432 0.3939 0.0068 0.1342 0.0068 0.8522

3 4228 0.4242 0.0037 0.0974 0.0108 0.8882

5 4132 0.4600 0.0039 0.1032 0.0175 0.8754

7 4078 0.4969 0.0046 0.1031 0.0264 0.8660

9 4044 0.5341 0.0056 0.1029 0.0363 0.8552

11 4020 0.5714 0.0066 0.1018 0.0464 0.8452

13 4002 0.6086 0.0076 0.1009 0.0556 0.8358

15 3989 0.6458 0.0085 0.1001 0.0637 0.8276

17 3978 0.6828 0.0093 0.0996 0.0708 0.8203

D D̄|P 3872 0.4396 0.0278 0.0833 0.2222 0.6667

TABLE XII: Energy (MeV), radius (fm) and probability of the different components of the four-

quark wave function as a function of K for the JPC = (1, 2, 3)−− (L,S) = (1, 2) using the CQC

and BCN models.

CQC BCN

K E RMS P1(1, 1) P8(1, 1) K E RMS P1(1, 1) P8(1, 1)

1 4476 0.4063 0.2116 0.7884 1 4518 0.3965 0.2348 0.7652

3 4287 0.4398 0.1488 0.8512 3 4332 0.4442 0.1671 0.8329

5 4199 0.4790 0.1438 0.8562 5 4247 0.4919 0.1374 0.8626

7 4151 0.5193 0.1333 0.8666 7 4199 0.5412 0.1221 0.8779

9 4121 0.5601 0.1270 0.8729 9 4167 0.5909 0.1163 0.8837

11 4101 0.6011 0.1218 0.8782 11 4145 0.6406 0.1134 0.8866

13 4086 0.6424 0.1185 0.8815 13 4128 0.6900 0.1121 0.8879

15 4075 0.6839 0.1162 0.8838 15 4116 0.7389 0.1114 0.8886

17 4066 0.7257 0.1147 0.8853 17 4106 0.7872 0.1111 0.8889

19 4059 0.7675 0.1136 0.8864 19 4099 0.8351 0.1111 0.8889

21 4054 0.8094 0.1129 0.8871 21 4092 0.8824 0.1111 0.8889

D∗ D̄∗|P 4002 0.4684 0.1111 0.8889 D∗ D̄∗|P 4040 0.4794 0.1111 0.8889

χcJ ω|P 4160 0.6873 1 − χcJ ω|S,D 4296 0.7259 1 −
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TABLE XIII: Energy (MeV), radius (fm) and probability of the dominant component of the four-

quark wave function as a function ofK for two different parametrizations of the CQC (L,S) = (0, 0)

JPC = 0++ and BCN (L,S) = (1, 0) JPC = 1−−.

CQC JPC = 0++ (L,S) = (0, 0)

rnn̄
0 = 0.38 rnn̄

0 = 0.18

K E RMS P11(1, 1) P11(0, 0) K E RMS P11(1, 1) P11(0, 0)

2 3984 0.3685 0.9685 0.0024 2 3963 0.3649 0.0011 0.9838

4 3909 0.3987 0.9625 0.0014 4 3889 0.3957 0.0010 0.9853

6 3849 0.4282 0.9898 0.0007 6 4414 0.5562 0.0005 0.9948

8 3843 0.4629 0.9766 0.0004 8 3822 0.4608 0.0003 0.9923

10 3826 0.4955 0.9827 0.0002 10 3804 0.4932 0.0002 0.9941

12 3814 0.5280 0.9868 0.0001 12 3791 0.5251 0.0001 0.9957

14 3804 0.5602 0.9898 0.0001 14 3782 0.5564 0.0001 0.9966

J/ψ ω|S 3745 0.5745 1 0 ηc η|S 3718 0.5749 0 1

BCN JPC = 1−− (L,S) = (1, 0)

r0 = 2.2 fm r0 = 0.5 fm

K E RMS P11 P88 K E RMS P11 P88

1 4290 0.3563 0.9267 0.0733 1 4467 0.3899 0.5344 0.4656

3 4066 0.3793 0.9363 0.0637 3 4276 0.4341 0.2734 0.7266

5 3954 0.3993 0.9559 0.0441 5 4188 0.4791 0.1817 0.8182

7 3888 0.4185 0.9702 0.0298 7 4137 0.5261 0.1449 0.8551

9 3843 0.4371 0.9791 0.0209 9 4103 0.5735 0.1298 0.8702

11 3811 0.4553 0.9847 0.0153 11 4080 0.6207 0.1220 0.8780

13 3787 0.4731 0.9883 0.0117 13 4062 0.6676 0.1180 0.8820

hc η|P 3638 0.5764 1 0 D D̄|P 3961 0.4567 0.1111 0.8889
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TABLE XIV: Energy (MeV), radius (fm) and probability of the dominant components of the

four-quark wave function as a function of K for JPC = 1++ (L,S) = (0, 1) and JPC = 2−+

(L,S) = (1, 1) states both for CQC and BCN models.

JPC = 1++ (L,S) = (0, 1)

CQC BCN

K E RMS P11(1, 1) P88(1, 1) K E RMS P11(1, 0) P11(1, 1)

0 4141 0.3418 1.0000 0.0000 0 4196 0.3393 0.0000 1.0000

2 3985 0.3692 0.9822 0.0178 2 4053 0.3766 0.0000 0.9462

4 3911 0.4000 0.9789 0.0211 4 3994 0.4133 0.0000 0.9233

6 3870 0.4322 0.9834 0.0166 6 3963 0.4502 0.0000 0.9236

8 3845 0.4650 0.9871 0.0129 8 3944 0.4883 0.0001 0.9302

10 3827 0.4979 0.9905 0.0095 10 3932 0.5267 0.0002 0.9424

12 3814 0.5305 0.9926 0.0074 12 3920 0.5581 0.9321 0.0605

14 3805 0.5628 0.9943 0.0057 14 3887 0.5829 0.9986 0.0004

16 3797 0.5945 0.9954 0.0046 16 3861 0.6063 0.9993 0.0001

18 3791 0.6255 0.9962 0.0038 18 3840 0.6298 0.9995 0.0000

20 3786 0.6564 0.9968 0.0032 20 3822 0.6520 0.9996 0.0000

22 − − − − 22 3808 0.6736 0.9997 0.0000

J/ψ ω|S 3745 0.5745 1 0 χcJ η|P 3655 0.5814 1 0

hc ω|P 4157 0.6857 0 0 J/ψ ω|S 3874 0.6133 0 1

χcJ fJ |D 4771 0.9706 1 0 χcJ fJ |D 4773 0.8833 0 1

JPC = 2−+ (L,S) = (1, 1)

CQC BCN

K E RMS P11(1, 1) P88(1, 1) K E RMS P11(1, 0) P88(1, 0)

1 4311 0.4172 1.0000 0.0000 1 4315 0.3599 0.9627 0.0302

3 4117 0.4521 0.9982 0.0017 3 4088 0.3828 0.9615 0.0343

5 4018 0.4926 0.9986 0.0014 5 3975 0.4029 0.9715 0.0260

7 3958 0.5347 0.9991 0.0009 7 3908 0.4222 0.9800 0.0184

9 3918 0.5768 0.9994 0.0006 9 3862 0.4409 0.9856 0.0134

11 3889 0.6186 0.9996 0.0004 11 3830 0.4591 0.9892 0.0101

13 3868 0.6596 0.9997 0.0003 13 3806 0.4767 0.9915 0.0079

15 3852 0.6999 0.9998 0.0002 15 3787 0.4939 0.9931 0.0065

17 3839 − − − 17 3772 0.5106 0.9942 0.0054

19 − − − − 19 3760 0.5270 0.9950 0.0047

J/ψ ω|P 3745 0.5745 1 0 χcJ η|S,D 3655 0.5814 1 0

hc ω|S,D 4157 0.6857 0 0 J/ψ ω|P 3874 0.6135 0 0
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