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Stability of multiquarks in a simple string model
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A simple string model inspired by the strong-coupling regime of Quantum ChromoDynamics is
used as a potential for studying the spectrum of multiquark systems with two quarks and two
antiquarks, with a careful treatment of the four-body problem. It is found that the ground state is
stable, lying below the threshold for dissociation into two isolated mesons.
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The question of the existence of multiquark systems
is almost as old as the concept of quarks, see, e.g., [1],
in particular the paper by R.H. Dalitz therein. Since
the early days of hadron spectroscopy within the quark
approach, many studies have been devoted to multiquark
states. Of particular interest are hadrons with exotic
quantum numbers that cannot be matched by any quark–
antiquark (qq̄) or three-quark (qqq) configuration, and
among them, the states, if any, which are bound below
the threshold for dissociation into two ordinary hadrons
and thus are narrow and should show up clearly in the
experimental spectrum.

The present contribution belongs to the class of con-
stituent quark models: an explicit set of rules is adopted
to mimic the interaction of quarks in Quantum Chro-
moDynamics (QCD) and, within this framework, the 2-
body, 3-body and higher few-body problems are solved
as accurately as possible to examine whether quarks tend
to split into small (qq̄) and (qqq) clusters or sometimes
find it energetically more favorable to form multiquark
clusters. After a series of estimates within the bag model
(see, e.g., [2]), there have been several attempts with po-
tential models, using the powerful few-body techniques
developed in atomic and nuclear physics.

Several dynamical ingredients have been identified
along the years as possible sources of multiquark binding.
The best known is probably chromomagnetism [3]: the
spin–color operator σi.σj λ̃i.λ̃j , which is encountered in
the spin-dependent part of one-gluon exchange gives rise
to remarkable coherence effects, and gives in some mul-
tiquark clusters some attraction that is larger than in its
decay products. This mechanism was proposed in par-
ticular for the H-dibaryon (uuddss) [4], tentatively below
the ΛΛ threshold, and for the 1987 version of the heavy
pentaquark (Qq̄q̄q̄q̄) [5]. The chromomagnetic scenario
has, however, difficulties: the first optimistic predictions
carried out in the limit of exact flavor SU(3) symmetry,
and using short-range correlation coefficients borrowed
from ordinary hadrons, do not survive a more careful dy-
namical treatment [6].

Another binding mechanism is based on the flavor-

independence of the confining interaction. In a given
static potential V (r1, . . .), the asymmetric mass config-
urations (QQq̄q̄) tend to be lower than the threshold
2(Qq) if the mass ratio is large enough [7]. This is the
same favorable breaking of symmetry which makes the
hydrogen molecule much more stable than the positron-
ium molecule, in the case where the potential is taken as
the Coulomb interaction (see, e.g., [8] for references).

Now, the determination of the critical mass ratio M/m
at which (QQq̄q̄) becomes stable, and the existence of
other multiquark systems depend crucially on question-
able assumptions on the multiquark potential. However
successful is a potential v(r) for the spectrum of quarko-
nium, its extrapolation to baryons and multiquarks re-
mains, indeed, somewhat risky.

There are interesting attempts [9] to describe mesons
and baryons simultaneously with the potential energy of
the latter systems taken as

V (r1, r2, r3) =
1

2
[v(r12) + v(r23) + v(r31)] , (1)

where rij is the relative distance between particles i and
j. It is tempting to extrapolate this potential as

V (r1, . . .) = −
3

16

∑

i<j

λ̃i.λ̃jv(rij) , (2)

to higher multiquark systems, and benefit from the few-
body techniques with pairwise potentials. This was the
basis of most multiquark calculations, so far. However,
the success of the ansatz (1) is probably accidental, since
there are many indications that if the quark-antiquark
confinement is linear, v(r) = λr, the true confining in-
teraction for three quarks in a baryon is more likely the
so-called Y -shape potential [10, 11]

Y (r1, r2, r3) = λmin
k

(rk1 + rk2 + rk3) , (3)

where the sum of distances from a junction k to the three
quarks is minimized, as in the well-known problem of Fer-
mat and Torricelli, also reported to as the Steiner prob-
lem [12]. It is schematically represented in Fig. 1. From
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this point of view, the success of the empirical model (1)
comes from the perimeter in a triangle being nearly equal
to twice the minimal sum of distances Y .

FIG. 1: String model for three-quark confinement (top),
and for four quarks (bottom): flip-flop (left) and “butter-
fly” (right), an alternative configuration that is favored when
the quarks (full disks) are well separated from the antiquarks
(open circles).

The analog of (3) for four-quark systems is rather com-
plicated. Some diagrams generalizing the Y -shape string
have been drawn in the time of baryonium (see, e.g.,
[13]), but they were not followed by any thorough four–
body calculation. The dynamics of systems made of two
quarks and two antiquarks has been discussed by by sev-
eral authors, for instance [14, 15, 16], where we found
guidance. The model we use for an exploratory study
is restricted to the sole confinement. The short-range
Coulomb-like interaction, as well as the spin-dependent
terms are neglected altogether. We also take the non-
relativistic limit. The interaction which is adopted here
for a careful estimate of the four-body energy is a combi-
nation of the string limit used for mesons and for baryons,
and will be referred to as the “string potential”. It is
schematically pictured in Fig. 1 and it reads,

Vs = min(Vf , Vb) . (4)

Vf stands for the so-called “flip-flop” model

Vf = λmin(r13 + r24, r23 + r14) , (5)

where each of the quarks 1 or 2 links to either antiquarks
3 or 4, to minimize the sum of the two terms. It is under-
stood here that the gluon field readjusts immediately to
its minimal configuration. This is a kind of ideal Born–
Oppenheimer limit. Vb is the butterfly-like configuration,
where two quarks form a color 3̄ diquark, two antiquarks
a color 3 antidiquark, which are linked by a flux tube,

Vb = λmin
k,ℓ

(r1k + r2k + rkℓ + rℓ3 + rℓ4) . (6)

For the Y -shape potential of baryons, the junction
achieving the minimal energy is either one of the quarks,

if the triangle linking the three quarks is flat (an angle
larger than 120◦) or the point from which all sides are
seen under 120◦. This gives an explicit expression in
terms of the interquark distances [11]. In the case of the
butterfly potential, some rigorous geometrical properties
remain, but one cannot avoid some numerical minimiza-
tion over some of the junction coordinates, and this slows
down the four-body variational computation.

Our numerical results have been obtained using corre-
lated Gaussians, namely, if

x1 = r2−r1 , x2 = r4−r3 , x3 =
1

2
(r3+r4−r1−r2) ,

(7)
are the Jacobi variables, suitably generalized in the case
of unequal masses, the trial wave function is sought as

Ψ(x1, x2, x3) = exp



−

3
∑

i≥j=1

aij xi · xj



 + · · · , (8)

where the ellipses are meant for terms deduced from the
first Gaussian to restore the proper symmetry of the
whole wave function. This method is widely used in nu-
clear physics and ab-initio quantum chemistry [17]. The
range parameters aij are optimized numerically.

For cross-check, we also use an exponential function
borrowed from the famous paper in which the stability of
the positronium molecule was demonstrated [18], namely

Φ = exp [−a(r13 + r24) − b(r14 + r23)] + · · · , (9)

but the calculation has been restricted to the case of the
flip-flop interaction.

Note that since the potential is proportional to the dis-
tance, the virial theorem states that the kinetic, 〈K〉, and
potential, 〈V 〉, contributions to the energy E = 〈K〉+〈V 〉
are in ratio 〈V 〉 = 2〈K〉. This also holds for the varia-
tional energy if the space of trial functions is globally
invariant under rescaling, see, e.g., [8]. Hence instead
of minimizing 〈K〉 + 〈V 〉 with, say, n parameters, it is
sufficient to minimize (4〈K〉〈V 〉2/27)1/3 with n − 1 pa-
rameters.

By scaling, the string constant can be set to λ = 1
without loss of generality, and one of the masses also
taken as the unit of mass, m = 1. In these units, the
ground-state energy of a meson with both quark and an-
tiquark of mass m = 1 is E2(1, 1) = 2.338 (the opposite
of the first zero of the Airy function), and for a meson of
masses m1 and m2, it is

E2(m1, m2) = E2(1, 1)

(

2m1m2

m1 + m2

)−1/3

. (10)

We first consider the case of equal masses, in the simple
flip-flop model with exponential functions. The meson
energy, if calculated variationally from φ(r) = exp(−αr),
α being adjusted, is E2 = 2.476. This is not very good,
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TABLE I: Four–quark variational energy E4 of (QQqq) for the
different confinement models described in Eq. (4), compared
to its threshold, T4 = 2E2(1, M), and variational energy E′

4 of
(QQqq) with the flip-flop model Vf , compared to its threshold
T ′

4 = E2(M, M) + E2(1, 1), as a function of the mass ratio.

M/m E4 T4 E′
4 T ′

4

Vf Vb Vs Vf

1 4.644 5.886 4.639 4.676 4.644 4.676

2 4.211 5.300 4.206 4.248 4.313 4.194

3 4.037 5.031 4.032 4.086 4.193 3.959

4 3.941 4.868 3.936 3.998 4.117 3.811

5 3.880 4.754 3.873 3.942 4.060 3.705

since the cusp in this wave function is absent from the
exact wave function. With a combination of two such ex-
ponentials, the meson energy is improved to E′

2 = 2.353.
Now with the wave function (9), and the flip-flop poten-
tial, the minimal energy for the (qqq̄q̄) system is found
at E4 = 4.872. The observation that E4 < 2E2, corre-
sponding to stability within the simplest approximation
in each sector, is an indication that the flip-flop potential
tends to bind the system.

FIG. 2: Dimensionless excess of binding with respect to the
threshold, u, as a function of the mass ratio M/m.

If this computation is now carried out with the Gaus-
sian wave function (8), one obtains a variational energy
E4 = 4.644, which is below the threshold for spontaneous
dissociation. The string model slightly lowers this energy,
to E4 = 4.639.

If the calculation is done with the trial wave function
(8), but with the restriction i = j which implies that
only x2

i terms are allowed, the minimum of the energy
is found appreciably larger, E4=4.797 for M/m = 1 and
E4=4.342 for M/m = 2. Comparing these results with
Table I, the four–quark states would be above the dis-
sociation threshold. This approximation, which consists

of neglecting the relative angles between the different Ja-
cobi coordinates and therefore internal relative orbital
angular momentum, was used in Ref. [16] with a similar
“string potential”, leading the authors to conclude that
no bound exotic states exist (even for the sole confine-
ment potential, see Table I of Ref. [16]).

We now introduce some symmetry breaking in the ki-
netic energy, and consider the configurations (QQq̄q̄) and
(QQqq̄) with two different masses, M and m. The results
are shown in Table I. Clearly, as M/m increases, a deeper
binding is obtained for the flavor-exotic (QQq̄q̄) system.
For the hidden-flavor (QQqq̄), however, the stability de-
teriorates, and with our variational approximation, for
M/m >

∼ 1.2, the system becomes unbound with respect
to its lowest threshold (QQ)+(qq̄)1. The amount of bind-
ing, independent of any scale factor, is well measured by
the dimensionless coefficient defined by

E4 = (1 − u)T4 , (11)

linking two-body and four-body energies. A plot of u is
given in Fig. 2, as a function of the mass ratio M/m.

Our main conclusions and comments are in order:

• With a string model including four-body forces,
inspired by the strong coupling regime of QCD,
the ground-state energy of the system made of two
quarks and two antiquarks of equal masses is found
below the dissociation threshold.

• For the flavor exotic (QQq̄q̄), binding becomes bet-
ter when the mass ratio increases.

• For the cryptoexotic (QQqq̄), the effect of symmet-
ric breaking is opposite. In atomic physics, while
(p, p, e−, e−) is more stable than the positronium
molecule, the configuration (M+, M−, m+, m−)
becomes unstable (besides internal annihilation) for
M/m > 2.2 [8].

• For (1, 2, 3, 4) = (QQq̄q̄) configurations, we con-
sidered quarks (or antiquarks) of equal mass, for
the ease of computation. We neglected the ef-
fect of statistics, i.e., our results directly apply to
quarks (or antiquarks) having different flavor and
about the same mass. Then the interquark in-
teraction is really an effective potential with the
gluon degrees of freedom integrated out, the ana-
log of the nucleus–nucleus effective interaction for
diatomic molecules in atomic physics. For gen-
uinely identical quarks, another approach is pos-
sible, where each component of the interaction is

1 An energy above the threshold simply means that the system is

unbound within our variational approximation, suggesting that

the minimum of the Hamiltonian is at the two-meson threshold.

It would be more difficult to find an approximate mass for a

possible meson–meson resonance.
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associated to a specific color wave function, for
instance (1, 2)3̄(3, 4)3 for the “butterfly potential,
(1, 3)1(2, 4)1 or (1, 4)1(2, 3)1 for each component of
the “flip-flop”, in an obvious notation. A formal-
ism has been developed in Ref. [15], but it was as-
sociated to a quadratic interaction, and hence the
results are not directly comparable to ours.

• The stability of four-quark states is demonstrated
using a rather simple wave function. However,
the dependence upon the angle between the Jacobi
variables is crucial. Its neglect explains why stabil-
ity was missed in earlier investigations.

• It is delicate to compute the connected-string con-
tribution (butterfly) to the potential, but this is not
rewarding, as the dynamics of binding is dominated
by the simple flip-flop term.

• It would be interesting to analyze the results of lat-
tice QCD in terms of the strength parameters asso-
ciated to our string potential, and also in terms of
departures from this simple ansatz. For a discus-
sion on the multiquark interaction on lattice, see,
e.g., [19].

In brief, the question of saturation raised in the early
days of the quark model looks even more open today.
Chromoelectric models based on simple pairwise forces
(2) do not bind tetraquarks, except in the limit of high
mass ratios for (QQq̄q̄). Our result indicates that with a
more plausible scenario for the spin-independent poten-
tial, the starting point is stability.

The present study is focused on the role of confining
forces alone, to demonstrate that a string model of con-
finement leads to results which differ qualitatively from
these obtained from additive pairwise potentials. It re-
mains to examine whether the necessary refinements will
spoil or improve this binding. Among them, let us men-
tion: relativistic effects, spin-dependent terms, Fermi
statistics for identical quarks, long-range Yukawa forces
between clusters (by itself this mechanism might pro-
duce binding, as shown in the “molecular” models of
the X(3872) [20]). Although the many-body confine-
ment forces discussed in this paper play a role for any
four-quark system, their contribution to generate bind-
ing should be more evident for quarks of the second gen-
eration. For light quarks or antiquarks, chromomagnetic
effects or their analogs in chiral dynamics are important
and presumably dominate the issue of stability; if the
threshold includes a pion, it is obviously difficult to imag-
ine a four-quark state below that threshold. For very
heavy quarks, the Coulomb term dominates the spin-
independent interaction: the problem of stability belongs
then to well-studied class of models with additive pair-
wise forces [7]. It is hoped that the encouraging results
obtained with the string model for confinement will stim-
ulate intensive investigations of multiquark systems in
more refined constituent quark models with phenomeno-

logical applications to hadron spectroscopy. It is our in-
tent to participate to this enterprise.
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