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Hyperspherical harmonic study of identical-flavor four-quark systems
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We present an exact method based on a hyperspherical harmonic expansion to study
systems made of quarks and antiquarks of the same flavor. Our formalism reproduces
and improves the results obtained with variational approaches. This analysis shows that
identical-flavor four-quark systems with non-exotic 2++ quantum numbers may be bound
independently of the quark mass. 0+− and 1+− states become attractive only for larger
quarks masses.

1. Introduction

The understanding of few-body systems relies in our capability to design methods for
finding an exact or approximate solution of the N−body problem. The solution of any
few-particle system may be found by means of an expansion of the trial wave function in
terms of hyperspherical harmonic (HH) functions. The idea is to generalize the simplicity
of the spherical harmonic expansion for the angular functions of a single particle motion
to a system of particles by introducing a global length ρ, called the hyperradius, and
a set of angles, Ω. For the HH expansion method to be practical, the evaluation of the
potential energy matrix elements must be feasible. The main difficulty of this method is to
construct HH functions of proper symmetry for a system of identical particles. This may
be overcome by means of the HH formalism based on the symmetrization of the N−body
wave function with respect to the symmetric group using the Barnea and Novoselsky
algorithm[1].

The recent discoveries of several meson–like resonances whose properties do not fit
into the predictions of the naive quark model, has reopened the interest on the possible
role played by non-qq̄ configurations in the meson spectra. Among them, the possible
existence of bound four-quark states (two quarks and two antiquarks) has been suggested
in the low-energy hadron spectroscopy. Four-quark bound states were already suggested
theoretically thirty years ago, both in the light-quark sector by Jaffe[2] and in the heavy-
quark sector by Iwasaki[3].

In this work we present a general study of four-quark systems of identical flavor in
an exact way. For this purpose we have generalized the HH method, widely used in
traditional nuclear physics for the study of few-body nuclei, to describe systems made
of quarks and antiquarks. This generalization presents two main difficulties, first the
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simultaneous treatment of particles and antiparticles, and second the additional color
degree of freedom.

2. General formulation of the problem

The system of two quarks and two antiquarks with the same flavor can be regarded as
a system of four identical particles. Each particle carries a SU(2) spin label and a SU(3)
color label. Both quarks and antiquarks are spin 1/2 particles, but whereas a quark color
state belongs to the SU(3) fundamental representation [3], an antiquark color state is a
member of the fundamental representation [3̄]. The four-body wave function is a sum of
outer products of color, spin and configuration terms

|φ〉 = |Color〉|Spin〉|R〉 (1)

coupled to yield an antisymmetric wave function with a set of quantum numbers that
reflects the symmetries of the system. These are the total angular momentum quantum
number J , its projection Jz, and the SU(3) color state G (labeled as G to avoid confusion
with the charge conjugation quantum number), which by assumption must belong for
physical states to the SU(3) color singlet representation. Since QCD preserves parity,
parity is also a good quantum number. Another relevant quantum number to the system
under consideration it is the C−parity, C, i.e., the symmetry under interchange of quarks
and antiquarks.

To obtain a solution of the four-body Schrödinger equation we eliminate the center of
mass and use the relative, Jacobi, coordinates ~η1, ~η2, . . . , ~ηA−1. Then we expand the spatial
part of the wave-function using the HH basis. In this formalism the Jacobi coordinates
are replaced by one radial coordinate, the hyperradius ρ, and a set of (3A − 4) angular
coordinates ΩA. The HH basis functions are eigenfunctions of the hyperspherical part
of the Laplace operator. An antisymmetric A–body basis functions with total angular
momentum JA, J

z
A, color GA and C-parity C, are given by,

|nKAJAJ
z
AGACΓAαAβA〉 =

∑

YA−1

ΛΓA,YA−1√
|ΓA|

[
|KALAMAΓAYA−1αA〉|SAS

z
AGAC Γ̃A, ỸA−1 βA〉

]JAJz

A |n〉 ,(2)

where 〈ρ|n〉 ≡ Rn(ρ) are the hyperradial basis functions, taken to be Laguerre functions.

〈ΩA|KALAMAΓAYA−1αA〉 ≡ Y
[A]
KALAMAΓAYA−1αA

(ΩA) (3)

are HH functions with hyperspherical angular momentum K = KA, and orbital angular
momentum quantum numbers (LA,MA) that belong to well-defined irreducible representa-
tions (irreps) Γ1 ∈ Γ2 . . . ∈ ΓA of the permutation group–subgroup chain S1 ⊂ S2 . . . ⊂ SA,
denoted by the Yamanouchi symbol [ΓA, YA−1] ≡ [ΓA,ΓA−1, . . . ,Γ1]. The dimension of the
irrep Γm is denoted by |Γm| and ΛΓA,YA−1

is a phase factor. Similarly, the functions

〈sz
1..s

z
A, g1..gA|SAS

z
AGAC Γ̃A, ỸA−1βA〉 ≡ χ

[A]

SASz

A
GA Γ̃A,ỸA−1 βA

(sz
1..s

z
A, g1..gA) (4)

are the symmetrized color–spin basis functions, given in terms of the spin projections
(sz

i ) and color states (gi) of the particles. The quantum numbers αA, and βA are used to
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remove the degeneracy of the HH and color–spin states, respectively. For the construction
of the symmetrized HH basis we use the algorithm of Barnea and Novoselsky [1], which
utilizes the group of kinematic rotations. For the color–spin subspace, we use a method
to transform the standard basis into a symmetrized color–spin basis with well defined
color and C−parity. The technical steps of such construction are detailed in Ref. [4].
The calculation of the Hamiltonian matrix-elements between the antisymmetric basis
functions, Eq. (2), is almost the same as in nuclear physics, replacing isospin by color [5].

Table 1
ccc̄c̄ masses for the maximum value of K used, E(Kmax), and using the extrapolation,
E(K = ∞), compared to the corresponding threshold, M1M2 and T (M1,M2). The
subindex stands for final state relative angular momentum. The value of ∆ for each
state is also given. Energies are in MeV.

JPC E(K = ∞) [E(Kmax)] M1M2 [T (M1,M2)] ∆

0++ 6038 [6115] ηc ηc|S [5980] +58

0+− 6515 [6606] ηc hc|P [6497] +18

1++ 6530 [6609] ηc χc0|P [6433] +97

1+− 6101 [6176] J/ψ ηc|S [6087] +14

2++ 6172 [6216] J/ψ J/ψ|S [6194] −22

2+− 6586 [6648] ηc hc|P [6497] +89

0−+ 6993 [7051] J/ψ J/ψ|P [6194] +779

0−− 7276 [7362] J/ψ ηc|S [6087] +1189

1−+ 7275 [7363] J/ψ J/ψ|P [6194] +1081

1−− 6998 [7052] J/ψ ηc|S [6087] +911

2−+ 7002 [7055] J/ψ J/ψ|P [6194] +808

2−− 7278 [7357] J/ψ ηc|S [6087] +1191

3. Results

We have applied our method to study ccc̄c̄ states. The calculation has been done up to
the maximum value of K within our computational capabilities (Kmax). To analyze the
stability of these systems against dissociation through strong decay, parity (P ), C−parity
(C), and total angular momentum (J) must be conserved.

We show in Table 1 all possible JPC quantum numbers with L = 0. We also indicate
the lowest two-meson threshold for each set of quantum numbers. Let us note that
the convergence of the expansion in terms of hyperspherical harmonics is slow, and the
effective potential techniques[5] do not improve it. To obtain a more adequate value for
the energy we have extrapolated it according to E(K) = E(K = ∞) + a/Kb, where
E(K = ∞), a and b are fitted parameters. The values obtained for E(K = ∞) are stable
within ±10 MeV for each quantum number. Four-quark states will be stable under strong
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interaction if their total energy lies below all possible, and allowed, two-meson thresholds.
It is useful to define ∆ = E(K = ∞) − T (M1,M2) in such a way that if ∆ > 0 the four-
quark system will fall apart into two mesons, while ∆ < 0 will indicate that such strong
decay is forbidden and therefore the decay, if allowed, must be weak or electromagnetic,
being its width much narrower.

A first glance to these results indicates that only three sets of quantum numbers have
some probability of being observed. These are the JPC = 0+−, 1+−, and JPC = 2++,
which are very close to the corresponding threshold. It is interesting to observe that
the quantum numbers 0+− correspond to an exotic state, those whose quantum numbers
cannot be obtained from a qq̄ configuration.

To analyze whether the existence of bound states with exotic quantum numbers could
be a characteristic feature of the heavy quark sector or it is also present in the light sector
we have calculated the value of ∆ for different quark masses. We have obtained that
only one of the non-exotic states, the 2++, becomes more bound when the quark mass is
decreased, ∆ ≈ −80 MeV for the light quark mass. The 1+− and 0++ states, that were
slightly above threshold in the charm sector, increase their attraction when the quark
mass is increased and only for masses close to the bottom quark mass may be bound.
With respect to the exotic quantum numbers, the negative parity 0−− and 1−+ are not
bound for any value of the quark mass. Only the 0+− four-quark state becomes more
deeply bound when the constituent quark mass increases, and therefore only one possible
narrow state with exotic quantum numbers may appear in the heavy-quark sector. This
state presents an open P−wave threshold only for quark masses below 3 GeV.

Let us note that since the heavy quarks are isoscalar states, the flavor wave function of
the four heavy-quark states will be completely symmetric with total isospin equal to zero.
Therefore, one should compare the results obtained in the light-quark case with a com-
pletely symmetric flavor wave function, i.e., the isotensor states. There are experimental
evidences for three states with exotic quantum numbers in the light-quark sector. Two
of them are isovectors with quantum numbers JPC = 1−+ named π1(1400) and π1(1600),
and one isotensor JPC = 2++, the X(1600). Taking the experimental mass for the thresh-
old T (M1,M2) in the light-quark case together with the values obtained for ∆, one can
estimate the energy of these states, being M(2++) ≈ 1500 MeV and M(1−+) ≈ 2900
MeV. The large mass obtained for the 1−+ four-quark state makes doubtful the identifi-
cation of the π1(1400) or the π1(1600) with a pure multiquark state, although a complete
calculation is needed before drawing any definitive conclusion. Concerning the X(1600),
being its experimental mass 1600±100 MeV, a tetraquark configuration seems likely.

This work has been partially funded by MCyT under Contract No. FPA2004-05616,
by JCyL under Contract No. SA104/04, and by GV under Contract No. GV05/276.
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