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Abstract

We use the ρ∆ interaction in the hidden gauge formalism to dynamically generate N∗ and ∆∗

resonances. We show, through a comparison of the results from this analysis and from a quark

model study with data, that the ∆5/2−(1930), ∆3/2−(1940) and ∆1/2−(1900) resonances can be

assigned to ρ∆ bound states. More precisely the ∆5/2−(1930) can be interpreted as a ρ∆ bound

state whereas the ∆3/2−(1940) and ∆1/2−(1900) may contain an important ρ∆ component. This

interpretation allows for a solution of a long-standing puzzle concerning the description of these res-

onances in constituent quark models. In addition we also obtain degenerate JP = 1/2−, 3/2−, 5/2−

N∗ states but their assignment to experimental resonances is more uncertain.
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I. INTRODUCTION

The interpretation of spectra of baryons is still a thriving field that is attracting much

attention. The traditional view of baryons as made of three constituent quarks [1] is being

substituted by a more extended view of baryonic states involving three quark (3q) as well

as four quark-one antiquark (4q1q) components. In particular some baryonic resonances (a

paradigmatic case is the Λ(1405)) may be better interpreted as molecular states of mesons

and baryons. Though such ideas have been advocated in the past [2], it has only been in

recent years that detailed quantitative studies have been done based on the combination of

chiral dynamics with unitary nonperturbative techniques in coupled channels of mesons and

baryons. Thus the low lying JP = 1/2− baryonic resonances are relatively well interpreted

in terms of meson–baryon molecules [3, 4], indicating the relevance of these 4q1q components

for their description. More technically, they are dynamically generated from the interaction

of the octet of mesons containing the π and the octet of baryons including the proton.

Similarly, the interaction of the octet of mesons of the π with the baryon decuplet of the

∆ leads to dynamically generated states of JP = 3/2−, which can be associated to existing

resonances [5, 6]. A further step in this molecular engineering is done with the study of

JP = 1/2+ states stemming from the interaction of a pair of pseudoscalar mesons with a

baryon of the octet of the nucleon [7], corresponding indeed to 5q2q components. A common

denominator of these generated baryon states is the use of pseudoscalar mesons as building

blocks. Here we undertake the task of extending the study of the dynamical generation

of resonances to the vector meson-baryon sector. Besides having its own interest as an

extension of the theoretical formalism, this study is particularly relevant in this moment

from a phenomenological point of view since there are clear indications that ρN components

[8] as well as ρ∆ (ω∆) ones [9] may play an essential role in the precise description of the

negative parity ∆ spectrum below 2.0 GeV.

A framework that makes the study of vector mesons interacting with baryons accurate

and manageable is the hidden gauge formalism [10]. There, pseudoscalars and vectors are

introduced with an interaction which respects chiral symmetry. The consideration of the

interaction of vector mesons with baryons allows then to reinterpret the pseudoscalar meson-

baryon chiral Lagrangians as the result of the exchange of vector mesons in the t-channel.

The novelty of such a framework is that it also contains the coupling of vector mesons among
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themselves and therefore one can construct their interaction with baryons. The combination

of such an interaction with chiral unitary techniques has been rather successful. In particular,

the ρρ interaction has been shown to lead to the dynamical generation of the f2(1270) and

f0(1370) resonances [11], with a branching ratio for the sensitive γγ decay channel in good

agreement with experimental data [12].

In this work we present the formalism and results for the ρ∆ → ρ∆ interaction which leads

to baryonic states in fair agreement with known resonances, within experimental and theoret-

ical uncertainties. The approximate degeneracy of the experimental JP = 1/2−, 3/2−, 5/2−

∆∗ states around 1920 MeV appears as a dynamical feature of the theory. In the case of the

predicted JP = 1/2−, 3/2−, 5/2− N∗ states an assignment to known N∗ resonances around

1700 MeV is also feasible although the presence of corresponding 3q states close below in

mass points out to the need of incorporating both components (3q and ρ∆) in their descrip-

tion. These contents are distributed as follows. In section II the formalism for the dynamical

generation of resonances from the ρ∆ → ρ∆ interaction is derived. In Sections III, IV and

V the results obtained in different approximations are presented. Section VI is devoted to

an analysis of the possible contribution from anomalous terms involving ρωπ vertexes. The

comparison of our results with experimental data is done in section VII. Finally in section

VIII we establish our main conclusions.

II. FORMALISM FOR THE V V AND V B INTERACTION

We follow the formalism of the hidden gauge interaction for vector mesons [10] (see

also [13] for a practical set of Feynman rules). The Lagrangian involving the interaction of

vector mesons among themselves is given by

LIII = −1

4
〈VµνV

µν〉 , (1)

where the symbol 〈〉 stands for the trace in the SU(3) space and Vµν is expressed as

Vµν = ∂µVν − ∂νVµ − ig[Vµ, Vν ] , (2)

with g given by

g =
MV

2f
, (3)
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with f = 93 MeV being the pion decay constant. The value of g of Eq. (3) is one of the

ways to account for the KSFR rule [14] which is tied to vector meson dominance [15]. The

magnitude Vµ is the SU(3) matrix of the vectors of the octet of the ρ

Vµ =















ρ0

√
2

+ ω√
2

ρ+ K∗+

ρ− − ρ0

√
2

+ ω√
2

K∗0

K∗− K̄∗0 φ















µ

. (4)

The interaction of LIII gives rise to a contact term coming for [Vµ, Vν ][V
µ, V ν ] of the form

L(c)
III =

g2

2
〈VµVνV

µV ν − VνVµV µV ν〉 , (5)

and also to a three vector vertex,

L(3V )
III = ig〈(∂µVν − ∂νVµ)V µV ν〉 . (6)

It is useful to rewrite this last term as:

L(3V )
III = ig〈V ν∂µVνV

µ − ∂νVµV
µV ν〉 = ig〈V µ∂νVµV

ν − ∂νVµV
µV ν〉 (7)

= ig〈(V µ∂νVµ − ∂νVµV
µ) V ν〉

in complete analogy with the coupling of a vector to pseudoscalar mesons in the same theory,

which is given in Ref. [10] as

LV PP = −ig〈[Φ, ∂νΦ] V ν〉 (8)

with Φ, the analogous matrix to Eq. (4), containing the pseudoscalar fields (P ). This

analogy allows us to obtain the interaction of vector mesons with the decuplet of baryons in

a straightforward way by realizing that the chiral Lagrangian of Ref. [16] for the interaction

of the octect of pseudoscalar mesons with the decuplet of baryons is obtained from the

exchange of a vector meson between the pseudoscalar mesons and the baryon, as depicted

in Fig.1[a], in the limit of q2/M2
V → 0, being q the momentum transfer.

Then by substituting the vertex of Eq. (8) by that of Eq. (7) the physical picture goes from

diagram [a] to [b] of Fig.1. Notice that diagram [b] has a more complicated structure since

one has three vector fields to destroy or create either vector, whereas in diagram [a] there is

only one vector field and hence no choice. Yet, in the implicit approximations leading to the

4



B B

P P

V(q)

[a]

B B

V V

V(q)

[b]

FIG. 1: Diagrams obtained in the effective chiral Lagrangians for interaction of pseudoscalar [a] or

vector [b] mesons with the decuplet of baryons.

effective chiral Lagrangian one can go a step further, in line with neglecting q2/M2
V . Thus,

we will neglect the three momentum of the external vectors relative to their mass. Since the

vector polarizations have ǫ0 either zero for the transverse polarizations, or |~k|/MV , with ~k

the vector meson trimomentum, for the longitudinal component, all the external vectors will

have zero ǫ0 component. Following the same argument, V ν , appearing in the term ∂νV
ν in

Eq. (7), cannot be an external vector since then ∂ν would lead to a three-momentum, which

is neglected in the approach. Then V ν corresponds to the exchanged vector, V µVµ gives

rise to −~ǫ~ǫ ′ for the external vectors and then the PB and VB interactions become formally

identical (including the sign), with ~ǫ~ǫ ′ factorized in the VB interaction. For practical reasons

one can replace the matrix Φ by the matrix V in the interaction Lagrangian of Ref. [16],

and this is equivalent to substituting π+ → ρ+, K+ → K∗+, etc... in the matrix elements

of PB→ PB to obtain those of VB→VB. There is only a small amendment to be done

concerning the φ and ω since the ideal mixing implies:

ω =
2√
6
ω1 +

1√
3
ω8 (9)

φ =
1√
3
ω1 −

2√
6
ω8

and the structure of Eq. (7) does not give any contribution for the ω1, which appears diagonal

as diag( 1√
3
ω1,

1√
3
ω1,

1√
3
ω1) in the V matrix. As a consequence of that, the matrix elements

of the potential involving ω(φ) are obtained from those of η8 of PB → PB multiplying by

1√
3
(−
√

2
3
).

After this discussion we can use directly the results of Ref. [6] to get the ρ∆ → ρ∆
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potential with different charges. We find

Vij = − 1

4f 2
Cij(k

0 + k
′0)~ǫ~ǫ ′ (10)

where k0 and k
′0 are the energies of the incoming/outgoing vectors and the Cij coefficients

are given in Ref. [6] substituting π by ρ. One can do the corresponding isospin projections

and the results are equally given in Ref. [6] (for I = 5/2, corresponding to ∆++π+ → ∆++π+,

the result can be found in the appendix of this reference):

ρ∆ , I =
1

2
: C = 5 (11)

ρ∆ , I =
3

2
: C = 2

ρ∆ , I =
5

2
: C = −3

As in Ref. [6] we shall solve the Bethe-Salpeter equation with the on-shell factorized

potential [4, 17] and, thus, the T–matrix will be given by

T =
V

1 − V G
~ǫ~ǫ ′ , (12)

being V the potential of Eq. (10) in the isospin basis removing the factor ~ǫ~ǫ ′, and G the loop

function for intermediate ρ∆ states, also given in Ref. [6], regularized both with a cuttoff

prescription or with dimensional regularization.

In the present work we ignore the coupling with the Σ∗K∗ channel. The reason being

that having a mass 275 MeV above the ρ∆ threshold it is expected not to play a relevant

role in the description of the ρ∆ states.

The prescription after Eq.(10) to obtain couplings to ρ∆ → ω∆ or ω∆ → ω∆, together

with the tables of Ref. [6], gives zero for these transitions. Actually, this is easy to visualize

in the vector exchange model since the ρρω and ωωω vertexes violate G−parity while the

ρωω vertex violates isospin. Thus, for the problem of the lightest states of the vector-baryon

decuplet one can consider single ρ∆ channels.

For the interactions implicit in the Bethe–Salpeter equation, see Fig. 2, one has at second

order

− it = −iV ǫiǫiiG(−i)V ǫjǫj (13)

with i, j spatial components, and summing over polarizations

∑

λ

ǫiǫj = δij +
qiqj

m2
V

. (14)
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+ q
+

FIG. 2: Terms appearing in the Bethe–Salpeter equation of Eq.(12).

In Ref. [18] following the on-shell factorization, the
qiqj

m2

V

term was included in the loop

function, giving rise to a correction term ~q 2

3m2

V

which was very small. Consistently with the

approximations done here , q2

m2

V

= 0, we also neglect this term. The factor ~ǫ~ǫ ′ appears in

all iterations and, thus, factorizes in the T–matrix.

III. RESULTS WITH NO WIDTH FOR ρ AND ∆.

From Eqs. (10), (11) and (12) we find two attractive, I = 1/2 and I = 3/2, and one

repulsive, I = 5/2, channels. Hence, no bound states are obtained in the exotic I = 5/2

channel. On the contrary, bound states (|T |2 goes to infinity in Eq. (12)) can be clearly

observed in the I = 1/2, and I = 3/2 channels. The strength of the interaction indicates

that the I = 1/2 state is more bound than the I = 3/2.

Another issue worth mentioning is that the only spin dependence comes from the ~ǫ~ǫ ′

factor of the vector mesons. The spin of the ∆ does not appear in our formalism due to the

approximations done. Only the γ0 term of the V BB vertex, which has not spin structure to

leading order, has been kept [6]. The ~ǫ~ǫ ′ scalar structure tells us that all spin states of the

ρ∆ system behave according to the same interactions and therefore, one has degeneracy for

the JP = 1/2−, 3/2−, 5/2− states, both for I = 1/2 and I = 3/2.

In Figs. 3 and 4 we show |T |2 as a function of
√

s for ρ∆ → ρ∆ both in I = 1/2 and

I = 3/2. In order to check the dependence of our results on the choice made for the value

of the cutoff, a 10% variation over the value taken in Ref. [6] (qmax = 700 MeV) has been

considered. We shall take the corresponding dispersion of results as an indication of their

uncertainty. By comparing Figs. 3 and 4 it is clear that the results for I = 3/2, with bound

state masses ranging from 1940 MeV to 1980 MeV, show much less dispersion than the

results for I = 1/2, with bound state masses ranging from approximately 1700 MeV to 1800

MeV. This has to do with the more attractive interaction for I = 1/2, so that the more

7



1600 1700 1800 1900
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FIG. 3: |T |2 for ρ∆ → ρ∆ in the I = 1/2 channel for several values of the cutoff qmax: solid line

qmax = 770 MeV, dashed line qmax = 700 MeV, dashed-dotted line qmax = 630 MeV.

bound the sate the more uncertain the prediction of its mass.

We postpone the comparison with experimental N∗ and ∆∗ resonances until a discussion

of possible corrections to these results coming from the inclusion of ρ and ∆ widths or from

anomalous terms is carried out.

IV. CONVOLUTION DUE TO THE ρ AND ∆ MASS DISTRIBUTIONS

The strong attraction in the I = 1/2, 3/2 channels produces ρ∆ bound states and thus

with no width within the model. However, this is not strictly true since the ρ and ∆ have

a large width, or equivalently a mass distribution that allows the states obtained to decay

in ρ∆ for the low mass components of the ρ and ∆ mass distributions. To take this into

account we follow the usual procedure consisting in convoluting the G function with the
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FIG. 4: Same as Fig. 3 for I = 3/2.

mass distributions of the ρ and ∆ [19] so that the G function is replaced by G̃ as follows

G̃(s) =
1

NρN∆

∫ m∆+2Γ∆

m∆−2Γ∆

dM̃(−1

π
)Im

1

M̃ − M∆ + iΓ1(M̃)
2

×
∫ (mρ+2Γρ)2

(mρ−2Γρ)2
dm̃2(−1

π
)Im

1

m̃2 − m2
ρ + im̃Γ2(m̃)

G(s, M̃, m̃2) , (15)

with

Nρ =

∫ (mρ+2Γρ)2

(mρ−2Γρ)2
dm̃2(−1

π
)Im

1

m̃2 − m2
ρ + im̃Γ2(m̃)

(16)

N∆ =

∫ m∆+2Γ∆

m∆−2Γ∆

dM̃(−1

π
)Im

1

M̃ − M∆ + iΓ1(M̃)
2

,

where

Γ1(M̃) = Γ∆

(

λ1/2(M̃2, M2
N , m2

π)2M∆

λ1/2(M2
∆, M2

N , m2
π)2M̃

)3

θ(M̃ − MN − mπ) (17)

Γ2(m̃) = Γρ(
m̃2 − 4m2

π

m2
ρ − 4m2

π

)3/2θ(m̃ − 2mπ)

9



with λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz, Γ∆ = 120 MeV and Γρ = 150 MeV (for

Γ2(m̃) we have taken the ρ width for the decay into two pions in P -wave). The use of G̃ in

Eq. (12) provides a width to the states obtained.

V. RESULTS WITH ρ AND ∆ WIDTHS

In Figs. 5 and 6 we show the results taking into account the widths of the ρ and ∆ as

discussed in the previous section. We can see that the states develop a width leading to

more realistic results. Yet, this is not the whole width of the states since the πN decay

channels have not been included in the approach. As discussed in Ref. [6] these channels are

supposed to play a minor role as building blocks of the resonance since they are far apart in

energy from the masses of the states obtained. However, given the fact that there is more

phase space for the decay into these channels, they can have some contribution to the total

width. One should note though that the inclusion of the width hardly changes the position

of the peaks.

VI. CONTRIBUTION FROM ANOMALOUS TERMS

In the previous sections we mentioned that we do not have contributions from either

ρ∆ → ω∆ or ω∆ → ω∆ transitions within the vector exchange approach of our model. Yet

it is possible to have ω∆ intermediate states through anomalous terms involving the ρ → ωπ

transition. The contribution to ρ∆ → ρ∆ from intermediate ω∆ states is studied through

the diagram depicted in Fig. 7. The anomalous coupling ρ → ωπ is considered using the

same normalization of Ref. [19],

LV V P =
G′

√
2
ǫµναβ〈∂µVν∂αVβP 〉 (18)

where G′ = 3g′2/4π2f , g′ = −GV Mρ/
√

2f 2, GV ≈ 55 MeV. For ρ+(k) → ω(q)π+ we get the

coupling

− it = iG′ǫµναβqµkαǫν(ω)ǫβ(ρ+) (19)

and the same contribution for ρ0 → ωπ0.

However, it must be taken into account that the three momenta of the external vector

mesons has been neglected and, thus, kα → k0, forcing µ, ν, and β to be spatial components.

10
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FIG. 5: |T |2 for ρ∆ → ρ∆ in the I = 1/2 channel for several values of the cutoff qmax including ρ

and ∆ mass distributions: solid line qmax = 770 MeV, dashed line qmax = 700 MeV, dashed-dotted

line qmax = 630 MeV.

Hence,

− it = −iMρG
′ǫijlq

iǫj(ω)ǫl(ρ+) . (20)

Note that in the diagram of Fig. 7 one could also have a N in the intermediate state. We

show next that the contribution of the diagram of Fig. 7 is pretty small. Therefore we shall

neglect it as well as the one with an intermediate nucleon.

To evaluate the diagram of Fig. 7 one needs the π∆∆ coupling, which have been taken

from [20],

L∆∆π = − f∆

mπ
Ψ+

∆S∆,i(∂iφ
λ)T λ

∆Ψ∆ (21)

with f∆ = 0.802, where ~S∆(~T∆) is the spin(isospin) operator for the ∆, ~S2
∆ = S(S + 1) and

~T 2
∆ = T (T + 1)).
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FIG. 6: Same as Fig. 5 for I = 3/2.

q

p−q

k−q q−k’

k’k

∆ ∆ ∆

π π

ω
ρ ρ

FIG. 7: ρ∆ → ρ∆ term involving ω∆ intermediate states through anomalous ρ → πω couplings.

By taking the usual isospin convention |ρ+〉 = −|1, +1〉, one has

|∆ρ; 3/2, +3/2〉 =

√

3

5
∆++ρ0 +

√

2

5
∆+ρ+ (22)

|∆ρ; 1/2, +1/2〉 =

√

1

2
∆++ρ− −

√

1

3
∆+ρ0 −

√

1

6
∆0ρ+

The only contribution obtained corresponds to isospin I = 3/2 ρ∆ states, since ω∆ only
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couples to this isospin. In doing so one obtains

〈∆ρ, I = 3/2|(~T∆
~φ)2|∆ρ, I = 3/2〉 =

15

4
(23)

by means of which the contribution of the diagram of Fig. 7 to the ρ∆ → ρ∆ transition is

given by

−it =
15

4
M2

ρ (G′)2

(

f∆

mπ

)2

ǫijkǫi′j′k′(−i)(−i)

∫

d4q

(2π)4
qiǫj(ω)ǫk(ρ)qi′ǫj′(ω)ǫk′

(ρ)×

× i

(k − q)2 − m2
π + iǫ

i

(q − k′)2 − m2
π + iǫ

(

~S∆ · ~q
)(

~S∆(̇ − ~q)
)

×

× i

q2 − M2
ω + iǫ

i

P − q − E∆(q) + iǫ
(24)

By summing over the polarizations, setting ~k, ~k′ equal to zero, taking into account that

∫

d3q

(2π)3
f(~q 2)qiqjqlqm =

1

15

∫

d3q

(2π)3
f(~q 2)~q 4(δijδlm + δilδjm + δimδjl) , (25)

and ignoring the tensor part (S∆i
S∆j

− 1
3
~S2

∆δij)ǫiǫ
′
j versus the dominant scalar part 5

3
~ǫ~ǫ ′~S2

∆ =

25
4
~ǫ~ǫ ′ (we estimate the contribution of the tensor part to be of the order of 10% of the scalar

one), one arrives to

−it =
25

8
~ǫ~ǫ ′

(

MρG
′ f∆

mπ

)2 ∫
d4q

(2π)4
~q 4 1

(k′ − q)2 − m2
π + iǫ

× (26)

× 1

(q − k)2 − m2
π + iǫ

1

q2 − M2
ω + iǫ

1

(P 0 − q0) − E∆(q) + iǫ

The q0 integration is now performed summing the residues of the poles of the propagator

and one finally finds

t
(anomalous)
ρ∆→ρ∆ =

25

8
~ǫ~ǫ ′

(

MρG
′ f∆

mπ

)2 ∫
d3q

(2π)3
~q 4 1

2ω

1

(P 0 − ω) − E∆ + iǫ
× (27)

×
(

1

ω − k0 + ωπ

)2(
1

ω + k0 + ωπ

)2(
1

P 0 − k0 − ωπ − E∆

)2
1

(2ωπ)3
4×

×
{

2ω5
π + 4(E∆ + k0 + 2ω − P 0)ω4

π + 2[E2
∆ + 2k0E∆ + 6ωE∆

+ (k0)2 + 6ω2 + (P 0)2 + 4k0ω − 2(E∆ + k0 + 3ω)P 0]ω3
π+

+ ω(5E∆ + 7k0 + 8ω − 5P 0)(E∆ + ω − P 0)ω2
π + 2ω(E∆ + ω − P 0)ωπ×

× [−(k0)2 + 2ωk0 + ω(2E∆ + ω − 2P 0)] + ω(E∆ + ω − P 0)×

× (E∆ + k0 − P 0)(ω2 − (k0)2) }FF (~q )2
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FIG. 8: t
(anomalous)
ρ∆→ρ∆ (dashed lines) compared to V (solid lines) as a function of

√
s for qmax = 770

MeV/c.

In Eq. (27) a form factor

FF (~q) =
Λ2

Λ2 − ~q 2
(28)

has been included for each ∆∆π vertex, with Λ = 1 GeV, as customary in the Yukawa

coupling of pions and baryons.

In Fig. 8 we show the results for t
(anomalous)
ρ∆→ρ∆ compared to V for the same channel for

the exchange of vector mesons. As can be seen, the contribution of the anomalous term is

reasonably smaller than the dominant one of vector meson exchange and, hence, neglecting

it, as we have done in the former section, is a good approximation. Note that this is not

the only source of smaller contributions to the potential. We have also ignored terms with

πN and π∆ in the intermediate states. Actually, in Ref. [11], the equivalent terms with

ππ intermediate states in the ρρ scattering are found to have a relatively small real part

compared to the contribution from the dominant ρ exchange terms. Furthermore, they have

opposite sign to the anomalous contributions, leading to additional cancellations of these

small terms that we also expect here.
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VII. COMPARISON TO EXPERIMENTAL STATES

To compare our dynamically generated meson-baryon bound states (DGBS) with ex-

perimental resonances we should keep in mind that a calculated DGBS mass will only fit

precisely an experimental mass if the corresponding resonance has either i) a very dominant

meson-baryon (4q1q) component or ii) weakly coupled 3q and meson-baryon components

giving rise separately to bound states of the same mass.

Option i) seems to be approximately at work at least for some of our degenerate I =

3/2, JP = 1/2−, 3/2−, 5/2− states, with a mass between 1940 MeV (qmax = 770 MeV)

and 1980 MeV (qmax = 630 MeV), which can be respectively assigned to ∆(1900)S31(∗∗),
∆(1940)D33(∗) and ∆(1930)D35(∗ ∗ ∗) from the Particle Data Group (PDG) Review [21].

Indeed the mass of these three resonances can not be reproduced by 3q models based on two-

quark interactions which predict significant higher values [9]. Specifically for ∆(1930)D35,

due to quark Pauli blocking, there are not allowed 3q configurations in the first energy band

of negative parity and consequently any 3q mass prediction is about 300 MeV higher than

the PDG average mass. Then we can interpret ∆(1930)D35 as a ρ∆ bound state whereas the

corresponding 3q bound state will lye 300 MeV above. For JP = 1/2−, 3/2− the predicted

3q radial excitations of the lowest states in the first energy band of negative parity are

located at ∼ 2050 MeV (see for instance [22]). If they were overpredicted, as it is known

to happen for radial excitations in the positive parity sector, there could be forming part

of ∆(1900)S31 and ∆(1940)D33 altogether with the ρ∆ bound state and option ii) would

be preferred. These considerations get additional support from some experimental analyses

[23, 24] where the inclusion of ρ∆ as an effective inelastic channel becomes essential for the

extraction of the ∆(1930)D35.

For I = 1/2, JP = 1/2−, 3/2−, 5/2− and qmax = 770 MeV we obtain a DGBS mass of

∼ 1700 MeV. A look to the PDG data suggests the identification with the almost degener-

ate N(1650)S11(∗ ∗ ∗∗), N(1700)D13(∗ ∗ ∗) and N(1675)D15(∗ ∗ ∗∗) respectively. However,

although for these resonances 3q models systematically underpredict their masses, the pre-

dicted 3q values differ less than 100 MeV from the PDG averages. This makes option ii)

more reliable as we show next. Let us centre first on D15 for which the 3q mass prediction

is usually closer to data. If the (3q − ρ∆)D15
coupling were weak there would be two bound

states close in mass, differing very little from the 3q and ρ∆ bound states. As there is only
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one experimental candidate in the energy region under consideration (the closest PDG D15

state is N(2200)D15(∗∗)) we would be forced to conclude that both states actually form the

N(1675)D15. On the other hand if the (3q − ρ∆)D15
coupling were strong, but not enough

to make the ρ∆ unbound, there would be two bound states much more separated in mass

than the previous 3q and ρ∆ ones (see Ref. [9]). The two new bound states should appear

as two distinctive resonances what is not confirmed experimentally. Therefore we conclude

that the N(1675)D15 may be the result of the overlapping of the 3q and ρ∆ bound states.

For N(1650)S11 and N(1700)D13 the analysis is more difficult since there can be 3q

configuration mixing with the low-lying N(1535)S11 and N(1520)D13 and also a possible

coupling to the S-wave ρN channel that we have not taken into account. The study of the

ρN channel and its effect on the N and ∆ spectrum deserves special attention and will be

the subject of a future analysis.

Regarding the dependence of our results on the cutoff it should be remarked that for any

value in the considered interval qmax ∈ [ 630 MeV, 770 MeV] the only available assignment

of our I = 3/2 ρ∆ bound states to ∆∗ resonances is the one performed above. This is easy to

understand by realizing that even enlarging the qmax interval the mass of the closest ∆(J−)

PDG resonances would be far above or below our predicted masses. Moreover as the change

of the prediction over the whole interval is very modest, going from 1940 MeV to 1980 MeV,

there can only have a little effect on the probability of the ρ∆ component in the assigned

resonance.

For I = 1/2 the greater sensitivity of the predicted masses to changes in the cutoff

values (from 1700 MeV to 1800 MeV in the considered qmax interval) might leave room for

an alternative assignment although a quick look to the PDG catalog also locates the next

N(JP = 5/2−) resonance, N(2200)D15(∗∗), very far above our predicted masses. However,

a careful look to the data values used to obtain its average mass indicates two sets of them:

one giving a mass about 1900 MeV and another one reporting values around 2200 MeV. The

same circumstance is repeated for N(2090)S11(∗) and N(2080)D13(∗∗) so that the existence

of two distinctive resonances may be considered. Actually in Ref. [23] two D13 resonances

with masses 2080 MeV and 1880 MeV were reported. Then, by enlarging the cutoff interval,

our ρ∆ bound state prediction (for qmax = 530 MeV we predict 1880 MeV) could be pretty

close in mass to the N(1900)(JP = 1/2−, 3/2−, 5/2−) and their assignment would be feasible.

Again the presence of 3q models configurations close in mass could imply a 3q−ρ∆ structure.
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In such a case the N(1650)S11, N(1700)D13 and N(1675)D15 should consistently not contain

a ρ∆ component.

VIII. CONCLUSIONS

We have performed a study of the ρ∆ interaction within the framework of the hidden

gauge formalism for vector mesons and a unitary approach via the use of the Bethe Salpeter

equation. We find that the interaction potential for the ρ and ∆ is attractive in I = 1/2

and I = 3/2 and repulsive in I = 5/2 channels. Then, we found bound states of ρ∆ in

the I = 1/2, 3/2 channels and no bound states in the I = 5/2 channel. It is interesting

to observe that, even if the ρ∆ structure allows for I = 5/2, the dynamics of the problem

precludes the formation of bound states. Note that an I = 5/2 bound state would be exotic

since a three quark structure does not allow such an isospin to appear.

We also find the ρ∆ interaction with I = 1/2 to be stronger than with I = 3/2, leading

to N∗ states more bound that the ∆∗ ones. The other dynamical feature of the model is

the spin degeneracy in JP = 1/2−, 3/2−, 5/2− of both the N∗ and ∆∗ states. This is a

consequence of the approximations done, corresponding to the ρ∆ interaction in S− wave,

neglecting the three momentum of the vector mesons. As much as the approximations are

sensible, we expect the predictions on the degeneracy to be realistic.

When it comes to compare our results with existing resonances, we find for ∆∗ a good

quantitative agreement with ∆(1900)S31(∗∗), ∆(1940)D33(∗) and ∆(1930)D35(∗ ∗ ∗). The

small sensitivity of the predicted masses to changes in the cutoff parameter used in our

calculation added to the lack of alternative identifications with existing data takes us to

unambiguously assign our ρ∆ bound states to these resonances. For ∆(1930)D35 the much

larger mass predicted by 3q models makes clear that it contains almost exclusively a ρ∆

component. For ∆(1900)S31 and ∆(1940)D33 the presence of a 3q radial excitation not far

above in energy could leave room for a significant probability of this component.

Concerning N∗ we find again a good quantitative agreement of our predicted masses

with N(1650)S11(∗ ∗ ∗∗), N(1700)D13(∗ ∗ ∗) and N(1675)D15(∗ ∗ ∗∗). The analysis of 3q

models predictions makes clear that with this assignment each of these experimental N∗

resonances would come out from the overlapping of two different states containing both 3q

as well as ρ∆ components. However the close mass of these two states and the possible
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existence of additional components in them would make difficult their experimental dis-

entanglement. Alternatively another assignment is possible. The larger sensitivity of the

predicted masses to changes in the cutoff could make feasible in this case the assignment

to non-cataloged N(1900)(JP = 1/2−, 3/2−, 5/2−) resonances which would be hidden in the

cataloged N(2200)D15(∗∗), N(2090)S11(∗) and N(2080)D13(∗∗).
Therefore we conclude that the ∆(1930)D35(∗ ∗ ∗) can be interpreted as ρ∆ bound state

and that the ∆(1900)S31(∗∗) and ∆(1940)D33(∗) contain a significant probability of the

ρ∆ component providing an explanation to the elusive description of these resonances by

3q models. In the I = 1/2 sector although an assignment of our ρ∆ bound states to

N(1650)S11(∗ ∗ ∗∗), N(1700)D13(∗ ∗ ∗) and N(1675)D15(∗ ∗ ∗∗) can be done it would be

also possible to associate them to non cataloged N∗ states around 1900 MeV. Certainly a

refinement of our results, from a more complete calculation incorporating 3q altogether with

meson-baryon components in a consistent manner, could be more predictive in this case.

Nevertheless the detailed analysis we have performed makes clear that an additional experi-

mental input is needed anyhow to definitely settle the point. We encourage an experimental

effort along this line.
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