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1 Introduction

One of the key issues in QCD phenomenology at the Large Hadron Collider (LHC) is gauging

the importance of small-x physics related effects on a number of physical observables and

consequently, getting a definite answer on the validity and the applicability of the high

energy resummation programme.

At very large center-of-mass energies,
√
s, or alternatively at very small-x, the ap-

pearance of large logarithms in energy (log s ∼ log 1/x) can spoil the convergence in

the perturbative calculation of scattering amplitudes. More concretely, terms of the form

(αS log 1/x)n, where αS is the strong coupling constant, can be of order unity, for small

enough x, and therefore need to be resummed to all orders. The Balitsky-Fadin-Kuraev-

Lipatov (BFKL) framework enables the resummation of high center-of-mass energy log-

arithms at leading [1–3] (Lx) and next-to-leading [4, 5] logarithmic accuracy (NLx). At

Lx, all the terms of the form (αS log 1/x)n are resummed whereas, at NLx one has also to

resum terms in which the strong coupling lacks one power compared to the logarithm in

energy, that is, terms that behave like αS (αS log 1/x)n.

In the last two decades or so and after the first small-x data from Deep Inelastic

Scattering (DIS) collisions at HERA became available in the beginning of the 90’s, the

resummation of the high energy logarithms and its phenomenological relevance exhibited

some major developments. To give but a sample of very important works in the field, fo-

cusing more on the phenomenological side, we would have to mention the formal study of

the kT -factorization scheme [6–8], the computation of the NLx BFKL kernel [4] and the

collinear improvements to the NLx kernel [9–12]. For the study of scattering amplitudes

within the BFKL formalism, necessary ingredients are the gluon Green’s function which

is obtained after solving the BFKL equation (see for example Refs. [13–23]), the gluon
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Regge trajectory [24–33] and the impact factors [34–42], the latter being process-dependent

objects. In a very general definition, the impact factors are the effective couplings of the

scattering projectiles to whatever is exchanged in the t-channel for a process studied in

the kT -factorization scheme. One can claim that resumming small-x logarithms is finally

well understood for a number of processes and observables at HERA and the LHC: per-

turbative evolution of parton distribution functions [43–49], photoproduction [6–8] and

double-DIS [50–52] processes, hadroproduction of heavy quarks [53, 54], Drell-Yan [55],

Higgs boson hadroproduction [56], Mueller-Navelet jets and forward jets in DIS [57–61].

The impact factors for gluons and massless quarks were calculated in Ref. [62] at NLx

accuracy and in momentum space. This allows in principle for the calculation of various

DIS and double-DIS processes with massless quarks and gluons in the initial state whereas

the extension to the case of hadron-hadron collisions was also established [63–65].

What we are interested in though, starting from this work, is to set up a programme

for phenomenological studies –within the kT -factorization scheme– of processes involving

massive quarks (mainly bottom quarks) at the LHC, given the excellent tagging capabilities

of the ATLAS [66], CMS [67] and LHCb [68] detectors. For that to be possible we need the

NLx impact factor for a massive quark which was first calculated by Ciafaloni and Rodrigo

in Refs. [69, 70]. However, their final expression for the massive quark impact factor was

written in the form that contains a sum of an infinite number of terms. To make their

result directly applicable for phenomenological studies we recalculate the NLx heavy quark

impact factor in a compact and resummed form, ready to be used for the convolution with

the gluon Green’s function in a numerically straightforward manner.

After this introduction, we proceed to Section 2 where we set up our notation and

provide the necessary definitions. In Section 3, we present the two terms that contribute

with massive corrections to the massless NLx quark impact factor and we calculate these

terms in Sections 4 and 5. The full result in a closed resummed form appears in Section 6,

in which we also offer a first numerical study of the behavior of the finite part of the result.

Finally, we conclude in Section 7.

2 High energy factorization

In the high energy limit: ΛQCD ≪ |t| ≪ s, the partonic cross-section of 2 → 2 processes

factorizes into the impact factors ha(k1) and hb(k2) of the two colliding partons a and b,

and the gluon Green’s function Gω(k1,k2) (here in Mellin space) so that the differential

cross-section can be written as

dσab

d[k1] d[k2]
=

∫

dω

2πi ω
ha(k1)Gω(k1,k2)hb(k2)

(

s

s0(k1,k2)

)ω

, (2.1)

where ω is the dual variable to the rapidity Y, and d[k] = d2+2εk/π1+ε is the transverse

space measure. The impact factor at the leading log x order (Lx) can be expressed by a

very simple formula

h(0)(k) =

√

π

N2
c − 1

2CFαSNε

k2 µ2ε
, Nε =

(4π)ε/2

Γ(1− ε)
, (2.2)
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and it is the same (up to a color factor) for quarks and gluons, where µ is the renormalization

scale and ε is the dimensional regularization parameter. Using the expression for the leading

order impact factor we define the constant

Aε = k2 h(0)(k)
αS

Γ(1− ε)µ2ε
, (2.3)

which contains the dependence on the strong coupling and on color factors. The dimension-

less strong coupling αS is expressed by using the gauge coupling parameter g and already

introduced parameters:

αS =
αSNc

π
, αS =

g2Γ(1− ε)µ2ε

(4π)1+ε
, (2.4)

where Nc is the number of colors in QCD. Finally, the gluon Regge trajectory, ω(1)(k),

which accounts for the virtual correction to the BFKL kernel, has the simple form:

ω(1)(k) = − g
2Nck

2

(4π)2+ε

∫

d[p]

p2(k − p)2
= −αS

2ε

Γ2(1 + ε)

Γ(1 + 2ε)

(

k2

µ2

)ε

. (2.5)

3 The integral representation of the impact factor

According to Ref. [69], the NLx result for the impact factor of a heavy quark can be written

as the sum of three contributions:

h
(1)
q (k2) = h

(1)
q,m=0(k2) +

∫ 1

0
dz1

∫

d[k1]∆Fq(z1,k1,k2)

+

∫

d[k1]αS h
(0)
q (k1)K0(k1,k2) log

m

k1
Θmk1 , (3.1)

with the convention Θmk1 = θ (m− k1), where the θ-function is the well-known Heaviside

step function and k1 = |k1|. The first term on the right hand side of Eq.(3.1) is the NLx

correction to the impact factor of a massless quark, which can be expressed by using the

leading order impact factor h(0)(k) in Eq.(2.2) and the gluon Regge trajectory ω(1)(k)

in Eq.(2.5),

h
(1)
q,m=0(k2) = h(0)(k2)ω

(1)(k2)

[

b0 +
3

2
− ε

(

1

2
+K

)]

, (3.2)

with the beta function b0 and K defined as

b0 =
11

6
− nf

3Nc
, K =

67

18
− π2

6
− 5nf

9Nc
. (3.3)

The second term on the right hand side of Eq.(3.1) is the NLx correction induced by

the heavy quark mass m, with ∆Fq(z1,k1,k2) defined in Ref. [69]. The third term comes

from the introduction of the mass scale to the leading order BFKL kernel K0(k1,k2) which

is defined as

αSK0(k1,k2) =
αS

q2Γ(1− ε)µ2ε
+ 2ω(1)(k1)δ[q] , δ[q] = π1+εδ2+2ε(q) , (3.4)

with q = k1+k2. The first term on the right hand side of Eq.(3.4) is the real component of

the BFKL kernel and the second one corresponds to the virtual corrections. In the following

two Sections we reanalyze the second and third terms in the right hand side of Eq.(3.1).
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4 The ∆Fq term

The second term in the right hand side of Eq.(3.1),

∆Fq(k2) =

∫ 1

0
dz1

∫

d[k1]∆Fq(z1,k1,k2) , (4.1)

receives contributions from virtual and real corrections. The explicit expression of the inte-

grand of Eq.(4.1) is given in Ref. [69] in momentum space, after integration over k1. Note,

however, that the remaining integrations cannot be performed directly in an straightforward

way. Instead, it is easier to calculate the Mellin transform:

∆F̃q(γ) = Γ(1 + ε) (m2)−ε

∫

d[k2]

(

k2
2

m2

)γ−1

∆Fq(k2) , (4.2)

which leads to this expression

∆F̃q(γ) = Aε (m
2)ε

Γ(γ + ε)Γ(1− γ − 2ε)Γ2(1− γ − ε)

8Γ(2− 2γ − 2ε)

×
[

1 + ε

γ + 2ε
+

2

1− 2γ − 4ε

(

1

1− γ − 2ε
− 1

3− 2γ − 2ε

)]

. (4.3)

Then, the function ∆Fq(k2) in momentum space is recovered by computing the inverse

Mellin transform:

∆Fq(k2) =
1

m2

∫

1−2ε<Re γ<1−ε

dγ

2πi

(

k2
2

m2

)−γ−ε

∆F̃q(γ) . (4.4)

This integral is a contour integral in the complex plane which is well defined when the

integration contour is a straight line parallel to the imaginary axis and which intersects the

real axis in the strip 1 − 2ε < Re γ < 1 − ε. To perform the integration in Eq.(4.4) we

use Cauchy’s residue theorem. The ratio k2
2/m

2 may, in principal, take any value between

0 and ∞. If k2
2/m

2 < 1, we deform the integration contour at −i∞ and at +i∞ to the

right, such that the two ends meet at +∞ of the real axis, whereas, if k2
2/m

2 > 1 we

deform the integration contour at −i∞ and at +i∞ to the left, such that the two ends

meet at −∞ of the real axis. In both cases, we change the initial integration contour to a

closed one which consists of the initial one and of a semi-circle on which the integrand is

zero, allowing this way for the integration to be done by summing the residue contributions

enclosed by each contour. It turns out though, that in order to obtain the result in a simple

resummed form, we are forced to close the contour to the left, assuming that k2
2/m

2 > 1, in

which case we denote the result by ∆F−
q (k2). We have checked that this closed resummed

result is the correct result for all allowed values of the ratio k2
2/m

2 by comparing to the

expression –denoted as ∆F+
q (k2)– we get after closing the initial contour to the right. It is

probably noteworthy to add that in the case of deforming the contour to the left, we were

able to resum the residue contributions in a closed form both before and after expanding

in ε whereas in the case of closing the contour to the right, the resummation of the residue

contributions in a closed form is only possible before expanding in ε.
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In detail, after deforming the integration contour as described above, we have:

∆F−
q (k2) =

1

m2

∑

γ≤1−2ε

Res

[

(

k2
2

m2

)−γ−ε

∆F̃q(γ)

]

. (4.5)

The distinct pole contributions that need to be accounted for come from the residues

at γ = 1 − 2ε (which provides the singular terms in ε), 1
2 − 2ε, −ε, −2ε and finally from

the poles at γ = −n − ε with n ∈ N and n > 0. To simplify the formalism, we factorize

the leading order impact factor h(0)(k2) and the gluon Regge trajectory ω(1)(k2) at each

residue contribution and define

hγi(k2) =
(

h(0)(k2)ω
(1)(k2)

)−1 1

m2
Res{γ=γi}

[

(

k2
2

m2

)−γ−ε

∆F̃q(γ)

]

. (4.6)

Then

∆F−
q (k2) = h(0)(k2)ω

(1)(k2)
∑

γi≤1−2ε

hγi(k2) (4.7)

and the contributions of the different residua at the poles located at γ ≤ 1 − 2ε are given

by

h1−2ε(k2) = −1 + 5ε − 2ε2

2(1 + 2ε)
− log(4R) + ψ(1 − ε)− ψ(1) − 2ψ(ε) + 2ψ(2ε) ,

h1/2−2ε(k2) =
√
R

(3 + 4ε) Γ(1 + 2ε)π tan(π ε)

41+ε(1 + ε) Γ2(1 + ε)
,

h−2ε(k2) = R
1 + ε

1 + 2ε
,

h−n−ε(k2) = (−1)1+n (4R)1+n−ε εΓ(1 + 2ε)Γ(1 + n) Γ(1 + n− ε)

4Γ(1− ε) Γ2(1 + ε) Γ(2 + 2n)

×
[

1 + ε

ε− n
+

2

1 + 2n− 2ε

(

1

1 + n− ε
− 1

3 + 2n

)]

, (4.8)

where R = k2
2/(4m

2). The residue at γ = −ε is accounted for when n = 0 in the last expres-

sion in Eq.(4.8). To obtain a closed analytic expression we still need to resum h−n−ε(k2)

for n ≥ 1. The result is given by:

∞
∑

n=1

h−n−ε(k2) = −(4R)2−ε εΓ(1 + 2ε)

24Γ2(1 + ε)

[

(1 + ε) 2F1(1, 1 − ε;
5

2
;−R)

− 4(1− ε)

3− 2ε
3F2(1,

3

2
− ε, 2 − ε;

5

2
,
5

2
− ε;−R)

+
2(1− ε)

5(3− 2ε)
3F2(1,

3

2
− ε, 2− ε;

7

2
,
5

2
− ε;−R)

+
2(1− ε)

2− ε
3F2(1, 2 − ε, 2 − ε;

5

2
, 3− ε;−R)

]

, (4.9)
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where pFq are generalized hypergeometric functions. By expanding in ε we obtain

∞
∑

n=1

h−n−ε(k2) = ε

[

1 +
10

3
R+ log(Z)

(

(1 + 2R)

√

1 +R

R
+ 2 log(Z)

)

+3
√
R

(

Li2(Z)− Li2(−Z) + log(Z) log

(

1− Z

1 + Z

)

− π2

4

)

]

+O(ε2) , (4.10)

where Li2 is the usual dilogarithm function, and Z = (
√
1 +R +

√
R)−1. The final result

is obtained by summing up the contributions of all the residua and reads

∆Fq(k2) = h(0)(k2)ω
(1)(k2)

{

1

ε
− log(4R)− 1

2

+ ε

[

π2

6
− 1

2
+R log(4R) + log(Z)

(

(1 + 2R)

√

1 +R

R
+ 2 log(Z)

)

+ 3
√
R

(

Li2(Z)− Li2(−Z) + log(Z) log

(

1− Z

1 + Z

))

]}

+O(ε) . (4.11)

What we have achieved so far is a compact analytic expression for the second term

in Eq.(3.1), that is, ∆Fq(k2), for any value of R keeping the whole singularity structure.

The double log singularities (1/ε2 and 1/ε log(R) terms) cancel [69] against the double log

singularities from the remaining third term of Eq.(3.1).

5 The K0(k1,k2) related term

Let us now turn to the final ingredient in order to have the full NLx heavy quark impact

factor with mass corrections. For the real emission part of the BFKL kernel, K0(k1,k2)

(see Eq.(3.4)), we define the integral

Im(k2) =

∫

d[k1]
αSh

(0)
q (k1)

q2Γ(1− ε)µ2ε
log

m

k1
Θmk1 . (5.1)

We use the following integral representation [69]:

log
a

b
Θab = lim

α→0+

∫ +i∞

−i∞

dλ

2πi

1

(λ+ α)2

(a

b

)λ
≡
∫

d[λ]
(a

b

)λ
, (5.2)

valid for a, b > 0, which allows us to write

Im(k2) =
Aε

2

∫

d[λ] (m2)λ
∫

d[k1]

q2 (k2
1)

1+λ

=
Aε

2

∫

d[λ]
Γ(1 + λ− ε)Γ(ε)Γ(ε − λ)

Γ(1 + λ)Γ(2ε − λ)
(m2)λ(k2

2)
−1−λ+ε , (5.3)

or more explicitly

Im(k2) =
Aε

2
lim

α→0+

∫ +i∞

−i∞

dλ

2πi

1

(λ+ α)2
Γ(1 + λ− ε)Γ(ε)Γ(ε − λ)

Γ(1 + λ)Γ(2ε− λ)
(m2)λ(k2

2)
−1−λ+ε .

(5.4)
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The integrand in Eq.(5.4) vanishes for |λ| → ∞ in all directions apart from the real axis.

As was the case in the previous Section, this is a contour integral and therefore we define

dλi
(k2) =

Aε

2

(

h(0)(k2)ω
(1)(k2)

)−1

× lim
α→0+

Res{λ=λi}

[

1

(λ+ α)2
Γ(1 + λ− ε)Γ(ε)Γ(ε − λ)

Γ(1 + λ)Γ(2ε − λ)
(m2)λ(k2

2)
−1−λ+ε

]

.(5.5)

For m2/k2
2 < 1 we close the contour at infinity to the right of the complex plane, and

evaluate the residua of the poles enclosed by the deformed contour. The first pole for λ > 0

is located at λ = ε which gives the leading contribution including a singular term in ε.

All remaining poles are located at λ = n + ε with n ∈ N and give contributions of order

(m2/k2
2)

n. The complete expression for the residua of these poles, including the one at

n = 0, reads:

dn+ε(k2) =
Γ(1 + 2ε)

Γ(1− ε) Γ(1 + ε)

(−1)n (4R)−n−ε

(ε+ n)3 Γ(ε− n) Γ(ε+ n)
. (5.6)

Keeping apart the contribution of the first pole at n = 0, we resum the series of residua at

λ = n+ ε with n ≥ 1 and we obtain

∞
∑

n=1

dn+ε(k2) =
ε (1 − ε) Γ(1 + 2ε)

Γ(1− ε) Γ3(2 + ε)

× 1

(4R)1+ε 4F3

(

1, 2− ε, 1 + ε, 1 + ε; 2 + ε, 2 + ε, 2 + ε;
1

4R

)

. (5.7)

By expanding in ε the contribution of the first pole of Eq.(5.6) at n = 0 and the result

in Eq.(5.7) and after summing them up we get:

I+m(k2) = −h(0)(k2)ω
(1)(k2)

∑

λi>0

dλi
(k2)

= h(0)(k2)ω
(1)(k2)

[

−1

ε
+ log(4R)− ε

(

1

2
log2(4R) + Li2

(

1

4R

))]

+O(ε) .(5.8)

We need to consider in addition the case k2
2/m

2 < 1. Now, we close the integration

contour to the left, to −∞, enclosing this way the poles located at λ = −α with α → 0+

and at λ = −n+ ε, with n ∈ N and n ≥ 1, with

I−m(k2) = h(0)(k2)ω
(1)(k2)

∑

λi<0

dλi
(k2) . (5.9)

These residua provide contributions of the order (k2
2/m

2)n, their actual values are:

d−α(k2)|α→0+ = 2 log (4R) + 2 [ψ(1) − ψ(1 − ε) + ψ(ε) − ψ(2ε)] , (5.10)

d−n+ε(k2) =
Γ(1 + 2ε)

Γ(1− ε) Γ(1 + ε)

(−1)n (4R)n−ε

(ε− n)3 Γ(ε− n) Γ(ε+ n)
. (5.11)
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As before, we resum all the residua at γ = −n+ ε before we expand in ε. The result is:

∞
∑

n=1

d−n+ε(k2) = − Γ(1 + 2ε) sin(πε)

π (1− ε)2 Γ(1 + ε)2

× (4R)1−ε
4F3 (1, 1− ε, 1− ε, 1 − ε; 2− ε, 2 − ε, 1 + ε; 4R) . (5.12)

After summing up the contributions from Eq.(5.10) and Eq.(5.12), expanding in ε, and

including the virtual term of the BFKL kernel K0(k1,k2), we obtain:

I−m(k2) − h(0)(k2)ω
(1)(k2) log

(

k2
2

m2

)

= h(0)(k2)ω
(1)(k2)

(

−1

ε
+ log(4R) − εLi2(4R)

)

+O(ε) . (5.13)

6 The analytic result for the impact factor and a first numerical study

The final expression for the next-to-leading order correction h
(1)
q (k2) to the impact factor

is obtained by using Eq.(3.2), Eq.(4.11), Eq.(5.8) and Eq.(5.13) into Eq.(3.1). Collecting

all the contributions, the impact factor of a heavy quark at NLx accuracy reads

hq(k2) = h(0)(k2) + h
(1)
q (k2) (6.1)

and can be expressed in terms of a singular and a finite contribution

hq(k2) = h
(1)
q (k2)|sing + hq(k2)|finite . (6.2)

The singular term h
(1)
q (k2)|sing reads [69]

h
(1)
q (k2)|sing = h(0)(k2)

(

3

2
ω(1)(k2)−

1

2
ω(1)(m)Θk2 m − 1

2
ω(1)(k2)Θmk2

)

, (6.3)

whereas the finite contribution, which is the main result of this paper, is given by

hq(k2)|finite = h(0)(k2, αS(k2))

{

1 +
αSNc

2π

[

K− π2

6
+ 1−R log(4R)

− log(Z)

(

(1 + 2R)

√

1 +R

R
+ 2 log(Z)

)

− 3
√
R

(

Li2(Z)− Li2(−Z) + log(Z) log

(

1− Z

1 + Z

))

+ Li2 (4R) Θmk2 +

(

1

2
log (4R) +

1

2
log2 (4R) + Li2

(

1

4R

))

Θk2 m

]}

.

(6.4)

As in Ref. [69], we have absorbed the singularities proportional to the beta function b0
into the running of the strong coupling αS(k2) [71, 72]. Our final result in Eq.(6.4) is

valid in any kinematical regime, and provides a compact expression for the heavy quark

impact factor which is suitable for phenomenological studies. We have checked that by
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expanding Eq.(6.4) for either k2
2/m

2 < 1 or m2/k2
2 < 1 we reproduce the results presented

in Ref. [69]1. In particular, the massless limit of the finite contribution to the impact factor

in Eq.(6.4) is given by

hq(k2,m = 0)|finite = h(0)(k2, αS(k2))

{

1 +
αSNc

2π

[

K− π2

6
− 3

2

]}

. (6.5)

With the result from Eq.(6.4) at hand, we proceed to a first numerical study of the

magnitude of the mass corrections to the impact factor at NLx accuracy. As was stated

previously, we have adopted the running coupling scheme as described in Refs. [71, 72] and

with nf = 5 flavors. At Lx accuracy, we use a fixed value for the strong coupling constant,

namely, αS = 0.2.

NLx , m=5 GeV

Lx , Α S=0.2NLx , m=0

1 2 3 4 5 6 7 8 9 10
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h q
Hk

2
L

fin
ite
@G

eV
-

2
D

Figure 1. Finite part of the quark impact factor: Lx in green (solid line), massless NLx in black

(dotted line) and NLx for quark mass m = 5 GeV in red (dashed line).

In Fig. 1 we plot the Lx as well as the NLx quark impact factor, the latter for two

quark mass choices, m = 0 and m = 5 GeV. We see that the NLx correction to the leading

order impact factor for massless quark is positive and moderate only for small k2 where the

behavior is dominated by the running of the strong coupling constant, whereas, for most

of the range of the plot the correction is negative. For a non-zero quark mass the overall

correction is positive and large in the region k2
2/m

2 < 1. They turn to negative closely

after k2
2/m

2 = 1 and for larger k2
2/m

2, they follow the NLx massless curve as expected.

To get a better quantitative picture of the behavior of the NLx corrections in the massless

1 There were two typos in Ref. [69] which were taken into account when we made the comparison.
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Figure 2. The ratio of the NLx impact factor to the Lx impact factor for different quark masses:

m = 0 GeV (massless) in black (dotted line), m = 4 GeV in blue (dashed line) and m = 5 GeV in

red (solid line).
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Figure 3. Ratio of the massive NLx impact factor over the massless NLx factor for two different

mass choices: m = 4 GeV in blue (dashed line) and m = 5 GeV in red (solid line).

and massive case, it is useful to study the ratios of the impact factors at Lx and NLx

accuracy. In Fig. 2 we can see that the relative size of the full NLx corrections in the

– 10 –



range k2
2/m

2 < 10 GeV, vary from more than +100% at very small k2 down to some −20%

for larger k2, for similar mass choices m = 4 GeV and m = 5 GeV. In Fig. 3 the ratio

between the finite parts of the NLx massive and massless quark impact factor is plotted.

The corrections induced purely by a non-zero mass are of the order of a 100% in the small

k2
2/m

2 limit and decrease as k2 is getting larger. The cusps in the curves are solely an

artefact of the choice of the factorization scale, for details we refer the reader to Section

3 of Ref. [69]. As expected, in the limit k2 → ∞, the massless and massive NLx impact

factors coincide such that their ratio approaches 1.

7 Conclusions

In this work, we re-calculated the heavy quark impact factor at next-to-leading logarithmic

accuracy and we obtained a closed analytic result for its finite part, suitable for an imme-

diate numerical implementation. We performed a first comparative numerical study on the

massless and massive NLx impact factor and found out that switching on a non-zero quark

mass has as effect to amplify the magnitude of the overall corrections in the k2
2/m

2 < 1

region, while keeping them positive. We consider the re-calculated finite part of the heavy

quark impact factor presented here as the first step toward new LHC phenomenological

studies within the kT -factorization scheme of processes with heavy quarks in the final state.

Our next immediate project is to study the cross section for single bottom quark forward

production at the LHC.
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