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We reevaluate the B → ρ l+νl decay width as a full B → ππ l+νl four-particle decay, in which
the two final pions are produced via an intermediate ρ meson. The decay width can be written as
a convolution of the B → ρ l+νl decay width, for an off-shell ρ, with the ρ → ππ line shape. This
allows to fully incorporate the effects of the finite ρ meson width and a better comparison with actual
experiments. We use an Omnès representation to provide the dependence of the B → ρ semileptonic
form factors on q2. The Omnés subtraction constants and the overall normalization parameter |Vub|
are fitted to light cone sum rules and lattice QCD theoretical form-factor calculations, in the low and
high q2 regions respectively, together to the CLEO, BaBar and Belle experimental partial branching
fraction distributions. The extracted value from this global fit is |Vub| = (3.40 ± 0.15) × 10−3, in
agreement with |Vub| extracted using all other inputs in CKM fits and the exclusive semileptonic
B → π channel, but showing a clear disagreement with |Vub| extracted from inclusive semileptonic
b → u decays. As estimated by Ulf-G. Meißner and Wei Wang in JHEP 1401, 107 (2014), taking
into account the ρ meson width effects and the actual acceptance of the experiments are essential
to render the |Vub| determinations from exclusive B → π and B → ρ decays totally compatible
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I. INTRODUCTION

A precise determination of Vub is essential to check the consistency of the Standard Model, especially the description
of CP violations. However, Vub is still the least well known element of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix. At present, there is a clear tension between the |Vub| values extracted from the analysis of inclusive and
exclusive decays. Determinations based on inclusive semileptonic decays have their largest uncertainties coming
from the error on the b− quark mass, but their values tend to be consistent. From these analyses, the average
value quoted by the Particle Data Group (PDG) in its 2013 update [1] is |Vub| = (4.41 ± 0.15+0.15

−0.17) × 10−3. The
corresponding average value extracted from exclusive determinations is dominated by the B → π semileptonic decay
value |Vub| = (3.23 ± 0.31) × 10−3 [1]. In this case the error is dominated by form factor normalizations. Another
problem which will be addressed here, is the existing tension between the exclusive determinations using the B → ρ
and B → π semileptonic decays. From B → ρ decays lower values have been traditionally reported, thus for instance,
BaBar presented a value of |Vub| = (2.75 ± 0.24) × 10−3 in [2], while in the approach of Ref. [3], similar to the one
followed here and based on the Omnès representation of the form factors, was obtained |Vub| = (2.76± 0.21)× 10−3.
Very recent analyses, using light cone sum rules (LCSR), also find central values, |Vub| = (2.91 ± 0.19) × 10−3 and
|Vub| = (3.11± 0.19)× 10−3 [4], below those found from B → π decays (|Vub| = (3.47± 0.29± 0.03)× 10−3 [5] |Vub| =
(3.6± 0.4stat ± 0.2+0.6

syst−0.4thy)× 10−3 [6], |Vub| = (3.41+0.37
−0.32|th ± 0.06|exp)× 10−3 [7], |Vub| = (3.52± 0.29)× 10−3 [8]).

As pointed out in Ref. [9], part of this systematic discrepancy could be due to the fact that the B → ρ analyses do
not take into account the effect of the broad ρ−width. This is relevant since only a limited range of the ππ invariant
masses is considered in the different experiments [2, 8, 10, 11].
In Ref. [12] the authors propose to extract |Vub| from the analysis of the four-body semileptonic decay B → ππl+νl

taking into account ππ rescattering effects and the effect of the rho meson. Their approach is based on dispersion
theory and does not rely on specific resonant contributions. In our calculation we do a simpler study of the four-body
decay in which the two pions are produced via an intermediate ρ meson B → ππ(ρ)l+νl. The decay width can then
be expressed as an integration over the ρ meson invariant mass available in the B → ρ l+νl decay for an off-shell
ρ, weighted by the ρ → ππ line shape distribution that fully takes into account ρ meson width effects. In this way
one can easily select the ρ meson invariant mass range covered by the different experiments. In fact, this type of
analysis has been recently done by the Belle collaboration in Ref. [8] with the result that a larger |Vub| value, in better
agreement with the determination from B → π semileptonic decay, is obtained.
In this work we perform a combined fit to the latest partial branching fraction distributions by the different

experimental collaborations, while at the same time we substantially improve on the treatment of the form factors
over previous works. In this respect we shall follow Ref. [3], where the B → ρ form factors are described using a
multiply subtracted Omnès dispersion relation. The Omnès functional form depends on the form factor values at
the subtraction points and those values are treated as free parameters. These, together with |Vub|, are fitted both to
B → ρ l+νl recent partial branching fraction measurements from Belle [8], BaBar [2] and CLEO [10] collaborations,
as well as to theoretical results for the B → ρ form factors obtained using LCSR [13] and lattice calculations by the
SPQcdR [14] and UKQCD [15] collaborations. For the ρ → ππ decay we use a phenomenological vertex where the
coupling constant has been fixed to the on-shell ρ meson decay width.
The paper is organized as follows. In Sec.II we present all the expressions needed to evaluate the decay width. We

shall give a triple differential decay width distribution with respect to p2ρ, q
2 and xl, with p2ρ the ρ meson invariant

mass square, q the total four-momentum of the final lepton system, and xl the cosinus of the angle formed by the
momentum of the charged lepton, measured in the lepton center of mass system, and the momentum of the virtual
ρ in the B meson rest frame. These are the variables used by the experiments, and in order to obtain the fractional
branching fractions (see below) we just have to integrate over their corresponding ranges. Sec. III describes the fitting
procedure that follows closely Ref. [3], and finally, in Sec. IV we present and discuss the main results of this work.
In Appendix A, we give details on the helicity amplitude formalism used to evaluate the product of the leptonic and
hadronic tensors, while in Appendix B we provide the correlation matrix resulting from our global fit.

II. Γ[B → ππ(ρ) l+νl] DECAY WIDTH

Working in the exact isospin limit, the B → ππ(ρ) l+νl decay width is given by

Γ =

(

GF√
2

)2

|Vub|2C2
ρ

1

2mB

1

(2π)8

∫

d3pl
2El

∫

d3pν
2Eν

∫

d3pπ1

2Eπ1

∫

d3pπ2

2Eπ2

δ(4)(pB − pl − pν − pπ1
− pπ2

)

×
∑

sl

∑

sν

∣

∣

∣hασ(pB, pρ)
−gσβ +

pσ
ρp

β
ρ

p2
ρ

p2ρ −m2
ρ + i

√

p2ρ Γρ(p2ρ)
(pπ1

− pπ2
)β ūsν (pν)γ

α(1− γ5)vsl(pl)
∣

∣

∣

2

, (1)
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where only the transverse part of the ρ meson propagator contributes in that limit [16]. GF = 1.166378 ×
10−5GeV−2 [1] is the Fermi decay constant and Cρ = 6 is the effective ρ → ππ coupling constant with

Γρ(p
2
ρ) =

C2
ρ

6π p2ρ

(p2ρ
4

−m2
π

)3/2

(2)

being the ρ meson width for
√

p2ρ invariant mass. Besides, pB = (mB,~0 ), pρ = pB − pl − pν and

hασ(pB, pρ) =
2V (q2)

mB +
√

p2ρ

ǫαγδσp
γ
Bp

δ
ρ − i(mB +

√

p2ρ )A1(q
2) gασ

+i
A2(q

2)

mb +
√

p2ρ

qσ(pB + pρ)α − i
2A(q2)

q2

√

p2ρ qα(pB + pρ)σ, (3)

where V and A1, A2, A are respectively the vector and axial form factors for the B → ρ weak transition. Here we use
ǫ0123 = +1 and we have defined q = pB − pρ = pl + pν , which is the total four-momentum carried by the leptons. In

the above expression for hασ we have substituted mρ by
√

p2ρ with respect to the corresponding expression in Ref. [3]

The above expression for Γ can be rewritten as

Γ =

(

GF√
2

)2

|Vub|2
1

mB

1

(2π)6

∫

d3pl
El

∫

d3pν
Eν

Lαα′

(pl, pν)

×
∑

r=±1,0

∑

s=±1,0

hασ(pB, pρ)ǫ
σ ∗
r (pρ)h

∗
α′σ′ (pB, pρ)ǫ

σ′

s (pρ)

|p2ρ −m2
ρ + i

√

p2ρ Γρ(p2ρ)|2
2
√

p2ρ Γ
rs
ρ (p2ρ) (4)

where we have used that

(

− gσβ +
pσρp

β
ρ

p2ρ

)

=
∑

r=±1,0

ǫσ ∗
r (pρ)ǫ

β
r (pρ), (5)

with ǫr(pρ), r = ±1, 0 the three polarization vectors of a ρ meson with invariant mass given by
√

p2ρ. Lαα′

(pl, pν) is

the lepton tensor given by

Lαα′

(pl, pν) = pαl p
α′

ν − gαα
′

pl · pν + pα
′

l pαν ± iǫγαδα
′

plγpν δ, (6)

where the ± sign corresponds to l+νl or l ν̄l decays respectively and

Γrs
ρ (p2ρ) = C2

ρ

ǫβr (pρ)ǫ
β′ ∗
s (pρ)

2
√

p2ρ (2π)
2

∫

d3pπ1

2Eπ1

∫

d3pπ2

2Eπ2

δ(4)(pρ − pπ1
− pπ2

)(pπ1
− pπ2

)β (pπ1
− pπ2

)β′ . (7)

The integrals in Γrs
ρ (p2ρ) can be readily evaluated using Lorentz covariance and one gets that

Γrs
ρ (p2ρ) = −δrs Γρ(p

2
ρ), (8)

Then,

Γ =

(

GF√
2

)2

|Vub|2
1

mB

1

(2π)5

∫

d3pl
El

∫

d3pν
Eν

Lαα′

(pl, pν) Hαα′(pB, pρ) δρ(p
2
ρ), (9)

where we have defined the hadronic tensor

Hαα′(pB, pρ) =
∑

r=±1,0

hασ(pB, pρ)ǫ
σ ∗
r (pρ)h

∗
α′σ′(pB , pρ)ǫ

σ′

r (pρ), (10)

and the ρ meson line shape function

δρ(p
2
ρ) =

1

π

√

p2ρ Γρ(p
2
ρ)

|p2ρ −m2
ρ + i

√

p2ρ Γρ(p2ρ)|2
. (11)
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FIG. 1. δρ(p
2
ρ) representation as a function of

√

p2ρ.

A representation of the latter as a function of the ρ invariant mass is given in Fig. 1. In the Γρ(p
2
ρ) → 0 limit, one

would have

δρ(p
2
ρ) ≈ δ(p2ρ −m2

ρ), (12)

and in that case Γ would be given by

Γ ≈
(

GF√
2

)2

|Vub|2
1

mB

1

(2π)5

∫

d3pl
El

∫

d3pν
Eν

Lαα′

(pl, pν)Hαα′(pB, pρ) δ(p
2
ρ −m2

ρ)

=

(

GF√
2

)2

|Vub|2
1

mB

1

(2π)5

∫

d3pl
El

∫

d3pν
Eν

∫

d4pρ δ(p
2
ρ −m2

ρ)δ
(4)(pB − pl − pν − pρ)Lαα′

(pl, pν)Hαα′(pB, pρ)

=

(

GF√
2

)2

|Vub|2
1

mB

1

(2π)5

∫

d3pl
El

∫

d3pν
Eν

∫

d3pρ
2Eρ

δ(4)(pB − pl − pν − pρ)Lαα′

(pl, pν)Hαα′(pB, pρ)

= Γ(B → ρ l+νl) (13)

recovering the expression for the B → ρ l+νl decay width. The reasoning in Ref. [9] is that because experimental data
are collected for a limited range of ρ meson invariant masses, one would have

N =

∫ p2
ρ sup

p2
ρ inf

dp2ρ δρ(p
2
ρ) < 1 (14)

and thus one would expect

Γ ≈ N × Γ(B → ρl+νl), (15)

from where a larger |Vub| value, by an approximate factor 1√
N , would be needed to actually describe the data.

Going back to the full expression, it can be rewritten as

Γ =

(

GF√
2

)2 |Vub|2
mB(2π)5

∫

d3pν
Eν

∫

d3pl
El

Lαα′

(pl, pν)Hαα′ (pB, pB − pl − pν) δρ(p
2
ρ)

=

(

GF√
2

)2 |Vub|2
mB(2π)5

∫

dp2ρ δρ(p
2
ρ)

∫

d3pρ
2Eρ

∫

d3pν
Eν

∫

d3pl
El

Lαα′

(pl, pν)Hαα′(pB, pρ)δ
(4)(pB − pρ − pl − pν)

with Eρ = p0ρ =
√

p2ρ + ~p 2

ρ . Then,

Γ =

∫

dp2ρ δρ(p
2
ρ)

{

(

GF√
2

)2 |Vub|2
mB(2π)5

∫

d3pρ
2Eρ

∫

d3pν
Eν

∫

d3pl
El

Lαα′

(pl, pν)Hαα′(pB, pρ)δ
(4)(pB − pρ − pl − pν)

}

,

(16)
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where the term in curly brackets represents the B → ρ l+νl decay width for the case of a final ρ meson with invariant

mass
√

p2ρ. The integrals on neutrino variables can be evaluated using Lorentz covariance

∫

d3pν
Eν

∫

d3pl
El

Lαα′

(pl, pν)Hαα′ (pB, pρ)δ
(4)(q − pl − pν) = 2π

q2 −m2
l

2q2

∫ 1

−1

dxl Lαα′

(p̃l, p̃ν)Hαα′ (ΛpB,Λpρ), (17)

where Λ is a rotation that takes ~pρ to the negative Z axis followed by a boost to the center of mass of the two final
leptons. In that case

ΛpB =
1

2
√

q2

(

m2
B + q2 − p2ρ, 0, 0,−λ1/2(m2

B, q
2, p2ρ)

)

,

Λpρ =
1

2
√

q2

(

m2
B − q2 − p2ρ, 0, 0,−λ1/2(m2

B, q
2, p2ρ)

)

. (18)

It is clear now that the product of tensors Lαα′

(p̃l, p̃ν)Hαα′(ΛpB,Λpρ) does not depend on the lepton ϕl azimuthal
angle that can then be integrated out to give a factor 2π. The lepton p̃l and p̃ν momenta can been chosen for simplicity
as

p̃l = (
q2 +m2

l

2
√

q2
,
q2 −m2

l

2
√

q2

√

1− x2
l , 0,−

q2 −m2
l

2
√

q2
xl), (19)

p̃ν = (
q2 −m2

l

2
√

q2
,−q2 −m2

l

2
√

q2

√

1− x2
l , 0,

q2 −m2
l

2
√

q2
xl). (20)

With this definition, xl is the cosinus of the angle formed by the momentum of the charged lepton measured in the
center of mass of the two leptons, with the direction of the momentum of the virtual ρ meson measured in the reference
frame in which the B meson is at rest. Since there is no dependence on the ~pρ angular variables we find

Γ =

∫

dp2ρ δρ(p
2
ρ)

{

(

GF√
2

)2 |Vub|2
2mB(2π)3

∫

λ1/2(m2
B, q

2, p2ρ)

2mB
dEρ

q2 −m2
l

2q2

∫ 1

−1

dxl Lαα′

(p̃l, p̃ν)Hαα′(ΛpB,Λpρ)
}

,(21)

from where one can write the following differential decay width

dΓ

dp2ρ dq
2 dxl

= δρ(p
2
ρ)

G2
F |Vub|2

128π3m3
Bq

2
λ1/2(m2

B, q
2, p2ρ)(q

2 −m2
l )Lαα′

(p̃l, p̃ν)Hαα′(ΛpB,Λpρ). (22)

The product Lαα′

(p̃l, p̃ν)Hαα′(ΛpB,Λpρ) can be evaluated using the formalism of helicity amplitudes (see for instance
Ref. [17]) that we discuss in Appendix A. The final expression for the triple differential decay width is

dΓ

dp2ρ dq
2 dxl

= δρ(p
2
ρ)

G2
F |Vub|2

512π3m3
Bq

2
λ1/2(m2

B , q
2, p2ρ)(q

2 −m2
l )

2

×
{

2(1− x2
l )H00 + (1 ∓ xl)

2H+1+1 + (1± xl)
2H−1−1

+
m2

l

q2
[(1− x2

l )(H+1+1 +H−1−1) + 2x2
lH00 + 2Htt + 4xlHt0]

}

. (23)

where the different Hrs hadronic helicity amplitudes are defined and given in Appendix A. Besides de upper sign
corresponds to l+νl decays, like experiments in Refs. [2, 10, 11], while the lower sign corresponds to l−ν̄l ones, like
in the latest Belle [8] analysis. This difference is only relevant if the integration over xl does not cover its full range
[−1, 1] as in the case of CLEO data [10]. Neglecting lepton masses, a good approximation for light l = e, µ final
leptons, one arrives at the expression

dΓ

dp2ρ dq
2 dxl

≈ δρ(p
2
ρ)

G2
F |Vub|2

512π3m3
B

q2λ1/2(q2,m2
B, p

2
ρ)
[

2(1− xl)
2 H00 + (1∓ xl)

2 H+1+1 + (1 ± xl)
2 H−1−1

]

. (24)

where the corresponding helicity amplitudes depend only on the V (q2), A1(q
2) and A2(q

2) form factors.
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III. FITTING PROCEDURE

The fitting procedure that we shall use is, with minor modifications, the one followed in Ref. [3]. We describe our
B → ρ form factors using a multiply subtracted Omnès dispersion relation [18, 19], the latter being based in unitarity
and analyticity. We will have

F (q2) =
1

s0 − q2

n
∏

j=0

[F (q2j )(s0 − q2j )]
αj(q

2) , αj(q
2) =

n
∏

k=0

k 6=j

q2 − q2k
q2j − q2k

, F = V,A1, A2. (25)

s0 corresponds to the pole of the form factor and we shall use s0 = mB∗ = 5.3252GeV [1] for the vector form
factor and s0 = 5.7235GeV [1] (the mass of the 1+ B meson) for the two axial form factors. As in Ref. [3], we
use three subtraction points at q2 = 0, 2q2max/3, q

2
max where we take q2max = (mB − mρ)

2 = 20.3GeV2 as used in
Refs. [2, 10, 11]. Note however the latest Belle analysis in Ref. [8] works with q2 values up to 22-24GeV2. The
values of F (0), F (2q2max/3) and F (q2max), for F = V,A1, A2, are treated as free parameters as will be |Vub|. The
values of these ten parameters are then fitted to reproduce form factor theoretical results obtained in LCSR [13] and
lattice calculations [14, 15], and experimental measurements of partial branching fractions obtained by the CLEO [10],
BaBar [2] and Belle [8] collaborations. The partial branching fractions are defined as

B =
1

Γ(B0)

∫ p2
ρ sup

p2
ρ inf

dp2ρ

∫ q2sup

q2
inf

dq2
∫ xl sup

xl inf

dxl
dΓ

dp2ρ dq
2 dxl

, (26)

where for the B0 lifetime we use τ0 = 1/Γ(B0) = (1.519 ± 0.007)× 10−12 s [1], while for the lower (inf) and upper
(sup) limits in each of the integration variables we use the values provided by the experiments (see Table I). For the
B+ lifetime to be used below we take τ+ = (1.641± 0.008)× 10−12 s [1].

A. Experimental and theoretical input

Experimental data by the CLEO [10], BaBar [2] and Belle [8] collaborations consist of partial branching fractions
as defined in Eq.(26). Their values together with statistical and systematic errors are collected in Table I. CLEO has
made used of isospin symmetry to combine results for neutral and charged B meson decays. For BaBar data we have
combined their B0 → ρ−l+νl 4-mode and B+ → ρ0l+νl data in the following way: Denoting as σ and ǫ the statistical
and systematic errors respectively we have evaluated

1

σ2
=

1

σ2
ρ−

+
1

(2 τ0
τ+

σρ0 )2
,

1

ǫ2
=

1

ǫ2ρ−

+
1

(2 τ0
τ+

ǫρ0)2
,

B

σ2 + ǫ2
=

Bρ−

σ2
ρ−

+ ǫ2ρ−

+
2 τ0
τ+

Bρ0

(2 τ0
τ+

σρ0 )2 + (2 τ0
τ+

ǫρ0)2
(27)

In the case o the newest Belle’s data [8] we treat separately the neutral and charge meson decays since they have been
evaluated for different q2 bins. However in order to perform the fit we multiply the ρ0 data by 2τ0/τ+.

The theoretical input consists of form factors values. For q2 in the [0, 10]GeV2 range we will use the LCSR form
factor values obtained from the parameterizations given in Ref. [13]. For higher q2 we will use the lattice results
by the SPQcdR [14] and UKQCD [15] collaborations. All of them are collected in Table II. For the LCSR form
factors, and following Ref. [2], we have assumed a 10% error at q2 = 0 that increases linearly to 13% at q2 = 14GeV2.
SPQcdR errors include both systematic and statistical uncertainties while in the case of UKQCD data both statistical
and systematic errors are shown. The latter are highly asymmetric. Following Ref. [3], and in order to perform the
fit, we put the UKQCD form factors values in the center of their systematic range and we use half that range as the
systematic error.
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q2 [GeV2] xl

√

p2ρ 104B

CLEO [10] 0− 2 [−1, 1] mρ ± 2Γρ 0.45 ± 0.20± 0.15

2− 8 [−1, 1] mρ ± 2Γρ 0.96 ± 0.20± 0.29

8− 16 [0, 1] mρ ± 2Γρ 0.75 ± 0.16± 0.14

16− 20.3 [0, 1] mρ ± 2Γρ 0.35 ± 0.07± 0.05

8− 20.3 [−1, 0] mρ ± 2Γρ 0.42 ± 0.18± 0.31

BaBar [2] 0− 8 [−1, 1] [0.65, 0.85] GeV 0.587 ± 0.084 ± 0.097

8− 16 [−1, 1] [0.65, 0.85] GeV 0.928 ± 0.047 ± 0.103

16− 20.3 [−1, 1] [0.65, 0.85] GeV 0.263 ± 0.017 ± 0.042

Belle [8]

ρ+ data 0− 4 [−1, 1] mρ ± 2Γρ 0.373 ± 0.106

4− 8 [−1, 1] mρ ± 2Γρ 0.718 ± 0.116

8− 12 [−1, 1] mρ ± 2Γρ 0.806 ± 0.123

12− 16 [−1, 1] mρ ± 2Γρ 0.723 ± 0.125

16− 20 [−1, 1] mρ ± 2Γρ 0.626 ± 0.115

20− 24 [−1, 1] mρ ± 2Γρ 0.017 ± 0.079

ρ0 data × 2τ0/τ+ 0− 2 [−1, 1] mρ ± 2Γρ 0.2296 ± 0.0629

2− 4 [−1, 1] mρ ± 2Γρ 0.2851 ± 0.0574

4− 6 [−1, 1] mρ ± 2Γρ 0.3314 ± 0.0629

6− 8 [−1, 1] mρ ± 2Γρ 0.4017 ± 0.0629

8− 10 [−1, 1] mρ ± 2Γρ 0.2647 ± 0.0537

10− 12 [−1, 1] mρ ± 2Γρ 0.3684 ± 0.0629

12− 14 [−1, 1] mρ ± 2Γρ 0.4147 ± 0.0629

14− 16 [−1, 1] mρ ± 2Γρ 0.4017 ± 0.0611

16− 18 [−1, 1] mρ ± 2Γρ 0.3240 ± 0.0592

18− 20 [−1, 1] mρ ± 2Γρ 0.2647 ± 0.0180

20− 22 [−1, 1] mρ ± 2Γρ 0.1092 ± 0.0481

TABLE I. Experimental partial branching fractions used as input. The different q2, xl and
√

p2ρ intervals are shown. Belle’s

original ρ0 data in Ref. [8] is shown multiplied by the factor 2τ0/τ+. Both CLEO and Belle use
√

p2ρ in the interval mρ ± 2Γρ

B. χ2 definition

The χ2 function we use for the fit is

χ2 =

115
∑

j,k=1

[(Qinput
j −Qfit

j )C−1
jk (Qinput

k −Qfit
k )] (28)

where Qinput
j represents any of the input quantities and Qfit

j is the corresponding value obtained in our calculation.
In order to construct the C covariant matrix we have not considered any correlation between data from different
experiments or between different theoretical calculations, or between experimental and theoretical inputs. C is then
block diagonal. CLEO and BaBar collaborations provide statistical and systematic correlation matrices and in these
two cases their corresponding blocks in C are constructed as

Cjk = σjσkCstat
jk + ǫjǫkCsys

jk . (29)

with Cstat/sys the statistical/systematic correlation matrices. The Belle Collaboration [8] also provides two independent
statistical correlation matrices, one for ρ+ data and one for ρ0 data, so that we build two independent blocks as

Cjk = σjσkCstat
jk . (30)

For the block corresponding to UKQCD data we use

Cjk = σ2
j δjk + ǫjǫk, (31)
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q2 [GeV2] V A1 A2

LCSR [13] 0 0.324 ± 0.032 0.240 ± 0.024 0.221 ± 0.022

1 0.343 ± 0.035 0.247 ± 0.025 0.232 ± 0.024

2 0.364 ± 0.038 0.254 ± 0.026 0.244 ± 0.025

3 0.387 ± 0.041 0.261 ± 0.028 0.257 ± 0.027

4 0.412 ± 0.045 0.269 ± 0.029 0.271 ± 0.029

5 0.440 ± 0.049 0.277 ± 0.031 0.286 ± 0.032

6 0.471 ± 0.053 0.286 ± 0.032 0.302 ± 0.034

7 0.506 ± 0.058 0.295 ± 0.034 0.320 ± 0.037

8 0.546 ± 0.064 0.305 ± 0.036 0.339 ± 0.040

9 0.590 ± 0.070 0.316 ± 0.038 0.360 ± 0.043

10 0.641 ± 0.078 0.327 ± 0.040 0.384 ± 0.047

SPQcdR [14] 10.69 0.51 ± 0.26 0.354 ± 0.085 0.38± 0.26

12.02 0.61 ± 0.28 0.384 ± 0.087 0.49± 0.30

13.35 0.74 ± 0.30 0.421 ± 0.089 0.65± 0.35

14.68 0.93 ± 0.31 0.465 ± 0.092 0.93± 0.41

16.01 1.20 ± 0.32 0.519 ± 0.097 1.41± 0.56

17.34 1.61 ± 0.33 0.588 ± 0.108 2.39± 1.23

18.67 2.26 ± 0.55 0.678 ± 0.134 4.7± 4.1

UKQCD [15] 12.67 0.684 ± 0.162+0.00
−0.56 0.439 ± 0.067+0.000

−0.080 0.70± 0.49+0.08
−0.03

13.01 0.714 ± 0.162+0.00
−0.50 0.448 ± 0.065+0.000

−0.079 0.71± 0.46+0.08
−0.03

13.51 0.763 ± 0.155+0.00
−0.40 0.460 ± 0.063+0.000

−0.075 0.72± 0.43+0.10
−0.02

14.02 0.818 ± 0.147+0.00
−0.31 0.472 ± 0.059+0.000

−0.073 0.73± 0.42+0.12
−0.01

14.52 0.883 ± 0.141+0.00
−0.24 0.485 ± 0.055+0.000

−0.070 0.76± 0.42+0.14
−0.03

15.03 0.967 ± 0.137+0.00
−0.20 0.498 ± 0.051+0.000

−0.068 0.78± 0.46+0.16
−0.05

15.53 1.057 ± 0.134+0.00
−0.19 0.513 ± 0.049+0.000

−0.067 0.81± 0.54+0.18
−0.06

16.04 1.164 ± 0.150+0.10
−0.21 0.529 ± 0.047+0.000

−0.066 0.84± 0.71+0.20
−0.07

16.54 1.296 ± 0.184+0.21
−0.25 0.544 ± 0.043+0.000

−0.062 0.87± 0.97+0.23
−0.08

17.05 1.46 ± 0.26+0.34
−0.30 0.560 ± 0.043+0.000

−0.059 0.90± 1.35+0.27
−0.07

17.55 1.67 ± 0.40+0.49
−0.36 0.577 ± 0.043+0.000

−0.058 0.90± 1.89+0.33
−0.03

16.54 2.02 ± 0.68+0.73
−0.48 0.599 ± 0.052+0.000

−0.058 0.9± 2.9+0.4
−0.1

TABLE II. Theoretical form factor inputs used for the fit. SPQcdR and UKQCD data taken from Table 2 in Ref. [3]. Concerning
UKQCD data see text for details.

that assumes independent statistical uncertainties and fully correlated systematic errors. Finally for LCSR and
SPQcdR results we use

Cjk = σ2
j δjk. (32)

IV. RESULTS AND DISCUSSION

Best fit results are compiled in Table III. The fit has χ2/d.o.f. = 1.4 for a total of 105 degrees of freedom. The
corresponding Gaussian correlation matrix is given in Appendix B. As we see, the extracted |Vub| increases, as expected,
and now it is in excellent agreement with the determination from B → π decays given by (3.23 ± 0.31) × 10−3 [1].
In Fig. 2 we show the form factors, together with their 68% confidence level bands, that result from the fit, and we
compare them to the different input theoretical input. Finally in Fig. 2 (bottom-right panel) we also present our

prediction for 104

Γ(B0)
dΓ
dq2 and compare it to data by the Belle [8], BaBar [2], and CLEO [10] collaborations. In this

case, we show two predictions corresponding to the two
√

p2ρ ranges used by the different experiments. The largest

discrepancy occurs for CLEO data where the experimental distribution peaks a significantly smaller q2 values than
the theoretical distribution. This seems to be incompatible with the theoretical form factor predictions at low q2
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|Vub| (3.40± 0.15) × 10−3

V (0) 0.343 ± 0.022

V (2q2max/3) 0.848 ± 0.043

V (q2max) 2.34± 0.35

A1(0) 0.252 ± 0.011

A1(2q
2
max/3) 0.429 ± 0.013

A1(q
2
max) 0.684 ± 0.036

A2(0) 0.223 ± 0.014

A2(2q
2
max/3) 0.683 ± 0.064

A2(q
2
max) 2.80± 0.85

TABLE III. Best fit parameters of the global fit.
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FIG. 2. Top panels and left-bottom panel: Form factor obtained from the fit (solid line) together with their corresponding 68%
confidence level band. We show the predictions from LCSR [13] (squares), and lattice QCD from the SPQcdR [14] (up-triangles)

and UKQCD [15] (circles) collaborations. Right-bottom panel: 104

Γ(B0)
dΓ
dq2

[GeV−2]. Solid line: mρ − 2Γρ <
√

p2ρ < mρ + 2Γρ.

Dotted line: 0.65GeV <
√

p2ρ < 0.85GeV. Up-triangles, down-triangles, circles, and squares stand respectively for Belle ρ+

and ρ0 data [8], BaBar data [2], and CLEO data [10].

obtained in LCSR. Belle and BaBar results agree better with our analysis. However one clearly sees in Fig. 2 that
BaBar data would prefer a smaller |Vub| value, whereas Belle data would be better reproduced with a higher |Vub|
value.
The recent data by the Belle Collaboration [8] present two good features. First, as in the case of CLEO data [10],

the experiment considers a broad range of the ρ meson invariant masses (mρ ± 2Γρ). Second, Belle gives results for
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smaller q2 bins which means more data and then the possibility for more stringent constraints on theoretical models.
In this respect it is worth making a fit just to Belle’s data together with the form factors. In this case one gets
|Vub| = (3.62±0.17)×10−3 which is in perfect agreement with the analyses in Ref. [8] where other sets of form factors
were used.
The total decay rate from BaBar extracted in Ref. [2] is some 15% smaller that the one provided in their earlier

measurement of Ref. [20] and used in [3]. Also, the expectation in Ref. [9] that, once the effects of the finite ρ-
meson invariant mass range were taken into account, the |Vub| value extracted from Ref. [2] would increase from
|Vub| = (2.75±0.24)×10−3 [2] to |Vub| ≈ 3.6×10−3 is not met by the data. A fit to the form factors and to the BaBar
data of Ref. [2] alone would give |Vub| = (3.03 ± 0.23) × 10−3. These two problems seem to come mainly from the
last BaBar data point that, as we see in the bottom-right panel of Fig. 2, is well below our global fit. In fact, a fit in
which we only include the form factors and the two first BaBar data points gives |Vub| = (3.42± 0.25)× 10−3, a larger
value that is in agreement with the determination using Belle data alone and within the expectations in Ref. [9].

2.5 3 3.5 4 4.5 5

|V
ub

|  × 103

3.03 ± 0.23  This work BaBar data

3.40 ± 0.15  This work global fit

3.62 ± 0.17  This work Belle data

PDG2013  inclusive   4.41+ 0.21
− 0.23

3.23 ± 0.31   PDG2013  ( B → π )

3.57              CKMfitter

3.65 ± 0.13   UTfit

+ 0.16
− 0.15

2.75 ± 0.24   [3]

2.76 ± 0.21   [2]

B → ρ 3.11 ± 0.19   [4]

2.91 ± 0.19   [4]

3.47 ± 0.29  (B→π) [5]
3.52 ± 0.29  (B→π) [8]

FIG. 3. Different |Vub| values obtained in B → ρ decay analyses. We also show for comparison the |Vub| determination from
the B → π decay in Refs. [5, 8], the PDG exclusive and inclusive 2013 average updates [1], and the fits from the CKMfitter [21]
and UTfit [22] Groups.

In Fig. 3 we show different |Vub| values obtained in B → ρ decay analyses. A comparison of the results in Refs. [2–4]
and the present calculation shows, as it was pointed out in Ref. [9], the relevance of taking into account the ρ meson
broad-width effects. Our global fit result is now in good agreement with the determination in Ref. [5] from B → π
exclusive decay and the average value quoted in the PDG 2013 update [1] also from the same reaction. The results by
the CKMfitter [21] and UTfit [22] Groups are in very good agreement with our determination using only the recent
Belle data. One should conclude that the disagreement between the |Vub| values extracted from B → ρ and B → π
reactions came mostly from an incorrect treatment of the former in previous analyses, where the effects of the ρ
meson width were neglected. However, as seen in Fig. 3, there still persist the large discrepancy between inclusive
and exclusive determinations of |Vub|, with the global fits by the CKMfitter [21] and UTfit [22] groups being in better
agreement with the latter.
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Appendix A: Helicity amplitudes

In this appendix we shall write the product Lαα′

(p̃l, p̃ν)Hαα′ (ΛpB,Λpρ) in terms of helicity amplitudes. For that
purpose we use that

gµν =
∑

r=t,±1,0

grr ǫ
µ
r (Λq)ǫ

ν ∗
r (Λq) =

∑

r=t,±1,0

grr ǫ
µ ∗
r (Λq)ǫνr (Λq), (A1)

with gtt = −g+1+1 = −g−1−1 = −g00 = 1 and

ǫt(Λq) =
Λq
√

q2
= (1, 0, 0, 0), (A2)

ǫ+1(Λq) =
(

0,
−1√
2
,
−i√
2
, 0
)

, (A3)

ǫ−1(Λq) =
(

0,
1√
2
,
−i√
2
, 0
)

, (A4)

ǫ0(Λq) = (0, 0, 0, 1). (A5)

Then,

Lαα′

(p̃l, p̃ν)Hαα′(ΛpB,Λpρ) =
∑

r=t,±1,0

∑

s=t,±1,0

grrgss Lrs(p̃l, p̃ν)Hrs(ΛpB,Λpρ), (A6)

where we have defined the hadronic and leptonic helicity amplitudes

Hrs(ΛpB,Λpρ) = ǫα ∗
r (Λq)Hαα′(ΛpB,Λpρ) ǫ

α′

s (Λq), (A7)

Lrs(p̃l, p̃ν) = ǫβr (Λq)Lββ′(p̃l, p̃ν) ǫ
β′ ∗
s (Λq). (A8)

As

Hαα′(ΛpB,Λpρ) =
∑

u=±1,0

hασ(ΛpB,Λpρ)ǫ
σ ∗
u (Λpρ)h

∗
α′σ′(ΛpB,Λpρ)ǫ

σ′

u (Λpρ), (A9)

we will have

Hrs(ΛpB,Λpρ) =
∑

u=±1,0

ǫα ∗
r (Λq)hασ(ΛpB,Λpρ)ǫ

σ ∗
u (Λpρ)ǫ

α′

s (Λq)h∗
α′σ′(ΛpB,Λpρ)ǫ

σ′

u (Λpρ) (A10)

=
∑

u=±1,0

hru(ΛpB,Λpρ)h
∗
su(ΛpB,Λpρ), (A11)

with

hru(ΛpB,Λpρ) = ǫα ∗
r (Λq)hασ(ΛpB,Λpρ)ǫ

σ ∗
u (Λpρ). (A12)

Using

ǫ+1(Λpρ) =
(

0,
−1√
2
,
−i√
2
, 0
)

, (A13)

ǫ−1(Λpρ) =
(

0,
1√
2
,
−i√
2
, 0
)

, (A14)

ǫ0(Λpρ) =
(λ1/2(q2,m2

B, p
2
ρ)

2
√

q2
√

p2ρ

, 0, 0,−
m2

B − q2 − p2ρ

2
√

q2
√

p2ρ

)

. (A15)
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we can evaluate the hru quantities. The nonzero ones are

ht0 =
λ1/2(m2

B, q
2, p2ρ)

2
√

p2ρ
√

q2

[

− iA1(q
2)
(

mB +
√

p2ρ

)

+ iA2(q
2)
(

mB −
√

p2ρ

)

− i2A(q2)
√

p2ρ

]

,

h+1−1 = −iA1(q
2)
(

mB +
√

p2ρ

)

+ iV (q2)
λ1/2(m2

B , q
2, p2ρ)

mB +
√

p2ρ

,

h−1+1 = −iA1(q
2)
(

mB +
√

p2ρ

)

− iV (q2)
λ1/2(m2

B , q
2, p2ρ)

mB +
√

p2ρ

,

h00 =
1

2
√

p2ρ
√

q2

[

− iA1(q
2)
(

mB +
√

p2ρ

)

(m2
B − p2ρ − q2) + i

A2(q
2)λ(m2

B , q
2, p2ρ)

mB +
√

p2ρ

]

. (A16)

From these values we get the following nonzero hadronic helicity amplitudes

Htt =
λ(m2

B , q
2, p2ρ)

4 p2ρ q
2

[

−A1(q
2)
(

mB +
√

p2ρ

)

+A2(q
2)
(

mB −
√

p2ρ

)

− 2A(q2)
√

p2ρ

]2

,

Ht0 = H0t =
λ1/2(m2

B, q
2, p2ρ)

4 p2ρ q
2

[

−A1(q
2)
(

mB +
√

p2ρ

)

(m2
B − p2ρ − q2) +

A2(q
2)λ(m2

B , q
2, p2ρ)

mB +
√

p2ρ

]

×
[

−A1(q
2)
(

mB +
√

p2ρ

)

+A2(q
2)
(

mB −
√

p2ρ

)

− 2A(q2)
√

p2ρ

]

,

H00 =
1

4 p2ρ q
2

[

−A1(q
2)
(

mB +
√

p2ρ

)

(m2
B − p2ρ − q2) +

A2(q
2)λ(m2

B , q
2, p2ρ)

mB +
√

p2ρ

]2

,

H+1+1 =
[

A1(q
2)
(

mB +
√

p2ρ

)

− V (q2)
λ1/2(m2

B, q
2, p2ρ)

mB +
√

p2ρ

]2

,

H−1−1 =
[

A1(q
2)
(

mB +
√

p2ρ

)

+ V (q2)
λ1/2(m2

B, q
2, p2ρ)

mB +
√

p2ρ

]2

. (A17)

The corresponding leptonic helicity amplitudes are given by

Ltt = (q2 −m2
l )

m2
l

2 q2
,

Lt0 = L0t = −(q2 −m2
l )xl

m2
l

2 q2
,

L00 = (q2 −m2
l )
1

2

[

1− x2
l + x2

l

m2
l

q2

]

,

L+1+1 = (q2 −m2
l )
1

4

[

(1∓ xl)
2 + (1− x2

l )
m2

l

q2

]

,

L−1−1 = (q2 −m2
l )
1

4

[

(1± xl)
2 + (1− x2

l )
m2

l

q2

]

, (A18)

where the upper (lower) sign corresponds to l+νl (l
−, ν̄l ) decays.
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Appendix B: Gaussian correlation matrix

The Gaussian correlation matrix corresponding to the best fit parameters in Table III reads





































1.0000 −0.0134 −0.3492 −0.3044 −0.1912 −0.6601 −0.2927 0.1443 0.3952 0.3175

1.0000 −0.2166 0.3346 −0.0457 0.0275 −0.0663 0.0084 −0.0155 −0.0094

1.0000 0.4671 0.0578 0.3140 0.2498 −0.0201 0.1446 0.1598

1.0000 −0.0126 0.3321 0.0780 −0.0041 0.1166 0.1476

1.0000 −0.1681 0.3890 0.4046 −0.2209 −0.1240

1.0000 0.3033 −0.1671 0.1307 0.0624

1.0000 0.1829 0.1971 0.3665

1.0000 0.0989 0.3729

1.0000 0.8706

1.0000
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