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Abstract

A careful reanalysis is done of the contribution to K
+ nucleus scat-

tering from the interaction of the kaon with the virtual pion cloud. The
usual approximations made in the evaluation of the related kaon selfen-
ergy are shown to fail badly. We also find new interaction mechanisms
which provide appreciable corrections to the kaon selfenergy. Some of
these contribute to the imaginary part below pion creation threshold.
The inclusion of these new mechanisms in the inelastic part of the opti-
cal potential produces a significant improvement in the differential and
total K

+ nuclear cross sections. Uncertainties remain in the dispersive
part of the optical potential.
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1.- Introduction
Systematic discrepancies between the microscopic optical potential calculations

for K+ nucleus scattering [1, 2, 3] and the experimental data [4, 5, 6, 7, 8]
have led to suggestions that it may be an indication of an increased size of the
nucleons in the nucleus [2, 9, 10]. These discrepancies remain when a number
of conventional nuclear corrections (Pauli blocking, nucleon-nucleon correlations,
off-shell corrections, etc) are taken into account ([2]-[3]). Parallelly, work has
been done about the contribution of the nuclear pion cloud to the K+ optical
potential [11, 12]. In [11] a qualitative estimate is done of the meson cloud effects
by assuming that the K+N cross section is increased by δnπσ(K+π), where δnπ

is the excess number of pions per nucleon in the nucleus. In ref. [12], together
with a good summary of the status of the problem, a thorough and instructive
study of the meson cloud contribution to the scattering amplitude is done by
evaluating explicitly the real and the imaginary parts. A K+π amplitude with
off-shell extrapolation and crossing symmetry, inspired in the work on the ππ
interaction [13] is used. The work relies upon the pion excess distribution found
in [14], which accounts for ph and ∆h components in a correlated ground state.
The interference of ph and ∆h components is essential to produce a positive pion
excess number in the nucleus [14, 15].

In the present work we have made a more rigorous evaluation of the pion cloud
contribution to the K+ nucleus optical potential which requires only the knowledge
of the pion propagator in the nuclear medium and a realistic model for the Kπ
amplitude.

In the nuclear medium, the pion propagator is renormalized by allowing the pion
excite ph and ∆h components, such a model provides a realistic model for the
π nucleus interaction and accounts for the basic components needed to produce
realistic pion numbers in finite nuclei [15]. Our model for the pion propagator is
briefly described in Appendix A. The pion distribution is not needed explicitly in our
computation of the K+-nucleus optical potential, although the formal connection
of the pion propagator to the pion distribution, n(q), will be made. Actually,
one of our findings is that the pion cloud contribution to the imaginary part of
the K+ - nucleus optical potential can not be cast as an integral of the form
∫

d3q n(q) f(q) as assumed in [12] and also implicitly in [11].
For the Kπ amplitude we use the model of ref. [12]. This model incorporates

on-shell conditions and crossing symmetry. A detailed study is made in ref. [12]
about uncertainties from the off-shell extrapolation, form factors, etc., allowing
us to simplify the discussions and concentrate on the novelties that the present
work introduces. For the sake of completeness, in Appendix B this Kπ model is
summarized.

On the other hand, we introduce new mechanisms also related to the scattering
of positive kaons with the pion cloud, which have not been considered previously
and are found to be very important.

The calculations are done in infinite nuclear matter and the contributions to
the K+ selfenergy are obtained as a function of ρ, the nuclear matter density. By
means of the local density approximation, carefully studied and justified in [16]
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in connection with π-nucleus scattering, we obtain the meson exchange currents
(MEC) contribution to the K-nucleus optical potential as a function of ρ(r). Our
model for the K-nucleus potential is obtained by adding these new contributions,
calculated in the present work, to the conventional ones from the impulse approxi-
mation (see Appendix C) and to the standard nuclear corrections (nuclear correla-
tions, off-shell and binding effect, Pauli exclusion,... calculated in refs. [2, 6]). This
new optical potential is then used to obtain the differential and total K+-nucleus
cross sections by solving numerically the Klein Gordon equation. In the following,
we will refer indistinctly to the kaon selfenergy or to the optical potential, as they
are related by Π(k) = 2k0Vopt(k). Nevertheless it is the selfenergy what appears
in the Klein-Gordon equation.

The paper is organized as follows: In order to test the model used for pions
in nuclei, the excess number of pions in the nucleus is calculated in section 2. In
section 3 we recalculate the contribution from the MEC mechanism considered in
refs. [11, 12] but relaxing the static approximation. The new MEC mechanisms
contributing to the the K+ selfenergy in nuclei are presented in section 4 where is
also evaluated their contribution to the imaginary part of the K+-nucleus optical
potential. Section 5 is devoted to the study of the MEC contribution to the real
part of K+ selfenergy. In section 6, the K+-nucleus differential and total cross-
sections calculated with IA, with IA+MEC, and with the conventional optical
potential plus MEC, are shown and compared with experimental data for 12C and
40Ca and also with the ratio of those cross-sections over the K+ deuterium cross-
section. Finally, in section 7, we summarize and parametrize the results for the
MEC contribution to the K+ optical potential and present our conclusions.

2.- The pion propagator and the number of pions.
The propagator of a pion with four-momentum q (and isospin λ) should satisfy

the Lehmann representation [17]

D(q) =
∫

∞

0

dω

π
(−2ω)

ImD(ω,q)

q02 − ω2 + iǫ
, (1)

Our calculation of the pion propagator in Appendix A preserves the appropriate
analytical properties and therefore eq. (1) holds.

Another equation which is relevant in connection with the present problem is
the sum rule

−
∫

∞

0

dq0

π
2q0 ImD(q0,q) = 1. (2)

This equation expresses the equal time commutation relation of the pion fields.
We check that eq. (2) is fulfilled in our model at the level of one per thousand
which is sufficient for our purposes.

A check of the model for pion propagation in the nucleus is to calculate the
number of pions it produces. Although this quantity is not needed in our evaluation
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of the pion cloud contribution to the K+ nucleus scattering, we show our results for
it in order to compare with earlier work. Let nλ(q) be the pion number distribution
for a single class of pions and n(q) the total number of pions, namely

n(q ) ≡
∑

λ

nλ(q ) =
∑

λ

〈a+
qλaqλ〉, (3)

where the symbol 〈 〉 indicates the expectation value in the nuclear ground state
and aqλ the annihilation operator of a pion with momentum q and isospin λ. Thus,

∫

d3q

(2π)3
n(q) =

nπ

V
=

nπ

A
ρ, (4)

with nπ/A the total number of pions per nucleon. More amenable to calculation
are the quantities N(q) and δN(q),

N(q) = n(q) +
1

2

∑

λ

〈a+
q,λa

+
−q,−λ〉 +

1

2

∑

λ

〈aq,λa−q,−λ〉, (5)

δN(q) = N(q) − ρ

(

∂N(q)

∂ρ

)

ρ=0

(6)

The linear term in ρ accounts for the number of pions per free nucleon, then it is
subtracted in eq. (6) to obtain the “pion excess” δN(q).

According to eq. (4) the following integral

1

ρ

∫

d3q

(2π)3
δN(q) ≡ δNπ

A
. (7)

provides the “excess number of pions” per nucleon, counting the three isospin
states and also 〈a+

q,λa
+
−q,−λ〉 and 〈aq,λa−q,−λ〉 as it comes from eq. (5). Accord-

ing to the results of ref [18] on the contribution of the pion cloud to Compton
scattering, nλ(q) is equal to 1

2
〈a+

q,λa
+
−q,−λ〉 + 1

2
〈aq,λa−q,−λ〉, then the results of

previous papers on the pion number excess δn(q) and δnπ are to be compared
with δN(q)/2 and δNπ/2.

These quantities can be computed using the relationships

1

3
N(q) = −2ω(q)

∫

∞

0

dq0

2π
Im[D(q) − D0(q)] (8)

1

3
δN(q) = −2ω(q)

∫

∞

0

dq0

2π
Im[δD(q)] (9)

where ω(q) =
√

m2
π + q2 and

δD(q) = D(q) − D0(q) − ρ

(

∂D(q)

∂ρ

)

ρ=0

. (10)

Eq. (8) can be derived by writing the pion propagator in terms of the creation and
annihilation operators and making use of eq. (1)
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In fig. 1, we show δN(q) (solid line) for normal (ρ = ρ0 = 0.17 fm−3) nuclear
matter. We have also calculated δN(q) for different values of the density, observ-
ing that it behaves quadratically in density. If only ph excitations are considered
one obtains the dotted line in fig. 1. By integrating it a negative pion excess
number is obtained as it was already pointed out in [12]. If only ∆h excitations
are considered one obtains the result of the dashed line, which represents a very
small pion excess number. When considering simultaneously both, ph and ∆h,
excitations the solid line of fig. 1 is obtained. δN(q) is larger for large q than
before and a positive excess number of pions is found when integrating over d3q,
thus proving that the interference of ph and ∆h is essential to produce a positive
excess number.

The distribution δN(q) has identical shape to the one from [14]. For ρ = ρ0

the integral of eq. (7) gives 0.67, half of it coming from the integral of the strict
pion number, δn(q), according to [18]. This gives us 0.33 pions per nucleon in
nuclear matter at ρ = ρ0. Since

∫

d3q δN(q) is proportional to ρ2 and in a finite
nucleus like 12C the magnitude 1

A

∫

d3r ρ2(r) is around a factor two smaller than
in nuclear matter, then we obtain 0.17 pions per nucleon in the 12C nucleus, on
the upper edge of the band of values obtained by other authors [14, 15].

3.- Formal derivation of the “standard” pion cloud con-
tribution

We call here “standard” mechanism, to the one depicted in fig. 2. This is the
only one considered in previous papers, and then it was calculated in the static
approach which we describe in subsection 3.1. In subsection 3.2 we calculate it
exactly.

The K+ selfenergy of the basic diagram shown in fig.2a in an infinite spin-
isospin symmetric nuclear medium is given by

− iΠ(k) =
∫

d4q

(2π)4
iD(q) (−i)

1

2
3 t0(k, q; k, q), (11)

where t0 is the isoscalar K+π amplitude (average of tK+πi for the three charged
pions) and the factor 1

2
is a symmetry factor. However, as depicted in figs. 2b, 2c,

2d the full propagator contains the free pion, one ph or ∆h corrections and higher
order corrections with 2ph, ph ∆h, 2∆h, etc, excitations. The contribution from
the free pion has to be subtracted because it corresponds to a piece in the free
K+ selfenergy. Analogously, once this subtraction is made, we will have terms in
the selfenergy coming from 1ph or 1∆h excitations which are proportional to ρ.
These terms must also be subtracted because they are implicitly accounted for in
the IA selfenergy ΠIA = tKN ρ, where tKN is the empirical KN t-matrix. Hence
the genuine pion cloud contribution to the K+ selfenergy is given by

δΠ(k) = i
∫

d4q

(2π)4
δD(q)

3

2
t0(k, q; k, q), (12)

3.1.- Static Approximation

5



In the static approximation the q0 dependence in the t matrix is neglected. For
instance in [12] q0 is set to zero in t0(k, q; k, q). In this case one obtains

δΠstat(k) = −
∫ d3q

(2π)3

∫

∞

0

dq0

2π
ImδD(q) 3

[

t0(k, q; k, q)
]

q0fix

=
∫

d3q

(2π)3

δN(q)

2ω(q)
t0(k, q; k, q)|q0fix, (13)

where the first equality follows from
∫

dq0 ReD(q) = 0, and D(q0,q) =
D(−q0,q).

Hence, in the static approximation Π(k) comes as a weighted integral of the
K+π amplitude with the pion distribution in the nucleus. This result looks intuitive
but recall that N(q) contains n(q) and also the expectation values 〈aqλ a−q−λ〉
and 〈a+

qλ a+
−q−λ〉. These three factors correspond in fact to having the K+ scat-

tering with a pion, annihilating two pions from the ground state or creating two
pions from the ground state, as symbolically depicted in fig. 3. Note that with our
field theoretical formalism, the three terms are automatically included.

The approach of [12] corresponds to the static approximation of eq. (13) with
δN(q) = 2 × δn(q) and δn(q) taken from [14]. The factor 2 accounts for the
two pion creation or annihilation mechanisms as found in [18]. As already noted
in [12] these extra terms are ignored in the approach of [11].

Our claim here is that the static approximation which justifies the approaches
of [11, 12] is inaccurate, particularly for the imaginary part of Π(k).

Indeed, the imaginary part of δΠstat from eq. (13) is given by

ImδΠstat(k) = −
∫ d3q

(2π)3

∫

∞

0

dq0

2π
ImδD(q) 3

[

Imt0(k, q; k, q)
]

q0fix
. (14)

Note that the range of the q0 integration goes from 0 to ∞. This will be very
different in the exact case which we analyze below, implying, as we shall see, that
the static approximation is not good.

3.2.- Exact Calculation of ImδΠ for the “standard” mechanism

Now let us find the exact expression for ImδΠ(k). This requires a knowledge
of the analytical structure of t0(k, q; k, q). We assume that this amplitude can be
written in the following way:

t0(k, q; k, q) = t̃(s) + t̃(u), (15)

where s = (k + q)2, u = (k − q)2 are the usual Mandelstam variables (t= 0 in
our case), which automatically satisfies crossing symmetry. This is the case for
the model which we will use. The function t̃(x) has the right analytical properties
and develops and imaginary part for x > x0 = (mK + mπ)2. It also satisfies the
subtracted dispersion relation [17, 19]

t̃(s) = P (s) + (s − x0)
∫

∞

x0

dx

π

Im t̃(x)

(s − x + iǫ)(x0 − x)
, (16)
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where P (x) is a real polynomial.
Using this form of t0 from eq. (15) in δΠ of eq. (12) and the symmetry of the

integrand under q ↔ −q. we obtain:

δΠ(k) = i3
∫

d4q

(2π)4
δD(q)t̃(u) (17)

The analytical structure of δD(q)t̃(u) in the variable q0 is shown in fig. 4. It has
cuts and poles in the second and fourth quadrants from δD(q) and two single
poles in q0 = k0 ± E(x) ∓ iǫ, with E(x) = [(k − q)2 + x]1/2. This particular
structure suggests a Wick rotation, as indicated in fig. 4, in order to perform the
q0 integral. Since the integral vanishes at the circles of infinite radius, we have

i
∫

∞

−∞

dq0 = i
∫ i∞

−i∞
dq0 − 2π Res(q0 = k0 − E(x)) θ(k0 − E(x)), (18)

The integral over the imaginary axis is real and the only source of imaginary part
comes from the residue at the pole. Thus,

Im δΠ(k) =

= −
∫

d3q

(2π)3

∫

∞

x0

dx

π
θ(k0 − E(x))

Imt̃(x)

2E(x)
3Im δD(q)|q0=k0

−E(x)

= −
∫

d3q

(2π)3
θ(k0 − E(x0))

∫ k0
−E(x0)

0

dq0

2π
6Imt̃(u)ImδD(q). (19)

Note that t̃ appears at the end with argument u rather than s. By comparing
eq. (19) with the static expression of eq. (14) we find a main substantial difference
in the fact that the q0 integral goes from 0 to ∞ in the static formula while here it
is restricted to the interval [0, k0 −E(x0)]. Hence, even if we make Imt̃(u) static
in eq. (19) in order to take it out of the q0 integral, the pion excess number δN(q)
will not be generated because the range [0,∞] in the q0 integration is needed in
eq. (9). Note that the range of q is also restricted because E(x0) < k0. Then
the whole phase space allowed is finite, as corresponds to the reaction channels
accounted for by ImΠ(k). Under these circumstances one should not expect the
static approximation to provide realistic results.

The pathologies generated by the intuitive use of the particle number are
general in decay processes or in the evaluation of imaginary parts of amplitudes,
i.e., in cases where conservation of energy and momentum is at stake. This
occurs because the relevant magnitude is ImD(q) which provides the probability
of finding a pion with momentum q and energy q0. The probability of finding a
pion of momentum q is an integral property obtained when one integrates over
the energy of the pion from 0 to ∞. However, in decay processes the range of
energies allowed is limited because of energy and momentum conservation, and
the particle number can not be factored out. A spectacular example of the failure
of the static approximation has been shown in [20] in connection with the mesonic
Λ decay in nuclei. The argument goes as follows: The Λ → πN decay is forbidden
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in nuclei because the nucleon momentum, kN ≃ 100MeV/c is below the Fermi
momentum kF ≃ 270MeV/c (because of surface effects the decay it still possible
but appreciable reduced, about 4 orders of magnitude in heavy nuclei). However,
since the occupation number for states below the Fermi momentum is not 1 but
about 0.85, it was implicitly argued in [21] that the Λ mesonic decay in nuclei
should saturate at values about 15% of the free Λ width [up to a moderate effect
of pion absorption in the nucleus]. The argument, however intuitive, suffers from
the same defects of the static approximation discussed here and it was found in [20]
that, the actual results for the mesonic width are about three orders of magnitude
smaller than the results of the intuitive argument based on the nucleon distribution
in nuclei.

The interesting expression for ImδΠ(k) of eq. (19) indicates that one needs
only ImD(q) and Imt̃(u) to obtain ImδΠ(k) and only in a reduced range of q0

and q. Although one can in principle evaluate ImδΠ(k) from eq. (12), it is a
highly inefficient and dangerous method because of the strong cancellations and
the large ranges of q0 involved in the integrations.

For the real part of δΠ we do not find finite ranges of integration.

3.3.- Results of calculations for ImδΠ
For the explicit calculations we use the K+π amplitude from ref. [12], which

is summarized in Appendix B. Calculations with different values of ρ have shown
that ImδΠ behaves quadratically in density. In fig. 5 we present the imaginary
part of the K+ selfenergy calculated for nuclear matter at normal density ρ0. The
dot-dashed line is the result of the static approximation using q0 fixed to zero.
The dashed line displays the exact result calculated as explained in subsection 3.2.
The leading part of the optical potential comes from the IA. For comparison, it is
displayed in the figure with a crossed solid line. We observe that the static result
is about twice the exact one, and also that in any case both of them are very
small compared to the IA. Then this mechanism is not enough to account for the
experimental results. For comparison we also show there the results of the total
MEC contribution when considering the new mechanisms which we discuss below.

4.- New mechanisms from the pion cloud.
The imaginary part of δΠ of fig. 2 is related to ImδD and ImtKπ by eq. (19).

This means that the reactive channels of the K+ selfenergy are due simultaneously
to the reaction channels of the pion in nuclear matter and the reaction channels of
tKπ. For the kaon kinetic energies which will be considered in this work the only
open channels in tKπ are the elastic one or the charge exchange, K+πi → K0πj ,
and thus ImtKπ is due only to the process Kπ → Kπ. Hence, ImtKπ is related
through the optical theorem to |tKπ|2ImD0ImDK as it is given diagrammatically
in fig. 6. Then, using the optical theorem in eq. (19), we obtain the identity shown
diagrammatically in fig. 7. This allows us to understand the processes to which
ImδΠ is due, these are: K N → K π N, K N → K π ∆, where the interaction
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KN is renormalized in the medium. The incoming K+ has to produce a kaon, a
free pion and a nuclear excitation, so it is clear why the kinetic energy of the K+

must be larger than the pion mass as shown in fig. 5.
Looking again at fig. 7 one realizes that not only one pion, but also the other

pion and also both pions simultaneously must be modified by the nuclear medium.
(The same applies to the intermediate kaon, but we will see that the kaon modi-
fication in the medium is negligible as compared to pion modification).

The imaginary part of the kaon selfenergy due to the pion cloud is given by
the diagram of fig. 8, except that its linear part in density is to be subtracted to
eliminate selfenergy parts which are already included in the IA. Let Π̃(k) be the
K+ selfenergy of the diagram of fig. 8, then the pionic cloud or MEC contribution
to the K+ selfenergy, ΠMEC, is given by:

ImΠMEC(k) = ImΠ̃(k) − ρ

(

∂ImΠ̃(k)

∂ρ

)

ρ=0

−
(

ImΠ̃(k)
)

ρ=0
, (20)

but
(

ImΠ̃(k)
)

ρ=0
= 0 if the kaon is on-shell because a free kaon is stable under

strong interactions.
The K+ selfenergy associated to the diagram of fig. 8 is given by:

Π̃(k) = −1

2

∫ d4q

(2π)4

∫ d4q′

(2π)4
D(q′)D(q)DK(k′)

×
∑

ijl

tK+πi
→Klπj (k′, q′; k,−q)tKlπj

→K+πi(k,−q; k′, q′)
∣

∣

∣

k′=k−q−q′
.(21)

Its imaginary part is easily evaluated by means of Cutkosky rules [17]: in all
intermediate states cut by the dotted line substitute:

Π(k) → 2iθ(k0)Im Π(k)

D(q) → 2iθ(q0)ImD(q)

DK(q) → 2iθ(q0)Im DK(q) (22)

and put complex conjugate the amplitude above the dotted line. Thus, by taking
the imaginary part corresponding to cutting the three meson propagators as shown
by the horizontal line of fig. 8, one obtains:

ImΠ̃(k) = 2
∫

d4q

(2π)4

∫

d4q′

(2π)4
θ(q0′)θ(q0)θ(k0′)ImD(q′)ImD(q)ImDK(k′)

×
∑

α

|tαKπ(k
′, q′; k,−q)|2

∣

∣

∣

k′=k−q−q′
, (23)

where α runs over the indices i, j, l in K+πi → K lπj .
By expanding the pion propagators above in powers of the density, D = D0 +

D(1) + δD (being D(1) of order ρ, and δD the remaining terms of higher orders),
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and using the symmetry q ↔ q′ (which holds due to the crossing symmetry of the
amplitudes), we obtain:

ImΠ̃(k) = 2
∫

d4q

(2π)4

∫

d4q′

(2π)4
θ(q0)θ(q0′)θ(k0′)ImDK(k′) (24)

×
∑

α

|tαKπ(k
′, q′; k,−q)|2

∣

∣

∣

k′=k−q−q′
{ImD0(q

′)Im[D0(q) + 2D(1)(q) + 2δD(q)]

+ ImD(1)(q
′)ImD(1)(q) + O(ρ3)}.

where the terms in δD D(1) and δD δD, of at least order ρ3, have been neglected.
The term with ImD0(q

′)ImD0(q) and the term with 2ImD0(q
′)ImD(1)(q) have to

be subtracted because they are of zeroth and first order in density, respectively;
and the terms with 2ImD0(q

′)ImδD(q) and ImD(1)(q
′)ImD(1)(q) must be kept

since they are quadratic in density.
By subtracting the terms constant and linear in ρ we obtain the contributions

to ImΠMEC. Those contributions are diagrams d1, d2, d3 and d4 depicted in fig. 9,
and their explicit expressions are given by:

ImΠMEC(k) = 2
∫

d4q

(2π)4

∫

d4q′

(2π)4
θ(q0′)θ(q0)θ(k0′)ImDK(k′) (25)

×∑α |tαKπ(k
′, q′; k,−q)|2

∣

∣

∣

k′=k−q−q′
{2ImD0(q

′)ImδD(q) (d1)

+ ImD(1)(q
′)ImD(1)(q)} (d2 + d3 + d4) .

Now we consider the first term, diagram d1. If we look at the diagram of fig. 6b
we can write the amplitude for this process following the same rules used so far
and by means of Cutkosky rules, we obtain:

3Imt̃(s′) = (26)

−2
∫

d4q′

(2π)4

∑

α

|tαKπ(k
′, q′; k, p)|2θ(q0′)θ(k0′)ImD0(q

′)ImDK(k′)
∣

∣

∣

k′=k+p−q′
,

with s′ = (k + p)2. If we substitute this in eq. (25) we find

ImΠd1(k) = −6
∫

d3q

(2π)3

∫

∞

0

dq0

2π
Imt̃(u) ImδD(q) = ImδΠ(k) , (27)

which is the same result as eq. (19). At the first sight the upper limit in the q0

integration in eq. (26) is different than in eq. (19), but the condition Imt̃(u) 6= 0
makes q0 smaller than k0 −E(x0), and we regain the same limit. It is interesting
to note that in spite of renormalizing the only existing pion line in eq. (19) one
obtains the same result as here where we have renormalized either of the two pions
in fig. 7b. The reason is that the use of a crossing symmetric amplitude and the
equal contribution of the terms Imt̃(s) and Imt̃(u) of eq. (15) in eq. (19) accounts
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for that. This can be better visualized if we make use of a model K+π− scattering
consisting of a resonant K∗ pole (as in the p-wave amplitude of the model we
use). If in fig. 6b and fig. 6c we renormalize and fold the external pion we obtain
two diagrams like in fig. 7b where in one case one pion is renormalized and in
the other case the other pion is renormalized. Hence we conclude that ImΠd1(k)
is exactly the same contribution obtained before in eq. (19). However, we get
now new contributions from the terms d2, d3, d4 which renormalize the two pions
simultaneously.

The second term in ImΠMEC comes from ImD(1)ImD(1). It contains new re-
action channels, namely, the K+ decaying into K ph ph, K ph ∆h and K ∆h ∆h.
These have not been considered before. To evaluate them we need

∑

α |tαKπ(k,−q; k′, q′)|2
with the t−matrix off-shell for both q and q′. Given the small contribution from
the p−wave part, the only one with an angular dependence in q′, we substitute
|tKπ|2 by an angular average in eq. (26), and hence we find for u > (mπ + mK)2

∑

α

|tαKπ(k
′, q′; k,−q)|2ave =

−3Imt̃(u)

2
∫ d4q′

(2π)4
θ(k0′)ImDK(k′)θ(q0′)ImD0(q′)

∣

∣

∣

k′=k−q−q′

(28)

which after the evaluation of the denominator gives

∑

α

|tαKπ(k
′, q′; k,−q)|2ave = −8π

√
u

qCM
3Imt̃(u) ≃ f(u). (29)

with u = (k− q)2 and qCM the K+π CM momentum for K+ and π on-shell. The
function f(u) for any value of u, in the model which we use, is explicitly written
in appendix B, where some approximations are made which are consistent with
the model itself. Now we use f(u) to calculate the new channels. By expanding
the first medium correction to the pion propagator into ph and ∆h components
as D(1) = Dph

(1) + D∆h
(1) , one obtains:

ImΠMEC(k)
= ImδΠ(k)+ (d1)

+2
∫ d4q

(2π)4

∫ d4q′

(2π)4
θ(q0)θ(q0′)θ(k0′)ImDK(k′)f((k − q)2)

×{ImDph
(1)(q

′) ImDph
(1)(q)+ (d2)

+ImDph
(1)(q

′) ImD∆h
(1) (q) + ImDph

(1)(q) ImD∆h
(1) (q

′)+ (d3)

+ImD∆h
(1) (q

′) ImD∆h
(1) (q)} (d4)

(30)

Diagrams d2, d3 and d4 are genuine new channels and correspond, respectively,
to the processes: K → K ph ph, K → K ph ∆h and K → K ∆h ∆h.
Those processes have the following thresholds: TK ≥ 222 MeV > mπ for diagram
d1, TK > 0 for diagram d2, TK ≥ 181 MeV > mπ for diagram d3 and TK ≥
392 MeV > 2mπ for diagram d4.

We do not evaluate the contribution of diagram d4 because its threshold is close
to the highest energies we consider and we expect it to be small. We have done
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the calculations up to second order in density for the processesK → K ph ph.
Higher orders have been considered for K → K π ph , K → K π ∆h and
K → K ph ∆h. But despite that, we have found that their behavior is quadratic
in density, so higher order corrections are negligible. In fig. 10, results for ImΠd1

and ImΠd3 with TK = 450 MeV are depicted with crosses for different densities,
the lines shown for comparison are exact quadratic functions.

On the other hand in ImΠd1 so far we have considered only the second order
terms coming from the iterated ph or ∆h excitations like in fig. 2d. Now it is
easy to include the diagrams of the same order in the density corresponding to
a simultaneous excitation of two particles-two holes by the pion (related to the
second order pion proper selfenergy), this contribution is given by diagram d5,
shown in fig. 11. Its contribution to the imaginary part of the K+-selfenergy is
given by the same expression than ImΠd1 of eq. (27) where instead of ImδD we
are considering ImδDd5, which is the modification of the pion propagator due to
the 2p2h channel of pion absorption:

ImΠd5(k) = −6
∫

d3q

(2π)3

∫

∞

0

dq0

2π
Imt̃(u) ImδDd5(q) , (31)

ImδDd5(q) = D2
0(q) ImΠ2p2h

π (q) ,

where ImΠ2p2h
π is the pion selfenergy due to the 2p2h channel of pion absorption.

For this we take the model of [16], which in lowest order in density contains the
same input as here, but we have simplified it and rewriten the second order part
of it as in ref. [22] which gives rise to about the same results for pionic atoms.
Since this selfenergy is for pions on-shell, we modify it by multiplying by the ratio
of phase space for 2p2h excitation for the off-shell and on-shell situations and by
the pion-nucleon squared form-factor F 2(q) (given in appendix A)

ImΠ2p2h
π (q) = −4πq2 ImC0 ρ2 F 2(q)

phase(q0,q)

phase(mπ, 0)
,

phase(q0,q)

phase(mπ, 0)
= θ(4Mq0 − q2)

√

4Mq0 − q2

4Mmπ

+ O(kF ) , (32)

ImC0 = 0.096m−6
π ,

where the phase-space ratio has been taken at ρ = 0. Only the p−wave part of
the pionic optical potential has been written, since the s−wave part contribution
is much smaller than this for the relevant values of q involved.

One could also think about effects from the renormalization of the interme-
diate kaon propagator. The impulse approximation tKN ρ from Appendix C pro-
vides the dominant part of the kaon selfenergy. From fig. 5 one can see that
−ImΠ(k)/m2

K ∼ 0.04 is much smaller than −ImΠπ(k)/mπ
2 and thus the correc-

tions from this source can be estimated reasonably smaller than those obtained
from pion renormalization.

The contributions of all MEC diagrams to the imaginary part of the K+ selfen-
ergy are approximately quadratic in density. In fig. 12 the contribution of each of
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the diagrams d1, d2, d3 and d5 at density ρ0 are shown for different kinetic energies
of the kaon. Also the total of the MEC contributions, d1+d2+d3+d5, is shown.
For comparison the exact result for the “standard” calculation, ImδΠ=ImΠd1, is
depicted with dashed line. By itself it is much smaller than the total MEC con-
tributions coming from diagrams d1, d2, d3 plus d5. The diagram d2 is the most
important MEC correction for low energies, but for higher energies the most rel-
evant is d3, being more than half the total MEC effect for TK = 450 MeV. The
contribution of diagram d5 is negligible as seen in figure, if we had considered
the ImC0 parameter of the pionic atoms optical potential of eq. (32) to be up to
four times larger, such as it is in certain parametrizations found in the literature,
its contribution would still be negligible as compare to the total MEC result. In
fig. 5 we display the total MEC value together with the value of the IA. We see
that the contribution due to the pionic cloud is sizable in relation to the dominant
term which comes from the IA. We have checked that these curves are fairly stable
under a reasonable modification of the LLEE parameter g′.

The selfenergy ΠMEC(r) in finite nuclei is obtained by substituting ρ by ρ(r) in
the nuclear matter results. This is shown in ref. [16] to be practical and accurate
for the s−wave part, which gives practically the whole contribution here.

The results shown in this section and in section 6 complement and correct our
preliminary results exposed in ref. [23]

We have observed that the resonant part of the tKπ-matrix does not contribute
significantly to the imaginary part of the kaon-nucleus optical potential. Its contri-
bution is smaller than one per cent for TK ≤ 550 MeV/c. In other words ImΠMEC

is, in very good approximation, proportional to the parameter β ′

0. This parameter
is given in the work of [12] by

β ′

0 = −8π

3
(mπ + mK)(a2

1 + 2a2
3) ,

where a2I is the scattering length in the isospin I channel.
Then we can consider a simplified model, which consists of taking a purely

constant value for |tKπ|2, with β ′

0 given by the scattering lengths. In particular the
quantity f(u) (eq. (58)), relevant for ImΠMEC, is now a constant. In the model of
ref. [12] β ′

0 is constrained by on-shell data at threshold which are taken from the
analysis of ref. [25]. This simplified model saves a lot of computing time because
certain integrals in eq. (30) can be done trivially due to the constancy of f(u).

5.- Real part of the K+ optical potential
Now, let us pay attention to the calculation of the real part of the K+ selfenergy

due to the pionic cloud in the nucleus.
We go back to eq. (12) for δΠ(k) and substitute the isoscalar averaged t-matrix

of eq. (15) with its dispersion relation of eq. (16). Then, we consider separately
the contributions to δΠ coming from the analytical part of t̃ (this is P ) and from
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its dispersive part (related to Imt̃):

δΠ = 3 i
∫ d4q

(2π)4
δD(q)

(

P (s) +
∫

∞

x0

dx

π

Imt̃(x)

x0 − x

s − x0

s − x + iǫ

)

, (33)

where use has been made of crossing symmetry to cancel the factor 1/2. As P (s)
is a real polynomial in q0 and, by doing a Wick rotation for q0 as depicted in
fig. 4, it can be proved that the first part (that going with P (s)) is real. By doing
the same Wick rotation, one can see that the second part (going with Imt̃(x)) is
complex, its imaginary part being given by eq. (19). This second part is linear in
Imt̃(x). Due to the optical theorem Imt̃(x) ∝ |t̃(x)|2. So, the first part is of order
t̃ and the second one is of order t̃2. We are keeping the leading order contribution
to both, ReδΠ and ImδΠ, this is: order t̃ for ReδΠ and order t̃2 for ImδΠ . Within
the same approximation , one should neglect for the real part the contribution of
the diagrams d2, d3 and d5. Note that to order |t̃|2 there would be more diagrams
besides these, which do not contribute, or contribute little, to the imaginary part,
for instance d4.

With this approach of keeping the dominant order in t̃ and considering the
incoming K+ on-shell:

ReδΠ(k) = −3
∫

d4q

(2π)4
ImδD(q) P (s) (34)

= −3
∫

d3q

(2π)3

∫

∞

0

dq0

π
ImδD(q)[

α0

2
+ β0(m

2
K + q02 − q2)]. (35)

Where we have used

P (x) =
α0

2
+ β0 x , (36)

which, in the model of [12], is the dominant contribution to P (x) and comes
from the s−wave, the p−wave contribution has been neglected. α0, β0 are
given in table 1. In this approximation ReδΠ is independent ot the K+ ki-
netic energy. Eq. (35) is the estimation we are going to use for the real part
of the K+-selfenergy. Observe that for ReδΠ we have the pion four-momentum
without any phase-space restriction. But also notice that the relevant results
are coming from the q-values such that ImδD(q) is large, and this happens for
small values of q and q0, because in the limit of q large (q → ∞ or q0 →
∞) the pion selfenergy, which makes D(q) different to D0(q), goes to zero.
For the purpose of evaluating ReδΠ, we split it in different parts as follows:

ReδΠ = α0 γ1 + 2β0 (γ2 + γ3), (37)

γ1 = −3
2

∫ d3
q

(2π)3

∫

∞

0
dq0

π
ImδD(q) ≡

∫

d3q

(2π)3

δN(q)

2ω(q)
,

γ2 = −3
2

∫ d3
q

(2π)3

∫

∞

0
dq0

π
ImδD(q)(m2

K − q2) ≡
∫

d3q

(2π)3

δN(q)

2ω(q)
(m2

K − q2) ,

γ3 = −3
2

∫ d3
q

(2π)3

∫

∞

0
dq0

π
ImδD(q)q02

.
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By doing the numerical evaluation using the pion selfenergy of Appendix A, the
results are: γ1 = 0.02 fm−2, γ2 = −0.04 fm−4, γ3 = −0.006 fm−4 evaluated at
ρ = ρ0. Notice that ReδΠ is independent of the energy of the K+, then

ReδΠ(k; r) = ReδΠ(r) = ReδΠ(ρ = ρ0)

(

ρ(r)

ρ0

)2

≡ ReB

(

ρ(r)

ρ0

)2

. (38)

For the parametrizations I and III of ref. [12], we obtain the values of ReδΠ(ρ =
ρ0) ≡ ReB shown in table 1 and fig. 13. ReδΠstat has been obtained by taking
the static approximation q0 = 0 in eq. (35), which amounts to taking γ3 = 0
in eq. (37). Noting that γ3/γ2 ≃ 0.15, we see that this static approximation is
not bad in this case. We see that different off-shell extrapolations provide very
different results for the real part of the MEC selfenergy of kaons, being possible to
obtain different signs for it. ReδΠ > 0 for parametrization I, and ReδΠ < 0 for
parametrization III. Parametrization IV is obtained by imposing ReδΠ=0, which
gives α0 = −2.8, β0 = −0.61fm2. Note that α0, β0 are related in order to
reproduce the scattering lengths, see Appendix B.

In fig. 13 the real parts calculated at order t̃ are displayed with labels I, III and
IV, depending on the parametrization used. The result I is of the same order of the
impulse approximation IA, but III is smaller and has different sign. We also present
the result of doing the calculation in the spirit of ref. [12], that is, in the static
approximation and keeping the whole Ret̃ (including P (x) and the part related
to Imt̃), in this case we use parametrization I, the result is labeled IJK. We see
that IJK is quite different from I, this means than the term coming from Imt̃ is
not small, but we should not calculate one of those contributions but all of them
which are of the same order in t̃.

Given the large sensitivity of the real part to the uncertainties of the off-shell
extrapolation for the t̃-matrix, we think that the computation of the real part is
presently beyond the scope of the microscopical approach.

6.- Results: K+-nucleus cross section
In fig. 14 we show the results for dσ

dΩ
for K+ with energy TK = 450 MeV scat-

tered by 12C. The result with the impulse approximation is compared to those
including pion cloud effects, using parametrizations I and III, the result using
parametrization IV, not shown,( Re(ΠMEC) = 0) is in between. We find that
the inclusion of MEC effects provides some improvement in comparison with the
experimental data. In fig. 15 the same is compared for the 40Ca nucleus. The
effect of pion cloud is very similar to the case of 12C. In both cases the Coulomb
interaction is neglected. Here we show the results in order to see the size and
shape of the MEC effects in the differential cross-section. Some other theoretical
corrections, as discussed later, should also be included for a proper comparison
with experiments.

The total cross-section of K+ scattered by 12C versus kinetical energy of the
K+ is shown in fig. 16a . The experimental data with a cross are from ref. [8], the
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data with a diamond are from ref. [4], only the statistical errors are included, the
systematic errors, not shown, are larger. The dashed line labeled IA corresponds to
the impulse approximation. The dotted and solid lines include MEC effects using
parametrizations I, III and IV. Note that ImΠMEC, as computed in section 3 does
not depend on the parametrization.

For low energies the resulting cross-section including MEC depends a lot on
the real part of the optical potential and hence on the parametrization used. But
it is less dependent for higher energies. Given that the real part is not at all
under control from the model, we take hereafter as a reference the line labeled
IV, which amounts to neglecting the MEC effects for the real part of the optical
potential. Figure 16a shows that the inclusion of MEC effects in the imaginary
part significantly improves on the impulse approximation, bringing the cross-section
closer to the experimental one, and showing that MEC effects are large enough to
have to be considered in this process.

We have used Arndt’s phase-shifts [27]. The calculated K+ nucleus total cross
section would have been larger if we had used Martin’s [26] phase shifts rather
than Arndt’s [27] for the KN scattering amplitudes as shown in ref. [2]. The
analysis of [27] is more recent than the one in [26]. On the other hand a recent
reanalysis [28] of the KN data seems to favor Martin’s phase shifts.

These theoretical uncertainties in the K+-nucleus cross-sections partially can-
cel if a quotient of cross-sections is taken. Same is true for systematic er-
rors in the experimental measurements of the total K+-nucleus cross-sections.
Then, the magnitude usually calculated and compared with the experiment in
most of research works is the ratio over the K+ deuterium total cross-section:
R[A] = σ(K+ A)

(A/2)σ(K+ 2H)
for a nucleus of mass number A. In particular for 12C the

following ratio R is defined:

R =
σ(K+ 12C)

6σ(K+ 2H)
, (39)

where the factor 6 in the denominator is included to emphasize the closeness of
the ratio to unity.

One should notice that for the magnitude R, being a quotient of cross-sections,
the possible uncertainties due to the use of different phase-shifts partially cancel
and they are not relevant. So we present in fig. 16b the same results as in fig. 16a
but for the ratio R, which has less error than the total cross section. The dashed
line correspond to the IA calculation, and the other lines include IA+MEC, using
for MEC effects the parametrizations I,III and IV as labeled.

So far we have calculated MEC effects on the total K+-nucleus cross-section
for 12C. We have shown that these effects are large enough as compared to the
IA approximation and, then, they need to be considered.

But, for doing a meaningful comparison of theoretical calculations with exper-
iments, a more realistic K+-nucleus standard optical potential (than the crude tρ
impulse approximation used in fig. 14-16) should be considered. There are correc-
tions over this tρ which should be included like off-shell range, binding energy,...
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Also, there are nucleon-nucleon correlations which contribute to the optical po-
tential in second order. These correlation effects are approximately ρ2 by nature,
which is the same form as the MEC contributions to the optical potential.

Both kinds of corrections to the optical potential (and their effect on the
K+-nucleus cross-sections) have been calculated and/or estimated in the works
of Siegel, Kaufmann and Gibbs [1, 2]. As result of their studies, they provide a
band of uncertainty for the conventional calculation, the boundaries of the band
are determined by varying the parameters in the theoretical model.

We show in fig. 17 with dashed-lines the band of theoretical calculations for R
with the conventional microscopic optical potential of ref. [2], for p < 500 MeV/c
the results quoted are from ref. [6]. The solid lines band in fig. 17 shows the effect
of adding our MEC correction to the multiple scattering calculation of ref. [2].
This correction is obtained by taking:

∆RMEC =
∆σMEC(12C)

6σ(2H)
, (40)

where ∆σMEC(12C) = σIA+MEC(12C) − σIA(12C), and σ(2H) has been obtained
directly from the Arndt phase-shifts by taking σ(2H) = σn + σp. In calculating
the MEC correction we have taken only its contribution to the imaginary part
of the optical potential, while no correction has been done to the real part. We
observe that the addition of MEC correction to the conventional optical calculation
of Siegel et al. provides a significative agreement of the calculation with the
experiment for a large range of energies.
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7.- Conclusions
Let us summarize the results of our calculation. We have computed the pionic
cloud contribution to the K+-nucleus selfenergy at lowest order in tKπ (see sections
4 and 5). Our result is well described for TK < 2.5 fm−1 by:

ΠMEC(TK , r) = B(TK)

(

ρ(r)

ρ0

)2

, (41)

where the coefficient B(TK) is complex and TK is the kinetic energy of the in-
coming K+. We have found that, within our approximation, ReB is energy inde-
pendent. Its precise value is not known due to the uncertainties in the off-shell
extrapolation of the Kπ amplitudes (see Table 1). On the other hand, with very
good approximation, ImB(TK) can be cast in the following form:

ImB(TK) = β ′

0 {k1 TK + k2 (TK − T0) θ(TK − T0)} , (42)

with k1 = 3.0 10−3 fm−2, k2 = 2.0 10−2 fm−2, and T0 = 1.0 fm−1. The constant
k1 is related to the the diagram d2, and k2 to the rest of the calculated MEC
diagrams d1, d3, d5 which contribute to ImB above a threshold of around T0 as
stated by the step function θ(TK−T0). β ′

0 is related to the K+π scattering lengths.
For the model of refs. [12, 25], one obtains β ′

0 = −8.1 fm. The K+-nucleus data
for 12C are well reproduced for all energies by ReB=0, β ′

0 = −8.1 fm, as can
be seen in fig. 17, when conventional nuclear corrections, taken from ref. [2], are
included together with the MEC effects.

The main conclusion of this paper is that the effects of the mesonic cloud in K+

nucleus scattering are relevant and of the right order of magnitude to account for
the discrepancies of the conventional optical potential [2] with the data. However,
there are uncertainties, particularly in the real part of the MEC, which do not allow
us to draw stronger conclusions about the actual size of the corrections. The main
reason is the sensitivity of the results to the off-shell extrapolation of the KN
scattering matrix for which there is not yet enough information. Furthermore,
we also noted that there are other sources of real part, not linear in the KN
t−matrix, which should also be considered. Our evaluation of the imaginary part
was however very precise within the model of ref. [12] used here. However, there
are also approximations in ImtKπ of ref. [12] since the parameter β ′

0 is tied to the
threshold Kπ amplitudes only. Other models for the amplitude would also provide
different results for Im ΠMEC although the restricted phase space for Im ΠMEC

and the on-shell constraints in the amplitude make this magnitude more stable.
The comparison of our results using Re ΠMEC = 0 with the data is very good.
On the other hand we also have observed that the direct relation of ΠMEC

to the distribution of excess pions in the nucleus, as has been formerly assumed,
is a consequence of a dangerous static approximation which should be avoided.
In the present case it induced an error of a factor of two but in other cases it
can induce errors of several orders of magnitude. We also found that in any case
this contribution was only a small part of the total MEC corrections tied to the
interaction of kaons with the nuclear pions. These findings should also serve as
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a warning for other calculations directly relating the pion excess number to the
modification of nuclear magnitudes from the interaction of particles with the meson
cloud.
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Appendix A.- The pion propagator
We have taken

D(q) = [q02 − q2 − mπ
2 − Ππ(q0,q)]−1, (43)

where

Ππ(q) = q2 α(q)

1 − g′α(q)
,

α(q) = αN (q) + α∆(q),

αN(q) =

(

f(q)

mπ

)2

UN (q),

α∆(q) =

(

f(q)

mπ

)2

U∆(q),

f(q) = fπ F (q) = fπ
Λ2

Λ2 + q2
, (44)

where 1 − g′α(q) is the Lorentz-Lorenz factor, with g′ the Landau-Migdal pa-
rameter, and UN , U∆, the Lindhard functions for ph and ∆h excitation with the
appropriate normalization are given explicitly in the appendix of [29]. U∆(q) has
an imaginary part coming from ∆ decay into πN . We have taken the form factor
static because the relevant momenta involved in the process are well below Λ and
the form factor does not play much of a role. This was already investigated in [12].
Not having q0 dependence in F (q) simplifies the analytical structure and allows
us to make the formal developments of the former sections. We take g′ = 0.6,
f 2

π/4π = 0.08, and Λ = 1250 MeV.
The leading order in density of Π(1)

π is given by:

Π(1)
π = ΠN + Π∆ , ΠN (q) = q2α

(1)
N , Π∆(q) = q2α

(1)
∆ ,

where α
(1)
N and α

(1)
∆ are the linear part in density of αN and α∆ of eq. (44) Hence,

the leading orders in density expansion for the pion propagator D(q) are:

D(1)(q) = D2
0(q)Π

(1)
π = Dph

(1) + D∆h
(1) ,

Dph
(1)(q) = D2

0(q)ΠN(q) , D∆h
(1) (q) = D2

0(q)Π∆(q) ,

D(2)(q) = D2
0(q)q

2α2(q)(g′ + q2D0(q)) ,

Appendix B.- The K+π amplitude.
As discussed before we need only the isoscalar Kπ amplitude which we take

from [12]. This amplitude incorporates analytical properties, unitarity, crossing
symmetry t0(k′, q′; k, q) = t0(k′,−q; k,−q′), and on-shell constrains and keeps up
to linear terms in s and u for forward scattering. Its justification and uncertainties
are clearly discussed in [12] and we refer the reader to this paper. The model
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contains an s-wave part and a p-wave part. The p-wave part is accounted for by
means of a I = 1/2 resonance, K∗(892). After the implementation of the crossing
symmetry the two pieces give rise to the following isoscalar amplitude.

t0(k, q; k, q) = t(0,s)(k, q; k, q) + t(0,p)(k, q; k, q), (45)

t(0,s)(k, q; k, q) = α0 + β0(s + u) + iβ ′

0[k(s) + k(u)], (46)

t(0,p)(k, q; k, q) = Tres(s)θ(s − x0) + Tres(u)θ(u − x0), (47)

with

Tres(x) = −8π
√

x

K(x)

MrΓ(K(x))

M2
r − x − iMrΓ(K(x))

, (48)

Γ(K) = (
K

Kr
)3Γr[

1 + (KrR)2

1 + (KR)2
] , (49)

x0 = (mK + mπ)2 and k(x), K(x) the CM momentum given by

k(x) =

√
mπmK

mπ + mK

√

x − (mπ + mk)2 , (50)

K(x) =

[

[x − (mπ + mK)2][x − (mπ − mK)2]

4x

]1/2

(51)

and the parameters: β ′

0 = −8.1 fm, Mr=895.7 MeV, Γr=52.9 MeV,
R=4.3 (GeV/c)−1, Kr given by eq. (51) for x = Mr. Three different parametriza-
tions I, II and III, with values for α0, β0, given in table 1 are taken from [12]. These
parameters are constrained by the relationship α0+2(m2

π+m2
K)β0 = −11.0, which

follows from eq. (46) on-shell and at threshold. Notice that parametrization II does
not fulfill this requirement. So we will not use it.

Note that K(x) is the relativistic CM momentum while k(x) involves a non-
relativistic approximation. The choice of k(x) for the s-wave part is done in [12]
to avoid extra singularities and is consistent with some threshold approximations
involved in the derivation of eq. (46).

Since Tres(x) is zero below pion threshold there are no problems in separating
the real and imaginary parts. However, the imaginary part in the s-wave term
gives rise to a real part below pion threshold when extrapolated analytically. Thus

t(0,s)(k, q; k, q) = t̃ (o,s)(s) + t̃ (o,s)(u) (52)

with

Re t̃ (o,s)(x) =

{

α0

2
+ β0x , x > x0

α0

2
+ β0x − β ′

0kI(x) , x < x0

Im t̃ (o,s)(x) =

{

β ′

0k(x) , x > x0

0 , x < x0
(53)

with

kI(x) =

√
mπmK

mπ + mK

√
x0 − x. (54)
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Coming back to eqs. (28) and (29), we discussed that in the general case for
u > (mπ + mK)2.

∑

l

∑

i,j

|tK+πl
→Kiπj(k′, q′; k,−q)|2ave = −8π

√
u

K(u)
3Im t̃(u) (55)

= −24π

{√
u

k(u)

K(u)
β ′

0 − Im
8πu

K2(u)

MrΓ(K(u))θ(u − x0)

M2
r − u − iMrΓ(K(u))

}

, (56)

with u = (k − q)2. However, the threshold approximations involved in the s-wave
part in [12] require that all factors in the s-wave part in eq. (56) be calculated
at pion threshold. We have checked that this induces about 5% differences in
the evaluation of the diagram of fig. 2a with respect to the results keeping the u
dependent factors. Observe that eq. (56) provides the analytical continuation of
the the left hand side of eq. (55) for u < (mπ + mK)2.

Note that if the factor
√

u is kept we run into problems if the line q′ excites
a ph, like in diagrams d1, d2, d3 of fig. 9, since u can become negative and
this leads to the absurd conclusion that |t2| is purely imaginary. The threshold
approximations done in [12] aimed at avoiding such pathologies.

Thus, taking this into account this average we can rewrite eq. (23) in the form:

ImΠ̃(k) = 2
∫

d4q

(2π)4

∫

d4q′

(2π)4
θ(q0)θ(q′0)θ(k0 − q0 − q′0)

× f(u)ImD(q)ImD(q′)ImDK(k − q − q′), (57)

f(u) = −24π

{

β ′

0(mπ + mK) − 8πu

K2(u)
Im

MrΓ(K(u))θ(u − x0)

M2
r − u − iMrΓ(K(u))

}

. (58)

For the s−wave this is equivalent to consider the on-shell values for the tKπ−matrix
when calculating |t|2 but evaluated at threshold.

Appendix C.- The impulse approximation
Our K+ selfenergy in the impulse approximation is given by

Π(IA)(k) = −4π
√

s

M

{

1

2
(f0 + f1)ρn(r) + f1ρp(r)

}

, (59)

with M the nucleon mass, where fI are the K+N spin non flip isospin amplitudes
and ρn(r), ρp(r) the neutron and proton densities.

We consider s, p and d waves. For the p-wave we substitute

q.q ′ρ(r) → −M2

s
∇ρ(r )∇, (60)

as customarily done in pionic atoms [30], and for the d-wave, which is almost
negligible in the range that we study, we take only the forward value in eq. (59).

The K+N phase shifts are taken from [27]. The kaon selfenergy in the impulse
approximation is shown in figs. 5 and 13 for nuclear matter density.
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Table 1

α0 β0 β ′

0 ReδΠstat(ρ = ρ0) ReδΠ(ρ = ρ0)
≡ ReB

[fm2] [fm] [fm−2] [fm−2]

I 18.7 −2.2 −8.1 0.54 0.58
II 11.4 −1.0 −8.1
III −11.0 0.0 −8.1 −0.22 −0.22
IV − 2.8 −0.6 −8.1 ∼0.00 0.00

• Table 1: Different parametrizations for the K−π t-matrix, and the results
of the real part of the K+ optical potential due to the pionic cloud for normal
nuclear matter for each parametrization.
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Figures captions

• Figure 1: δN(q) versus q is shown for normal nuclear matter.

• Figure 2: “Standard” K+ selfenergy diagrams due to the pion cloud.

• Figure 3: K+ scattering with a pion, annihilating two pions from the
ground state or creating two pions from the ground state.

• Figure 4: The complex plane q0 with the cuts and poles of D(q)t̃(u). The
adequate Wick rotation for performing its integration in q0 is shown.

• Figure 5: Imaginary part of the K+ selfenergy for normal nuclear matter
versus kinetic energy of the incoming kaon.

• Figure 6: The optical theorem for the Kπ amplitude is diagrammatically
shown.

• Figure 7: Feynman diagram which imaginary part is related, through the
optical theorem, to the imaginary part of the “standard” diagram of fig. 2.

• Figure 8: This diagram contains all the contributions to the imaginary part
of the K+ selfenergy up to second order in tKπ.

• Figure 9: Diagrams d1, d2, d3 and d4. They contribute to ImΠMEC up to
second order in density.

• Figure 10: Imaginary part of the K+ selfenergy versus density for 450 MeV
of kinetic energy of the incoming kaon for diagrams d1 and d3 are shown.
The lines are exact quadratic functions in density for comparison.

• Figure 11: Diagram d5. It contributes to ImΠMEC in second order in
density.

• Figure 12: Imaginary part of the K+ selfenergy for normal nuclear matter
versus kinetic energy of the incoming kaon from the different mechanisms
considered.

• Figure 13: Real part of the K+ selfenergy for normal nuclear matter versus
kinetic energy of the incoming kaon.

• Figure 14: Differential cross section of a K+ with kinetic energy of
450 MeV scattered by a 12C nucleus. Dashed line depicts the results us-
ing the IA. Long-dashed (dot-dashed) line includes IA plus the the optical
potential coming from the pionic cloud using parametrization I (III). The
experimental data are from ref. [5].

• Figure 15: Same as fig. 14 for 40Ca. The experimental data are from
ref. [6].
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• Figure 16: a) Total cross section for K+ scattered by 12C versus kinetic

energy of the K+. b) The ratio R = σ(K+ 12C)
6σ(K+ 2H)

versus the lab momentum of

the K+. Dashed line corresponds to IA. Solid line (IV) includes IA plus the
imaginary part of the optical potential coming from the pionic cloud. Dotted
lines includes IA plus the imaginary and real parts of the optical potential
coming from the pionic cloud for two different parametrizations (I, III) of the
tKπ amplitude. The experimental data are: crosses from ref. [8], diamonds
from ref. [4], squares from ref. [6].

• Figure 17: The ratio of cross-sections R = σ(K+ 12C)
6σ(K+ 2H)

is plotted against

the lab momentum of the incoming K+. The experimental data are: crosses
from ref. [8], diamonds from ref. [4], squares from ref. [6]. The two dashed
lines define the band of uncertainties of the theoretical results for R obtained
with the conventional optical potential of ref. [2]. The two solid lines define
the band of uncertainties of the theoretical results for R when the corrections
due to MEC calculated here are added to the results obtained with the
conventional optical potential of ref. [2].

paper has 17 FIGURES, only fig.17 is included in this LaTeX file
please, REQUEST THE FIGURES to C. Garcia-Recio, e-mail: G RECIO@UGR.ES
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