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AbstractWe use a method recently suggested for evaluating the slope of the Isgur-Wisefunction, at the zero-recoil point, on the lattice. The computations are performedin the quenched approximation to lattice QCD, on a 243 � 48 lattice at � = 6:2,using an O(a)-improved action for the fermions. We have found unexpectedly large�nite-volume e�ects in such a calculation. These volume corrections turned out tobe purely geometrical and independent of the dynamics of the system. After thestudy of these e�ects on a smaller volume and for di�erent quark masses, we giveapproximate expressions that account for them. Using these approximations we �nd�0(1) = �1:7 +2�2 and �0(1) = �1:4 +2�1 for the slope of the Isgur-Wise function, for twomesons composed of a heavy quark slightly heavier and lighter, respectively, than thecharm quark, and in both cases, a light antiquark whose mass is about that of thestrange quark.1Present address: Centre de Physique Theorique, CNRS Luminy, Case 907, F-13288 Marseille Cedex 9,France.



1 IntroductionIn recent years there has been an increased theoretical and experimental interest in thestudy of decays of hadrons containing a b quark. Due to the appearance of a spin-
avoursymmetry in the dynamics of heavy quarks ([1]), systems involving a heavy quark are in someways simpler than those involving only light quarks. The study of these systems has severalobjectives, including the extraction of the elements Vcb and Vub of the Cabibbo-Kobayashi-Maskawa matrix, a determination of the applicability of the \Heavy Quark E�ective Theory"(HQET) predictions for the physics of b and c quarks, and derivations of bounds for the e�ectsof physics beyond the standard model.Recently the ARGUS [2] and CLEO [3] collaborations have measured the semileptonic decayB ! D�l��, and have presented results for jVcbj��(!), where ��(!) is the Isgur-Wise function,�(!), up to short-distance and heavy-quark mass corrections [4] and ! is the dot productof the four-velocities of the B and D� mesons. The Isgur-Wise function is the unique form-factor for all semi-leptonic B ! D-decays in the limit of in�nite b and c quark masses. Theextraction of the jVcbj matrix element requires a precise knowledge of the Isgur-Wise functionin a region of values of ! close to the zero-recoil point (i.e. ! = 1; the Isgur-Wise functionis normalised such that �(1) = 1).Lattice computations allow for the determination of the Isgur-Wise function for discretevalues of ! > 1 ([5] - [6]) and these can be used to reconstruct the Isgur-Wise function nearto the zero-recoil point, and in particular to estimate its derivatives at ! = 1. Althoughmuch of the systematics is understood in this kind of calculation, [7], there are still someproblems which lead to uncertainties in the determination of �(!) near to the zero-recoilpoint (extrapolation of the results from ! > 1 to ! = 1, determination of the possible !-dependence of the systematic e�ects which may distort this extrapolation, etc...) and couldlead to uncertainties in the extraction of jVcbj . For this reason, the authors of [8] suggesteda new method, in which the slope and higher derivatives of the Isgur-Wise function at! = 1 are computed directly on the lattice, hence avoiding any kind of extrapolation (whichnecessarily relies on a certain parametrization of the !-dependence of Isgur-Wise function)from ! > 1 to the zero-recoil point. The results obtained by using this new method wouldcomplement those obtained by using the traditional one ([5] - [6]) and would help to unravelpossible sources of systematic errors in lattice calculations.In future it is likely that it will also be possible to study the Isgur-Wise function near thezero-recoil point by simulations using the HQET. Results from an early study can be foundin ref. [9].
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In [8] it was proposed to study correlators of the type:C(2)2 (t) = � 12X~x x23h0jJP (x)JyP (0)j0i; (1)C(2)3 (t; ty) = � 12X~x;~y x23h0jJP (y)V 4(x)JyP (0)j0i; (2)in addition to the usual two- and three-point correlators, (C(0)2 (t) and C(0)3 (t)) given by:C(0)2 (t) = X~x h0jJP (x)JyP (0)j0i; (3)C(0)3 (t; ty) = X~x;~y h0jJP (y)V 4(x)JyP (0)j0i; (4)where JP (JyP ) is an interpolating operator which can annihilate (create) the pseudoscalarmeson P , and V 4 represent the fourth component of the vector current �Q
�Q. In [8] it wasshown that, from the measurement of these correlators, the slope of the Isgur-Wise functionat the zero-recoil point could be extracted. Actually, if local interpolating operators are usedand in the in�nite-volume limit, it can be shown that:12m2 (12 + d��d! (1)) = R(2)3 � R(2)2 ; (5)where ��(!), as we mentioned above, is the Isgur-Wise function up to short-distance andheavy-quark mass corrections and the ratios R(2)3;2 are de�ned by:R(2)2;3 � C(2)2;3C(0)2;3 : (6)The second derivative of the Isgur-Wise function would be determined by a similar set ofcorrelators to those of eqs.(1-2) in which x23 has been replaced by x43, and in principle, higherorder derivatives could be determined alike [8].Below we present the results of an exploratory study to check the feasibility of the methodproposed in [8]. The main result of this paper is that in the evaluation of correlation functionsof the form in eqs.(1) and (2) there are large �nite-volume e�ects. Although these e�ects,for a �xed meson mass and time, decrease exponentially with the length of the lattice inthe spatial directions (with a rate given, to a good approximation, by (m=t) 12 ), they arelarge on currently available lattices. The origin of these e�ects is purely geometrical andunderstandable, and they do not depend on the dynamics of the system. The ordinarytwo- and three-point correlators (without the insertion of the x23; x43; ::: terms) used in latticecalculations are free of this new source of systematic errors. The problem arises becausewhen the terms x23; x43; ::: are included in the de�nition of the correlators, the lattice theory2



becomes sensitive to momentum contributions in addition to the unique momentum modewhich determines the ordinary two and three point correlators2. The behaviour of thesegeometrical volume e�ects, and in particular, the dependence on the mass and time ofevolution, is di�erent from that in usual correlation functions. Similar e�ects will be presentin any direct computation of a derivative of a matrix element with respect to an externalmomentum. Since the origin of these e�ects is purely kinematical, they can be controlled, andbelow we present a set of approximations which will allow us to extract the slope of the Isgur-Wise function at zero-recoil in simulations on �nite volumes. Using these approximationswe �nd �0(1) = �1:7 +2�2 and �0(1) = �1:4 +2�1, for two mesons composed of a heavy quarkslightly heavier and lighter , respectively, than the charm quark, and in both cases, a lightantiquark whose mass is about that of the strange quark. These values agree well with thoseobtained in the lattice computation of ref. [7]. In this reference, for the same heavy andlight quark masses and using the traditional method of extrapolating from ! > 1 to thezero-recoil point, were found the following values for the slope of the Isgur-Wise function:�0(1) = �1:4 +4�3 and �0(1) = �1:4 +2�2 respectively.The remainder of this paper is organized as follows. In Section 2 we will present and studythe origin of these new volume e�ects in the simplest case: two-point function correlatorswith local interpolating operators JP . The results of this section will permit us to study inSection 3 the case of extended interpolating operators and the computation of the slope ofthe Isgur-Wise function at zero-recoil. Finally, in Section 4 we will present our conclusions.2 Geometrical Finite-Volume E�ectsIn this section we demonstrate the existence of �nite-volume e�ects in correlation functionsof the form in eq. (1), and show that these e�ects are large on currently available lattices.Consider the evaluation of such a correlation function on a N3 � NT lattice, of lengthsT and L in the temporal and spatial directions respectively, and with lattice spacing a(L = Na; T = NTa):C(2)2 (t) = � 12X~x x23h0jJP (x)JyP (0)j0i; (7)= � 12XA aN2Xx3=a(�N2 +1) x23 1N N2Xn=�N2 +1Z2A(n2p2min)e�(pm2A+p2minn2) t2qm2A + p2minn2 ei npminx3 ; (8)where pmin = 2�=L, ZA(~p 2) = jh0jJP (0)j~p; Aij and the sum PA is over all the excited states2This momentum mode coincides with the external momentum provided in the de�nition of thecorrelators. 3



A that can contribute to the correlation function. mA is the mass of state A3. In generalZ(~p 2) depends on the momentum j~p j if extended interpolating operators JP are used.In the in�nite-volume limit L; T ! 1, and with t � 1 so that only the ground statecontributes signi�cantly4, the correlation function becomes [8]:C(2)2 (t) � C(0)2 (t)� ( � 12m2 � t2m + 2R(2)Z ); (9)where C(0)2 (t) = Z2(0)2m e�mt; (10)R(2)Z = Z 0(0)Z(0) ; (11)Z 0(~p 2) = dZ(~p 2)d~p 2 : (12)We now study the �nite-volume corrections to eq. (9). For purposes of illustration let us takethe interpolating operators JP (x) to be local ones, so that the corresponding wavefunctionfactor Z(~p 2), in eq. (8), is independent of momentum, and can be taken out of the sum overn, and also R(2)Z = 0. Having determined the mass of the ground state from the behaviourof the correlation function C(0)2 (t) with time (see eq. (10) ), the ratio of C(2)2 (t) and C(0)2 (t)can be calculated exactly by computing the discrete sum in eq. (8):R(2)2 (t) � C(2)2 (t)C(0)2 (t) ; (13)= � 12 aN2Xx3=a(�N2 +1) x23 1N N2Xn=�N2 +1 e�(pm2+p2minn2�m) tq1 + p2minn2=m2 ei npminx3 : (14)Assuming that:i) The lattice spacing in the spatial directions is zero, but that L is �nite, so that thesum over x3 can be replaced by an integral, i.e.1N aN2Xx3=a(�N2 +1) ! 1L Z L2�L2 dx3; (15)which implies that the sum over n in eq. (14) must be extended between �1 to +1.3There may also be contributions from multiparticle states, but we will shortly restrict the discussion tothe ground state only.4In the following, except where explicitly stated, we will neglect the contributions from the excited states.4



ii) L� 1 and therefore we can perform an asymptotic expansion in powers of 1=L.the result of eq. (14) can be approximated by:R(2)2 (t) � (� 12m2 � t2m)� 0@1 � L( 3m2 + t21+mt) 12 1sinh(L=( 3m2 + t21+mt) 12 )1A : (16)In general eq. (16) is a good approximation to eq. (14) when both �=mL and �2t=mL2are small quantities; the higher the mass m, and the smaller the time t, the better is theapproximation. In Figs.1 and 2 we test the validity of eq. (16) by plotting R(2)2 (t) as afunction of the time, t, for di�erent volumes and masses of the scalar particle. The plotscorrespond to masses given by ma = 0:3 and 0.6, and volumes V = 243 and 363. In each casethe dashed line represents R(2)2 (t) computed numerically from the exact expression given ineq. (14), the solid line corresponds to the in�nite-volume result, R(2)2 (t) = (�1=2m2� t=2m),and the squares stand for the approximation of eq. (16) to R(2)2 . The �rst observation whichcan be made from these plots is that there is a considerable di�erence between in�nite-(solidline) and �nite-(dashed line) volume predictions. A second observation is that eq. (16) is inmost cases a good approximation to the �nite-volume prediction of eq. (14), i.e. for a widerange of volumes, masses and times, the squares follow the dashed line.

Figure 1: Comparison between di�erent approximations to R(2)2 (t) (see text). a) m=0.6; b)m=0.3. In both cases V = 243. 5



Figure 2: Comparison between di�erent approximations to R(2)2 (t) (see text). a) m=0.6 ; b)m=0.3. In both cases V = 363 .From eq. (16) we see that the �nite-volume e�ects decrease exponentially with L and, forsu�ciently large times, they are given by:R(2)2 (t)R(2)2 (t; L =1) = 1� 2Lrmt e�Lpmt ; (17)where the dependence on L, m and t is explicitly shown.The origin of these geometrical volume corrections is due to the fact that more than onemode contributes to the sum over n in eq. (8). By contrast, in the usual two-point functions,C(0)2 (t), only the term with n = 0 contributes in the sum, and thus this type of geometrical�nite-volume e�ect is not present. However, both C(0)2 (t) and C(2)2 (t) su�er from dynamicalvolume e�ects. These e�ects are either due to self interactions of the particle which is beingstudied with its in�nite number of mirror copies (in simulations with periodic boundaryconditions) [10], or due to the modi�cation of the hadronic wave function in situations forwhich the physical volume of the lattice is comparable to the size of the hadron [11]-[12].For small lattices, the latter type of corrections is the dominant e�ect, whereas for physicalvolumes of the order of 1:5 fm the predominant e�ect is due to the interaction of the particlewith its mirror copies ([10],[12]). However, all of these corrections are small for the massesand volumes considered in this paper, and in what follows they will be ignored.As was mentioned in the introduction, the slope of the Isgur-Wise function in the in�nite-6



volume limit can be extracted from the correlators C(2)2 (t) and C(2)3 (t). For �nite volumes sucha determination contains similar corrections to the ones studied here for C(2)2 (t), correctionswhich decrease exponentially with the length of the lattice. The slope of the Isgur-Wisefunction at ! = 1 can also be estimated by computing the �nite di�erence �(!min) � �(1),where !min is the discrete value of ! nearest to ! = 1 available on the lattice being used.�0(1) derived in such a way su�ers from �nite-volume corrections of the order of O(!min)or equivalently of the order of O(1=L2). These �nite-volume corrections, therefore, formallydecrease more slowly with the volume of the lattice than those a�ecting C(2)2 (t) and C(2)3 (t).In the remainder of this section we present the results from numerical simulations usinglocal interpolating operators. We have measured R(2)2 (t) for a heavy meson with a mass ofabout 1.6 GeV in a study on a 243 � 48 lattice at � = 6:2 and using the O(a)-improvedquark action (SW or \clover") proposed by Sheikholeslami and Wohlert, ([14, 15])5. Themeson was composed of a heavy quark with a mass corresponding to �h = 0:133 and alight antiquark with �l = 0:14144 6. The mass of the meson was found (from 60 gauge �eldcon�gurations) to be ma = 0:598 +3�1 [13].In Figure 3 we compare the prediction of eq. (14) with the data. The solid line correspondsto the in�nite-volume prediction R(2)2 (t) = (�1=2m2 � t=2m), the dashed line to R(2)2 (t)computed using eq. (14) 7 (including volume e�ects) and �nally the squares stand for themeasured data (from 10 gauge �eld con�gurations) on the lattice. From Figure 3 it is clearthat the dashed line �ts the data much better than the solid line, demonstrating that thediscrepancy between the in�nite-volume prediction (9) and the data is largely due to thegeometrical �nite-volume e�ects. However, even the dashed line does not reproduce thedata perfectly, and we understand the small discrepancy between the two as being due todiscretisation errors (i.e. errors due to the �niteness of the lattice spacing)8. This will bediscussed further below. We have checked that the small discrepancy between the dashedline and the data is not due to the contribution of excited states, since the size of such acontribution would be incompatible with the behaviour of the two-point function C(0)2 (t).We have also computed the ratio R(2)2 (t) on 36 gauge con�gurations, for a light mesoncomposed of a degenerate (light) quark { anti-quark pair, in a simulation on a 163 � 325For general details of the simulation, which was performed on the 64-node i860 Meiko Computing Surfaceat the University of Edinburgh, see references [13] and [16].6In this simulation the hopping parameter of a massless quark is �crit = 0:14315(2), and that of thestrange quark is �s = 0:1419(1) ([13]).7We have appropriately modi�ed eq. (14) in order to include the contribution of the meson propagatingbackwards in time.8The O(a)-improved action which has been used in this work is free of mQa discretisation errors. Theleading discretisation errors are of order �mQa or (mQa)2 ([15]) which for a heavy quark may be of acomparable size. mQ is the mass of the heavy quark.7



Figure 3: Local interpolating operators: Comparison between the approximation of eq. (14)(dashed line), the in�nite-volume prediction (solid line) and the measured data (squares).�h = 0:133; �l = 0:14144; � = 6:2 on 243 � 48 lattice.lattice at � = 6:0, again using the SW -improved action for the fermions9. The mass of thelight quark corresponds to � = 0:1425 (and that of the corresponding meson was found tobe ma = 0:448 +7�4); in lattice units the quark mass is about four times smaller than theheavy quark mass in the simulation described above. Thus the discretisation errors should bereduced considerably while the �nite-volume e�ects are going to be even more pronounced,and indeed we now �nd that this is the case. In Figure 4 we compare the prediction of eq. (14)with the measured data. The meaning of the di�erent curves is the same as in Figure 3. Itcan be seen from Figure 4 that the agreement between our theoretical prediction and thedata is excellent, in spite of the fact that the �nite-volume corrections in the ratio R(2)2 (t)are very large for such light mesons.We now try to justify our hypothesis that the small discrepancy between the theoreticalprediction (dashed line) and data (squares) in Figure 3 is due to discretisation errors. Wehave tried to reduce these errors by replacing the continuum energy-momentum dispersionrelation in eq. (14) by the lattice dispersion relation of a free boson and the residue factor1=2E by 1=2 sinh(E) ([18]). More precisely we have replaced in eq. (14):e�(pm2+p2minn2�m) t ! e�(ELA(m2; p2minn2)�m) t; (18)9This simulation was performed on the CRAY-YMP at Cineca in Bologna, and details of the simulationcan be found in ref.[17]. 8



Figure 4: Local interpolating operators: Comparison between the approximation ofeq. (14)(dashed line), the in�nite-volume prediction (solid line) and the measured data(squares). �l = 0:1425; � = 6:0 on 163 � 32 lattice.1q1 + p2minn2=m2 ! sinh(ma)sinh(ELA(m2; p2minn2)a) ; (19)where ELA(m2; q2) = 2a arc sinh�rsinh2(ma2 ) + sin2(qa2 )� : (20)Having made these changes, we again compare our prediction, now given by eq. (14) andeqs.(18{20) , with the data for the ratio R(2)2 (t) of Figure 3. The result is plotted in Figure 5.The meaning of the di�erent curves is again the same as in Figure 3. The agreement of thepredictions with the data is excellent. This fact can be further underlined by noting that ifwe �t R(2)2 (t) to the theoretical prediction with the mass left as a free parameter we obtainma = 0:60(1), in good agreement with the value of 0:598 +3�1 obtained from C(0)2 (t). Theresult of such a �t is ma = 0:63(1) when the substitutions of eqs.(18-20) are not taken intoaccount.In the light-light case of Figure 4, the inclusion of �nite-lattice-spacing e�ects leads to minorchanges, and a slightly improved �2 in the comparison of the ratio R(2)2 (t) with the theoreticalprediction.In summary, we repeat that, by making a reasonable ansatz for the discretisation errors,9



Figure 5: Local interpolating operators: Comparison between the approximation of eq. (14)and eqs. (18 - 20) (dashed line), the in�nite-volume and zero lattice spacing prediction (solidline) and the measured data (squares). �h = 0:133; �l = 0:14144; � = 6:2 on 243� 48 lattice.we can account for the small discrepancy between the theoretical �nite-volume predictionand the data in Figure 3. Moreover, for light mesons (Figure 4), there is no correspondingdiscrepancy. These observations, and the fact that the discrepancy cannot be explainedby contamination by excited states, leads us con�dently to attribute it to the presenceof discretisation errors. We stress, however, that the main point of this section was thedemonstration that the in�nite-volume prediction for R(2)2 has large, controllable, �nite-volume e�ects, as is clear from the di�erence between the solid and dashed lines in �gures1{5.3 The Slope of the Isgur-Wise functionIn this section we will extract the slope of the Isgur-Wise function by computing two- andthree-point correlation functions, using extended (or \smeared") interpolating operators inorder to enhance the contribution of the ground state. In this exploratory study we restrictthe computation to two values of the mass of the heavy quark, and to a single value of themass of the light quark (as explained below).
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Following the ideas of [8], let us consider now10,C(2)3 (t; ty) = � 12X~x;~y x23h0jJP (y)V 4(x)JyP (0)j0i (21)= � ZV2 Z(0)2m e�m(ty�t) aN2Xx3=a(�N2 +1) x23 1N N2Xn=�N2 +1Z(n2p2min)�M4(n2p2min)�e�(pm2+p2minn2) t2qm2 + p2minn2 ei npminx3 ; (22)where V 4 represents the fourth component of the vector current ZV �Q
�Q. ZV is the renor-malisation constant relating the lattice vector current to the physical one. M4 is the fourthcomponent of the matrix element de�ned byM�(n) � hP (~p 0)j �Q
�QjP (~p )i = (p+ p 0)� ��(!); (23)where ~p 0 = ~0, ~p = (0; 0; npmin) and��(!) = (1 + �(!) + 
(!))�(!); (24)! = 1� q22m2 ; (25)q = p� p 0: (26)�(!) represents the radiative corrections and 
(!) corresponds to corrections proportionalto inverse powers of the heavy-quark mass (�(1) = 
(1) = 0 for the degenerate case we areconsidering here [1], where by degenerate we mean that the initial and �nal state mesonshave the same masses); in what follows we will neglect the corrections 
(!), which appear tobe very small in the range of masses studied in this work [7]. �(!) is the Isgur-Wise functionand ! is the dot product of the four velocities of the initial and �nal state mesons. TheIsgur-Wise function is normalised to 1 at the zero-recoil point, i.e. �(1) = 1. In eq. (22)it has been assumed that t � 1 and ty � t � 1 and that therefore only the ground statecontributes to the correlation function.In the limit L!1 the correlation function behaves like11:R(2)3 (t) � C(2)3 (t; ty)C(0)3 (ty) � (� 12m2 � t2m +R(2)Z +R(2)M ); (27)where C(0)3 (ty) = ZV Z2(0)4m2 e�mtyM4(0); (28)10For the present we will ignore possible discretisation errors. We will come back to this point later.11Note that the ratio R(2)3 (t) does not depend on the renormalisation constant ZV .11



R(2)M = M40(0)M4(0) = 12m2 (12 + d��d! (1)); (29)d��d! (1) = d�d! (1) + d�d! (1); (30)M40(~p 2) = dM(~p 2)d~p 2 (31)and R(2)Z was de�ned in eq. (11). The idea of the authors of ref.[8] was to obtain thederivative of the renormalisation-group-invariant Isgur-Wise function �(!) at the zero-recoilpoint (! = 1) simply in terms of the ratios R(2)2;3. In the limit L!1, the derivative12 of theIsgur-Wise function at ! = 1 is given by R(2)3 �R(2)2 ,12m2 (12 + d��d! (1)) = R(2)3 � R(2)2 +R(2)Z : (32)As was pointed out in [8], this method allows for a direct determination of the slope of theIsgur-Wise function at zero-recoil, without the need for an extrapolation of the computedvalues of �(!) to ! = 1. Moreover the derivatives are computed in terms of ratios ofcorrelation functions, and it is likely that there is some cancellation of systematic errors andstatistical 
uctuations in these ratios.We have measured the ratios R(2)2;3 using 49 gauge �eld con�gurations in our simulation onthe 243 � 48 lattice at � = 6:2 discussed in the previous section. As mentioned above,the computations were performed using extended interpolating operators. The slope wasdetermined for two values of the mass of the heavy quark (corresponding to �h = 0:125; 0:133,slightly heavier and lighter, respectively, than the charm quark mass, [16]) and for a singlevalue of the light quark mass (�l = 0:14144), which corresponds approximately to the massof the strange quark [13].We now discuss, in some detail, the evaluation of the ratios R(2)3 and R(2)2 computed usingextended interpolating operators. In particular, the discussion of the geometrical �nite-volume e�ects of the previous section will have to be generalised to the case of extendedinterpolating operators13.12In order to obtain �0(!) from the results for ��0, it is necessary to evaluate the derivative of �(!). Thisis a calculation in continuum perturbation theory and for mQ about the charm quark mass, ref. [8] found�0(1) = �0:24.13For R(2)3 , even if local interpolating operators are used, eq. (22) can not be computed exactly unless thedependence of the matrix element M4(n) on n is known.
12



3.1 The ratio R(2)2 (t) computed using Extended Interpolating Op-eratorsWhen extended interpolating operators are used, the wavefunction factor Z(~p 2) in eq. (8),depends on j~p j and therefore can not be taken out of the sum over n. Thus, the exactcomputation of R(2)2 would require the knowledge of the wavefunction factors for all possiblemomenta of the lattice. However, in the limit L � 1, the dependence of Z(n2p2min) onmomentum can be approximated by:Z(n2p2min) � Z(0) �1 + (2�L )2n2R(2)Z + (2�L )4n4R(4)Z � ; (33)R(4)Z = 12Z 00(0)Z(0) ; (34)Z 00(~p 2) = d 2Z(~p 2)d(~p 2)2 : (35)In addition, however, as was pointed out in the last section, discretisation errors could besigni�cant for heavy-light mesons, and we saw how the changes suggested in eqs.(18-20) leadto a better understanding of the measured data. By including these corrections and using theapproximation of eq. (33), R(2)2 (t) for extended interpolating operators can be approximatedby : R(2)2 (t) � � 12  a24 sinh2(ma2 ) + atsinh(ma) � 4R(2)Z !� 0@1� Lb(t) sinh( Lb(t) )1A� a28 cosh2(ma2 ) � a224  2 cosh2(ma2 )� 3cosh2(ma2 ) !� Lc(t) sinh( Lc(t)) ; (36)
b(t) = vuutb1(t)b2(t) ; (37)b1(t) = 3a416 sinh4(ma2 ) + 3a3t4 sinh2(ma2 ) sinh(ma) + t2a2sinh2(ma)� 8R(2)Z  a24 sinh2(ma2 ) + atsinh(ma)!+ 8((R(2)Z )2 + 2R(4)Z ); (38)
b2(t) = a24 sinh2(ma2 ) + atsinh(ma) � 4R(2)Z ; (39)
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c(t) = qcf(t)� 8R(2)Z ; (40)
cf(t) = a260� 40 cosh2(ma2 ) � 8 cosh2(ma2 ) + 45cosh2(ma2 ) + 30sinh2(ma2 ) + 180ta sinh(ma)! ; (41)where we have neglected any contributions from excited states.The corresponding expression when the continuum energy-momentum dispersion relation isused, can be found by taking the limit a! 0 in eq. (36).Unlike the approximation used in deriving eq. (16), in obtaining eq. (36) the lattice spacinghas been kept �nite. We have performed exactly the sum over x3 in eq. (8) and in calculatingthe sum over n, we have expanded the terms of the series in powers of �n=L to second order(which requires an expansion of Z(n2p2min) up to fourth order), and we have extended thelimits of the sum between �1 to +1. The accuracy of the di�erent approximationsinvolved in the derivation of eq. (36) can only be rigorously checked in the case of localinterpolating operators. In that case, R(2)2 (t) can be computed exactly and can be comparedwith the approximation of eq. (36) setting R(2);(4)Z to zero. The results of this comparisonare quite similar to those presented previously in Figs.1 and 2, where possible �nite-lattice-spacing e�ects were ignored14. More speci�cally, for the physical situation which will bestudied below (range of masses, ma = 0:6 � 0:85, range of times, t = 11 � 16 and for aspatial volume 243) we have found that eq. (36) for local interpolating operators introducesan error of the order of 1.5% with respect to the exact result, computed by using eq. (14)and eqs.(18 - 20).In the case of extended interpolating operators, the validity of eq. (36) depends on theaccuracy of the expansion of eq. (33), and will have to be checked by analysing the measureddata. The numerical values of R(4)Z and R(2)Z will of course depend on the speci�c detailsof the smearing procedure. In this study we use gauge-invariant Jacobi smearing on theheavy-quark �eld, described in detail in ref. [19].In principle, our preferred strategy is to constrain the mass of the meson to the value obtainedfrom the behaviour of the heavy-light two-point function C(0)2 (t) and to perform a two-parameter �t to the ratio R(2)2 (t) in order to obtain R(2)Z and R(4)Z . However, for the expectedrange of values of R(4)Z , i.e. R(4)Z = O(R(2)Z a2), R(2)2 (t) is almost independent of R(4)Z (R(4)Z onlyappears in the volume correction term and its contribution is suppressed by powers of 1=t).Thus in practice, two-parameter �ts prove to be very unstable; relatively small changes in14Eq.(36) for local interpolating operators and in the limit a! 0 reduces to eq. (16).14



R(2)Z a�2 R(4)Z a�4�h = 0:125 � 2.75 +22�20 2.1 +1.4�1.7�h = 0:133 � 2.38 +21�20 0.0 +2.3�2.9Table 1: Results for R(2);(4)Z extracted from ordinary two-point functions �ts.R(2)Z can be compensated for by large ones in R(4)Z . Because of the instability of the �ts withtwo parameters, we modify our procedure as follows: we take as our central value R(4)Z = 0and for R(2)Z we take the value obtained from a single parameter �t to R(2)2 . To estimatethe error in R(2)Z we repeat the �ts with other values of R(4)Z as explained in the followingparagraphs. A comparison of the predictions using this procedure with the measured datawill serve as a further check of the accuracy of the several approximations performed.From the analysis of the usual heavy-light two-point functions (C(0)2 (t)) we know the wave-function factors Z(0); Z(p2 = p2min) and Z(p2 = 2p2min) and therefore we can estimate thesize of R(2);(4)Z . In Table 1 we present the values for the �rst and second derivatives of thewavefunction factor Z obtained in this way. The results of Table 1, although a�ected bydiscretisation errors, show that in the conditions of the present study, the ratio R(4)Z a�2=R(2)Zis indeed of order one for both heavy-quark masses considered, and one would expect anegligible dependence of R(2)2 (t) on the exact value taken for R(4)Z .In Table 2 we present the results for R(2)Z from di�erent �ts (including or neglecting correla-tions between di�erent time slices) to R(2)2 (t) using eq. (36), in all of which R(4)Z has been �xedto zero15. The meson masses have been constrained to the values obtained from measuringthe usual heavy-light two-point functions. We see that the values obtained for R(2)Z agree wellwith those quoted in Table 1. Moreover all the �ts presented in Table 2 have small valuesof �2=dof, all of which supports the approximations used to account for the �nite-volumecorrections. In Figure 6, we show the measured values together with the �ts using eq. (36)with R(4)Z = 0, for both values of �h. As can be seen in these plots, the agreement betweendata and our predictions is good and gives us con�dence in our procedure.In the next subsection, we will use the values obtained for R(2)Z here as input into ourcalculation of the slope of the Isgur-Wise function at zero-recoil. Fixing R(4)Z to zero willintroduce a small systematic error in our value of the slope, which will have to be estimated.Our strategy will be the following: i) For each �h, the central value of the slope will becalculated by using the values of R(2)Z obtained with the method outlined in this subsection15For simplicity in the discussion, we do not present results obtained by using the continuum energy-momentum dispersion relation. In general, results obtained in this way reveal pronounced discrepanciesbetween R(2)2 (t) and C(0)2 (t), and have considerably higher values of �2=dof than those quoted in Table 2.15



�h = 0:125, R(4)Z a�4 = 0 �h = 0:133, R(4)Z a�4 = 0R(2)Z a�2 ma R(2)Z a�2 macorr. � 2.90 +5�5 [0.822 +4�2] � 2.51 +5�7 [0.598 +3�1]�2=dof 1.8/5 . 5.5/5 .uncorr. � 2.91 +5�5 [0.822 +4�2] � 2.47 +6�6 [0.598 +3�1]�2=dof 0.3/5 . 2.8/5 .Table 2: Results for R(2)Z for di�erent �tting procedures. The �ts were done for timeslices11; : : : ; 16. We present results obtained by using both correlated and uncorrelated �ts. Themasses have been obtained from C(0)2 (t), and are shown in square brackets.(i.e. R(4)Z = 0). ii) In each case, we will recompute R(2)Z and the slope of the Isgur-Wisefunction with two new �xed values of R(4)Z given by three standard deviations from thecentral values of R(4)Z quoted in Table 1. The spread of values obtained in this way willenable us to estimate the systematic uncertainties in our result for the slope associated withthe approximations discussed in this subsection.

Figure 6: Ratios R(2)2 (t) for �h = 0:125 and �h = 0:133, together with the (uncorrelated) �tswith masses constrained to their known values from ordinary two-point correlators.
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3.2 Extended interpolating operators : The ratio R(2)3 (t).The exact computation of R(2)3 (t), eq. (22), would require the knowledge of the wavefunctionfactors Z(n2p2min) as well as the matrix elements M4(n2p2min) for all the possible momenta ofthe lattice. Following the ideas of the last subsection, we will expand Z(n2p2min) in powersof pmin (eq. (33)), and similarly we will use an expansion for M4(n2p2min) of the type:M4(n2p2min) �M4(0) �1 + (2�L )2n2R(2)M + (2�L )4n4R(4)M � ; (42)R(4)M = 12M400(0)M(0) ; (43)M400(~p 2) = d 2M(~p 2)d(~p 2)2 ; (44)with R(2)M de�ned in eq. (29).With the expansions of eqs. (33) and (42) and using the same kind of approximations as inthe case of R(2)2 , R(2)3 can be approximated by16R(2)3 (t) � � 12  a24 sinh2(ma2 ) + atsinh(ma) � 2(R(2)Z +R(2)M )!� 0@1� Lb0(t) sinh( Lb0(t))1A� a28 cosh2(ma2 ) � a224  2 cosh2(ma2 )� 3cosh2(ma2 ) !� Lc0(t) sinh( Lc0(t)) ; (45)where b0(t) and c0(t) are given by the expressions for b(t) and c(t) of eqs.(37-41) with thefollowing substitutions:((R(2)Z )2 + 2R(4)Z ) ! (R(2)Z R(2)M + (R(4)Z +R(4)M )); (46)2R(2)Z ! R(2)Z +R(2)M : (47)In order to compute eq. (45), we set R(4)Z to zero and we use the values for R(2)Z extractedfrom the �ts to the ratio R(2)2 (t), as input. Thus, we have two free parameters, R(2)M andR(4)M , (involving the �rst and the second derivatives of the Isgur-Wise function at the zero-recoil point) which, in principle, should be determined from the �t to the ratio R(2)3 (t). R(2)Mcontains �0(1), eq. (29), whereas R(4)M is given by:R(4)M = 18m4 (d 2��d!2 (1)� 12): (48)16In eq. (45) the \lattice" energy-momentum dispersion relation of eqs.(18- 20) has been used. Theexpression for the ordinary continuum energy-momentum dispersion relation could be found by taking thelimit a! 0 in eq. (45). 17



The derivatives of the radiative corrections, which determine the relation between the deriva-tives of � and �� at ! = 1, were calculated in [7] and [8], and around the mass of the charmquark (our �h = 0:125 (�h = 0:133) quark is slightly heavier (lighter) than the charm quark,[16]) are approximately equal to � 0(1) = �0:24 and � 00(1) = 0:17.As in the case of R(2)2 (t) and R(4)Z , for those values of R(2)M and R(4)M for which eq. (42) is a validexpansion, R(2)3 (t) hardly depends on R(4)M and in the limit L ! 1 is totally independentof it. On the other hand, we can get an estimate of the size of the ratio (R(4)M � m2=R(2)M )by assuming a theoretical dependence of the Isgur-Wise function on !, in a region close to! = 1. We have studied two di�erent dependencies, widely used in the literature [20]:�(!) = 2! + 1 exp��(2�2 � 1)! � 1! + 1� ; (49)�(!) = exp ���2(! � 1)� : (50)In both cases, for values of �2 � 1:5 [5], we �nd that the ratio (R(4)M � m2=R(2)M ) takesvalues of the order of 0.5. Therefore, the contribution of the R(4)M term to the expansion ofeq. (42) is suppressed by at least an extra factor p2min with respect to the R(2)M contribution,and furthermore the R(4)M contribution to R(2)3 (t) will be also suppressed by powers of 1=t.Because of the instability of the �ts with two parameters we have followed two procedures:i) By using one of the ! dependencies of eqs.(49-50), we can rewrite R(4)M in terms ofR(2)M and therefore perform just a one-parameter �t to the ratio R(2)3 (t) in order toobtain R(2)M . We have checked that the di�erence in the �nal result for the slope ofthe Isgur-Wise function at ! = 1 depends only at the level of 1% on the particular !dependence used.ii) Another possibility is to �x R(4)M to zero; in this way R(2)M can again be extracted from aone-parameter �t to R(2)3 (t). The results obtained in this way di�er from the previousones only at the level of 1-1.5% for �h = 0:125 and at the level of 3% for �h = 0:133 .To obtain our �nal results, we have decided to use method (ii). In this way, our estimatefor the slope of the Isgur-Wise function will not depend on any particular choice of thetheoretical dependence of the Isgur-Wise function on !. The systematic error associated withthis approximation, as we have discussed, could be of the order of 1.5% for �h = 0:125 and3% for �h = 0:133 , which is smaller than other sources of errors present in our calculation.In Table 3, we present our results for ��0(1). We quote numbers for ��0(1) obtained by �ttingR(2)3 (t) to the functional form of eq. (45) and by �tting the di�erence of ratios R(2)3 (t)�R(2)2 (t)to the di�erence between the functions of eq. (45) and eq. (36). In all of the cases, R(2)Z andm have been obtained from our previous study of R(2)2 (t) and C(2)2 (t), respectively. The best18



�h = 0:125 R(2)3 R(2)3 � R(2)2 �h = 0:133 R(2)3 R(2)3 � R(2)2R(2)Z a�2 ��0(1) ��0(1) R(2)Z a�2 ��0(1) ��0(1)corr. � 2.90 +5�5 � 2.00 +16�15 � 1.91 +14�13 � 2.51 +5�7 � 1.75 + 9�13 � 1.61 +9�7�2=dof 1.8/5 5.0/2 0.7/2 5.5/5 15.9/2 0.2/2uncorr. � 2.91 +5�5 � 1.92 +16�14 � 1.94 +16�15 � 2.47 +6�6 � 1.63 +8�7 � 1.59 +10� 8�2=dof 0.3/5 0.0/2 0.1/2 2.8/5 0.4/2 0.0/2Table 3: Results for ��0(1) for di�erent �tting procedures. The �ts to the ratio of two-pointcorrelators have been extracted from Table 2. The ratio of three-point correlators was �ttedfor timeslices 11, 12, 13, (in our simulation ty in eq. (22) is equal to 24).�2=dof are obtained when we look at the di�erence of ratios R(2)3 (t)�R(2)2 (t). Presumably, inthis di�erence of ratios, the �nite-volume corrections partially cancel and, therefore, resultsare less sensitive to the exact details of the procedure.As can be seen in Table 3 the results are rather stable under variations of the method used.For �h = 0:125 a reasonable value for ��0(1) could be �1:92 +16�14. This is the value obtainedusing an uncorrelated �t with the mass of the meson constrained to its known value fromordinary two-point function �ts. Correlated �ts in principle give a more realistic estimate ofthe quality of the �t as measured by �2; however they are more sensitive to the uncertaintiesin the �tting function. The errors quoted for ��0(1) are only statistical and to them must beadded those associated with our treatment of R(4)Z and R(4)M . As was discussed at the end ofthe last subsection, in order to estimate the uncertainties due to our ignorance of R(4)Z , wehave recomputed ��0(1) for two more �xed values of R(4)Z (R(4)Z = �3 and R(4)Z = 6) obtainedby allowing three standard deviations from the central value of R(4)Z quoted in Table 1. Thespread of values obtained in this way for ��0(1) determines a further error of around of 1%-2%. This error, together with the 1.5% discussed before due to R(4)M , gives a �nal estimateof our systematic uncertainties of the order of 3%. Thus, the value for ��0(1) quoted above,together with our estimate for the systematic uncertainties, leads to a result for the slope ofthe Isgur-Wise function at the zero-recoil point, for �h = 0:125, of�0(1) = ��0(1)� � 0(1) = �1:7 +2�2 (51)where we have taken � 0(1) = �0:24 ([7]).For �h = 0:133, there is a greater uncertainty. In this case a correlated �t to R(2)3 has alarge �2=dof, which may be an indication of a poorly-known �tting function. However, acorrelated �t to the di�erence between ratios, R(2)3 (t) � R(2)2 (t), gives a good �2=dof andan answer for ��0(1) in excellent agreement with the answer from uncorrelated �ts. Thus,19



Figure 7: Ratios R(2)3 (t) for �h = 0:125 and �h = 0:133, together with the (uncorrelated) �tswith the masses constrained to their known values from ordinary two-point correlators.following the same criterion as for �h = 0:125, we quote a value for ��0(1) = (�1:63) +8�7 or,equivalently, a value for the slope of the Isgur-Wise function at the zero-recoil point of�0(1) = ��0(1)� � 0(1) = �1:4 +2�1 (52)where we have included in a similar way to that above, the systematic errors associated withour choice ofR(4)Z and R(4)M , and, for this value of the quark mass, we have taken � 0(1) = �0:20([7]).The values of eqs.(51-52) may be slightly higher than, but certainly compatible within errorswith, the results of [7] given in the introduction, obtained with the traditional method ofextrapolating from ! > 1 to ! = 1.In Figure 7 we show the ratio R(2)3 (t) together with the �t, for both values of �h.By construction, the Isgur-Wise function, and therefore its derivatives, are independent ofthe mass of the heavy quark considered. Although within errors our results for the two heavyquarks studied here agree, the central values (eqs. (51-52)) may suggest some dependenceon the heavy-quark mass. Trying to conclude that this e�ect is not merely statistical andtrying to quantify the size of the O(1=mQ) corrections (derivatives at the zero-recoil point of
(!), de�ned in eq. (24)) would require an extensive study, involving more than two heavyquarks, which is outside the exploratory aim of this paper. Such a study is made, using thetraditional method of extrapolating from ! > 1 to ! = 1, in ref. [7].20



Recently the CLEO collaboration has reported a value for �0(1) = 1:01�0:15�0:09 obtainedby looking at the semileptonic decay B ! D�, [21]. This number should not be compareddirectly with our results (eqs. (51-52)), as our results were obtained using a light antiquarkheavier than the strange quark. However sum-rules ([22]) and quark-model ([23], [24]) calcu-lations suggest that the absolute value of the slope of the Isgur-Wise function at zero-recoildecreases with the mass of the light antiquark.4 ConclusionsIn this paper we have presented the results from an exploratory study implementing themethod suggested in ref.[8] for computing the slope of the Isgur-Wise function at the zero-recoil point in lattice simulations. We have found large �nite-volume corrections on currentlyavailable lattices, e�ects which will be present in all direct computations of derivatives ofmatrix elements with respect to external momenta. We have studied these corrections andhave given their volume, mass and time dependence. We have seen that these �nite-volumecorrections do not have a dynamical origin, in contrast to those studied in [10]-[12], and theusual two- and three-point correlation functions (without the x23 insertion) are not a�ected bythem. Eq.(17) constitutes a simple way of estimating the expected size of these correctionsfor a given simulation. Furthermore, from this study, we have learnt how to account, in anapproximate but su�ciently precise way, for these corrections and have been able to obtainreasonable values (�0(1) = �1:7 +2�2 and �0(1) = �1:4 +2�1) for the slope of the Isgur-Wisefunction, for two mesons composed of a heavy quark slightly heavier (�h = 0:125) and lighter(�h = 0:133), respectively, than the charm quark, and in both cases, a light antiquark whosemass is about that of the strange quark (�l = 0:14144). These values compare well withthose obtained in [7]. It would be interesting to study the dependence of the results on bothheavy- and light-quark masses.We have seen that the understanding of the �nite-volume e�ects is considerably simpler;indeed they seem to be fully under control, if local interpolating operators are used. Theprice for using local operators is that their overlap with the ground state is generally poorer,and one has to �t correlation functions at larger times in order to be able to neglect thecontributions from excited states. Nevertheless, the calculation described in this papershould be repeated with local interpolating operators.AcknowledgementsWe thank K.C. Bowler for a critical reading of the manuscript. This work has been par-tially supported by the European Union, under contract No. CHRX-CT92-0051. CTS and21
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