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Abstract

We have performed a many body calculation of the inclusive (e, e′) cross sec-
tion which runs over the three traditional regions at intermediate energies: the
quasielastic peak, the dip region and the delta region. The longitudinal and
transverse response functions in the quasielastic peak have also been evaluated.
Traditional effects like polarization, meson exchange currents, final state interac-
tion and delta renormalization in the nuclear medium have been included. Meson
exchange currents are generated from a model of pion electroproduction on the
nucleon which reproduces accurately the experimental data.

The inclusive cross section accounts for 1N, 2N, 3N mechanisms of virtual
photon absorption and one pion production. Meson exchange currents associated
to the (γ∗, 2π) reaction are also accounted for.

We obtain good results for the (e, e′) cross sections in the whole energy range
and for different nuclei. The response functions are also in good agreement with
the latest experimental analysis. On the other hand, the method provides the
separation of the contribution to the inclusive cross section from different phys-
ical channels which is a necessary input to evaluate cross sections like (e, e′N),
(e, e′NN), (e, e′π) etc.

1 Introduction

Inclusive electron scattering, particularly around the quasielastic peak is probably one
of the problems that has attracted more attention in nuclear physics. One of the
reasons for the proliferation of theoretical work was the persistent difficulty of simple
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pictures based on the shell model of the nucleus, or the Fermi gas approach, to repro-
duce simultaneously the longitudinal and the transverse response functions around the
quasielastic peak. Particularly, the longitudinal response appeared systematically to
be much larger than experiment [1, 2, 3].

Even more worrisome was the fact that the integrated strength of the experimental
longitudinal response function showed large discrepancies with the expected result
according to the Coulomb sum rule [4]. At large values of the momentum transfer q
this integral should be the charge of the nucleus and there was some apparent missing
strength.

Those experimental results have been generally accepted, even when some other
experimental results seemed to challenge them. Indeed the results of the experiment of
[5] in 238U did not show the expected suppression of the longitudinal response. More
recently an experiment at Bates on 40Ca [6] showed a longitudinal response larger than
in ref. [1] with only 20% reduction over the simple shell model expectations.

The growing experimental discrepancies stimulated the thorough and thoughtful
work of [7]. In this work the author analysed the world set of data and made further
improvements in the analysis, coming with new results for the response functions which
show a smaller reduction of the longitudinal response than previously assumed. At the
heart of the issue was the fact that, in a modified Rosenbluth plot in terms of the
variable ǫ (which runs from 0 to 1), the Saclay data [1, 2, 3] concentrated their points
in the region of ǫ < 0.5 which induces large errors in the slope of the straight line which
correlates the points of the plot. Those results, complemented by others at SLAC and
Bates, which fill up the region of ǫ ∼ 1 , lead to a more accurate determination of the
slope and thus the longitudinal response. The problems with the Coulomb sum rule
are then automatically solved [7] to the relief of all [8].

As usually happens, some theoretical calculations were “successful” in explaining
the abnormal reductions of the longitudinal response, through the use of small effective
masses, swelling of nucleons, abnormal nucleon form factors, correlations, etc. But in
the benefit of the theoretical community it should be said that whenever this happened,
the agreement with the transverse response was spoiled, although excuses and good
wishes beyond the ideas used for the longitudinal response were invoked as possible
solutions. Hence, a convincing simultaneous explanation of both the longitudinal and
transverse response functions was never obtained.

The interesting thing is that the existence of a “problem” induced so much work
that practically all resources of nuclear physics and many body theory have been used
in this topic and a lot of things have been learned. In the present work we shall benefit
from all this previous work and by using a selfcontained many body formalism we
will incorporate all these effects which convincingly proved to be relevant in previous
works. We also incorporate some new ingredients which come out naturally within
our many body expansion and furthermore we include Delta–hole (∆h) excitations,
additional to the particle–hole (ph) excitations, which allows us to simultaneously
study the quasielastic peak, the ∆ peak and the “dip” region between the two peaks
in the inclusive (e, e′) cross section.
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2 Brief review of different approaches and intro-

duction to our approach.

The amount of ideas which have been studied in connection with the inclusive (e, e′)
scattering is quite large. We shall discuss them briefly:

2.1 Modification of the nucleon form factor (swelling of the
nucleon)

These ideas were soon invoked and explored within different frameworks [9, 10]. They
appear naturally in some microscopic models of the nucleon form factor when the
intermediate baryon propagators are replaced by those in the nuclear medium. This is
the case, for instance in ref. [11], where the underlying elementary model is the Nambu-
Jona-Lasinio model of the nucleon. Obviously there are many other medium effects
not taken into account in these schemes, as we shall see. Furthermore, although in a
different language and in terms of a few relevant physical magnitudes, such medium
modifications appear in a systematic many body expansion, where they can be classified
as vertex corrections.

2.2 Relativistic effects

Theories using relativistic scalar and vector potentials like in the Walecka model [12]
have been popular. The scalar and vector potentials are about one order of magnitude
larger than the ordinary non relativistic potential which is roughly the sum of the two.
This cancellation is missed in many applications of these relativistic potentials leading
to unrealistic predictions. The appealing thing of the relativistic approach is the small
effective mass, M∗

N ≃ MN/2 of the nucleon and the fact that the nucleon response for
ph excitations is roughly proportional to M∗

N . This reduces the longitudinal response
but also the transverse one.

A clarifying view of these problems is exposed in [13] where the necessity to go
beyond the relativistic mean field approach is shown in order to avoid the pathological
predictions tied to the small effective masses, like in the computation of the nuclear
response functions or the large relativistic enhancements that drive magnetic moments
outside their Schmidt lines. In [13] a relativistic RPA calculation is used. Similar con-
clusions are found in [14], stating that “selfconsistent calculations” show cancellations
between large relativistic effects on the single nucleon current and on the many nucleon
wave functions. In [15] it is also shown, by solving numerically the Dirac equation with
the relativistic potential, that the genuine relativistic effects in the enhancement of the
axial charge amount to 20-30%, while perturbative calculations give as much as 70-80%
enhancement [16, 17].

Even when improved with some selfconsistent steps, relativistic calculations still
rely on the concept of the effective mass [13, 18, 19], which is only an approximation to
the richer content of the nucleon self-energy. The nucleon self-energy is a function of
the energy and momentum, as independent variables, and leads to important dynam-
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ical properties of the nucleus [20] not contained in static pictures like the mean field
theories. One of the consequences is that the nucleon effective mass is a strongly depen-
dent function of the energy, with a peak around the Fermi surface [20]. Furthermore,
as shown in [21], RPA correlations tied to the pionic degrees of freedom are essential
in order to provide the energy dependence of the nucleon self-energy and hence the
dynamical properties of the nucleus. Actually it is quite interesting to see that recent
sophisticated calculations in light nuclei using path integral Monte Carlo methods [22]
find that “pion degrees of freedom in both nuclear interaction and currents play a
crucial role in reproducing the experimental data”.

From this discussion it looks clear that improvements along the relativistic line for
the present problem should include “selfconsistency” in the sense of ref. [14], in order
to exploit the large cancellations between the scalar and vector potentials.

2.3 Pionic effects

As mentioned above [22], the pionic degrees of freedom play an important role in
quasielastic electron scattering. This has also been emphasized in [23] where meson
exchange currents driven by pion exchange are evaluated, putting special emphasis in
fulfilling the continuity equation and preserving gauge invariance in the many body
system. This imposition has as a consequence some changes in the results with respect
to former works along similar lines [24, 25, 26]

In ref. [27] similar ideas, but using the formalism of path integrals is followed. RPA
correlations are automatically generated in that scheme leading to some quenching of
the longitudinal response from a reduction in the isoscalar channel.

Pions are also explicitly used in approaches which include meson exchange currents,
as we shall see below. They are usually taken static, as in [23, 27], meaning that the
energy carried by the pion is neglected. While this is a fair approximation for the
exchange currents at energies below pion production threshold, at higher energies the
need to work will the full pion propagator becomes apparent. This is particularly true
if one wishes to account for real pion production in the same many body scheme, as
we shall do.

In the resonance region primary pion production accounts for the largest part of
the response function (although some of the pions are absorbed in their way out of the
nucleus and show up in 2N or 3N emission channels). Hence, the explicit treatment
of pionic degrees of freedom allowing pions to be produced, both as virtual as well as
real states, becomes a necessity in this region. Our scheme puts a special emphasis
on pions. In fact it follows a different path to other schemes, beginning with real
pion production and ensuring that a proper hand on the (e, e′π) reaction is held. Then
exchange currents and further corrections in the many body system are generated from
the model for the eN → e′Nπ reaction.

2.4 Meson exchange currents

A large fraction of work has been devoted to the role played by meson exchange cur-
rents (MEC) in this reaction [23, 24, 25, 26, 28, 29, 30]. The standard seagull, pion
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in flight and ∆ terms are included mediated by pions. The indirect effect of short
range correlations in these terms is, however, neglected in those works. The work of
[31] incorporates terms in the scheme which account for virtual photon absorption on
correlated pairs, hence accounting for ground state correlations. Although the same
concepts are shared in the previous approaches, differences in the input and the way
to implement them lead to different results.

Our approach differs from the quoted works although conceptually it is quite similar.
First we realize that the two body currents appear in (e, e′) as corrections to the main
one body contribution. This is because virtual photons can be absorbed by one nucleon.
This is opposite to the case of real photons which require at least two nucleons to be
absorbed (we are thinking in terms of infinite nuclear matter). Thus it is clear that the
laboratory to test the effect of two nucleon currents is real photons not virtual ones.
This is the reason why prior to the present work we devoted energies to the problem of
real photon absorption [32]. Second, in order to minimize sources of uncertainties, the
MEC were generated from the model γN → πN by allowing the pion to be produced
in a virtual state and be absorbed by a second nucleon. After this is done, long range
correlations from polarization phenomena, as well as short range correlations, are taken
into account. The model for the γN → πN reactions was tested against experimental
data and was found to be good. This gives one some confidence in the strength that
one generates for the MEC. The reliability of the method gets extra support from
recent measurements of two body photon absorption [33, 34, 35] where the agreement
with the (γ, np) emission channels is rather good. Some discrepancies remain in the
(γ, pp) channel, but this channel has an experimental cross section nearly one order
of magnitude smaller than the (γ, np) one, thus for the purpose of the total (γ, NN)
emission or the two body MEC in (e, e′) such discrepancies will not play an important
role.

In view of the success in the real photon case, we adopt here the same scheme and
follow the same steps simply substituting the real photon by the virtual one. This
means that we begin with a model for the eN → e′Nπ reaction and construct the
MEC from it following identical steps to those of ref. [32]. For this reason we begin
in next section by showing our model for the eN → e′Nπ reaction and contrasting it
with the experimental results.

2.5 RPA correlations

Several works have emphasized the role played by RPA correlations allowing for a
ph excitation which propagates in the nuclear medium mediated by some residual ph
interaction [13, 27, 36, 37]. These works share the feature that a reduction is produced
in the longitudinal channel. We shall also incorporate these long range correlations or
polarization effects. In addition we shall also include ∆h excitations, as a source for
polarization which will be relevant in the transverse channel as shown in [38].
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2.6 Final state interaction (FSI)

This is another topic which has received some attention and a thorough work devoted
to this issue can be seen in [39]. It is clear that once a ph excitation is produced by the
virtual photon, the outgoing nucleon can collide many times, thus inducing the emission
of other nucleons. A distorted wave approximation with an optical (complex) nucleon
nucleus potential would remove all these events. However, if we want to evaluate the
inclusive (e, e′) cross section these events should be kept and one must sum over all
open final state channels [40, 39]. This is done explicitly in [39] and the result of it is
a certain quenching of the quasielastic peak of the simple ph excitation calculation and
a spreading of the strength to the sides of it, or widening of the peak. The integrated
strength over energies is not much affected though.

The use of correlated wave functions, evaluated from realistic NN forces and incor-
porating the effects of the nucleon force in the nucleon pairs has also been advocated
in connection with the effects from final state interaction [41]. If one incorporates two
particle–two hole (2p2h) components in the final excited states one gets the spreading
of the peaks as found in [39]. For the purpose of the response function it is like exciting
ph components which have a decay width into the 2p2h channel. This gives rise to the
quenching of the peak and spreading of the strength. Another source of these effects
is the momentum dependence of the nucleon self-energy which is also accounted for
in the scheme and which sometimes is taken into account approximately in terms of
an effective mass (although our position on evaluations which use this variable has
been already made clear). The approach of [41] using an orthogonal correlated basis
with functions obtained with variational methods also incorporates RPA correlations
discussed in point 5) but does not account for the MEC discussed in point 4), which
rely upon the coupling of the photon to the pion or the ∆ excitations.

In our many body scheme we will account for this FSI by using nucleon propagators
properly dressed with a realistic self-energy in the medium, which depends explicitly on
the energy and the momentum [42]. This self-energy leads to nucleon spectral functions
in good agreement with other accurate more microscopic approaches like the ones in
[43, 44]. The self-energy of [42] has the proper energy–momentum dependence plus an
imaginary part from the coupling to the 2p2h components, hence it has the ingredients
to account for the FSI effects discussed in [41] although using a different calculational
scheme.

Nuclear spectral functions with a language closer to the one we shall follow have
also been used in [45]. They include the interesting result, which we will employ here,
that keeping the width of the particle states is important but one can disregard the
width of the hole states.

2.7 ∆ excitation

While many efforts have been devoted to the quasielastic peak very little attention has
been given to the ∆ region and the dip region between the quasielastic and ∆ peaks.
One exception is the work of [46] which looks at the effects of MEC in the dip region.

A recent work [47] presents some experimental results and a theoretical analysis of
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the ∆ region based on the eN → e′Nπ model of [48]. One interesting conclusion of the
work is that the data have a broader energy spectrum than the theoretical one based
on the properties of a free ∆ width. This suggest a larger ∆ width from ∆ coupling
to many body channels, additional to the natural decay width with effects of Fermi
motion included. This is actually well known from pion physics [49, 50].

Our aim in this section is also to evaluate as accurately as possible the response
function in this region, for which we shall use results for the ∆ in a nuclear medium
[51] which have been tested thoroughly in a variety of pionic reactions: elastic [52],
quasielastic, charge exchange, absorption, etc... [53].

The discussion in this sections has served to expose relevant works done in the
literature and to present our approach in connection to the ideas exposed in these
works. We shall follow a microscopic many body description of the inclusive (e, e′)
process and will incorporate in our approach the important effects discussed in this
section. We are thus aiming at an evaluation as accurate as possible at the present
moment. A small sacrifice is made in order to allow one to treat microscopically in
a tractable way all the effects discussed above: we use an infinite nuclear medium
and obtain results for finite nuclei using the local density approximation (LDA). This
was also used for the evaluation of the total cross section of real photons with nuclei
with good results [32] and a mathematical derivation was made there to justify the
accuracy of the approximation. A direct comparison of results with the LDA with
finite nucleus results, using the same input was done in [54] for deep inelastic lepton
scattering, showing that indeed the LDA is an excellent approximation to deal with
volume processes (i.e no screening or absorption effects). In [55] a comparison of the
results for finite nuclei with those of the Fermi gas around the quasielastic (e, e′) peak
is done, showing that for some average Fermi momentum, the results of the Fermi gas
and those of finite nuclei are nearly identical, proposing that choice as an even better
prescription than the LDA. We shall follow the LDA, already tested for real photons,
and sufficiently good for our purposes.

Another feature which is novel in our approach and rather important in practical
terms is the following: we shall use a method which relates the (e, e′) cross section
to the imaginary part of the virtual photon self-energy. This is actually not new
and has been used before [13, 56]. The novelty is that by using properly Cutkosky
rules one can relate the different sources of imaginary part to different channels which
contribute to the inclusive (e, e′) cross section. In this way, we lay the grounds to
evaluate from the present input the cross sections for exclusive processes (e, e′N),
(e, e′NN), (e, e′π) (e, e′Nπ) etc., which will be the subject of a forthcoming paper
[57]. The results of the present paper and those of [57] are part of a PhD thesis [58]
where additional details to those given here can be found if desired.

3 The eN → e′Nπ reaction
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3.1 Formalism

We shall follow the model used in ref. [32] for γN → πN at intermediate energies
generalizing it to virtual photons. In fact this model is essentially the same as used
for the eN → eNπ reaction in [48]. However, having in mind the application to nuclei
we make a reduction of the relativistic amplitudes keeping terms up to O( P

MN
), with,

P ,MN the nucleon momentum and mass. The neglect of the O( P
MN

)2 terms is justified
numerically as we shall see in the results, so we construct this non relativistic amplitude
for the eN → eNπ process ready to be used with ordinary non relativistic nucleon wave
functions.

N     

γ∗
(a)

N     

N     ∆

π
(d)

N     

N     

γ∗
(c)

π
(b)

N     

Fig.3.1 Basic couplings of the virtual photon and the pion to the nucleon and to the N∆

transition.

The basic couplings which we need are those depicted in fig.3.1 which account for
the coupling of the photon and the pion to the nucleon and to the N∆ transition, plus
the Kroll Ruderman term (KR), and the coupling of the photon to the pion. The Kroll
Ruderman term appears as a gauge invariant term through minimal substitution when
a pseudovector πNN coupling is used, as we do. The analytical expressions for these
vertices are given in appendix A. For convenience, from the KR term of the appendix
coming from gauge invariance, and which we call there seagull term, we construct the
KR term displayed in this chapter such that it contains all the non vanishing pieces of
the amplitude when pπ → 0. We will come back to this point later on.

3.2 The amplitudes for the eN → eNπ model

The Feynman diagrams which are considered in the model for γN → πN of [32] or in
γ∗N → πN of [48] (γ∗ will stand from now on for the virtual photon) are depicted in
fig. 3.2.
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(b) (c)

(d)

N’

(e) (f)

(a)q

k

pN

Fig.3.2 Feynman diagrams considered for the γ∗N → πN reaction.

They are the nucleon pole direct (NP) term (a), the nucleon pole crossed (NPC)
term (b), the pion pole (PP) term (c), the delta pole direct (DP) term (d), delta pole
crossed (DPC) term (e) and Kroll Ruderman (KR) term (f). The expressions for these
amplitudes are obtained by doing the nonrelativistic reduction of the relativistic ampli-
tudes of [48]. There is some small contribution from the negative energy intermediate
nucleon states which is kept in our expressions, which as we mentioned neglect only
terms of order O( P

MN
)2. The corresponding expressions are:

Mµ
NP = −efπNN

mπ
B(N, N ′π) 1√

s − MN
Fπ((q − k)2)×

×











F N
1 (q2)~σ~k

F N
1 (q2)~σ~k

[

2~p + ~q
2MN

]

+ i ~σ~k
2MN

(~σ × ~q )GN
M(q2)











(1)

Mµ
KR = e

fπNN

mπ
B(N, N ′π)FA(q2)Cµ(π, N ′)Fπ((q − k)2) (2)

where

Cµ(π−p) =













~σ~q
2MN

(

1 + q0

2MN

)

~σ













; Cµ(π0n) = 0

Cµ(π+n) =













~σ~q
2MN

−
(

1 − q0

2MN

)

~σ













; Cµ(π0p) =







~σ~q
MN

q0

MN
~σ







Mµ
PP = −eπ

fπNN

mπ
B(N, N ′π)~σ(~k − ~q )Fγππ(q2)

(2k − q)µ

(k − q)2 − m2
π

Fπ((q − k)2) (3)

9



Mµ
NPC = −efπNN

mπ
B(N, N ′π) 1

p0 − k0 − E(~p − ~k)
Fπ((q − k)2)×

×







F N ′

1 (q2)~σ~k

F N ′

1 (q2)

{

2~p + ~q − 2~k
2MN

}

~σ~k + GN ′

M (q2)i
(~σ × ~q)~σ~k

2MN







(4)

with
B(n, nπ0) = −1

B(n, pπ−) =
√

2
B(p, pπ0) = 1

B(p, nπ+) =
√

2

If we consider,

I(π0) = Ic(π
0) = 2/3

I(π+) = −Ic(π
+) = −

√
2/3

I(π−) = −Ic(π
−) =

√
2/3

we get

Mµ
DP = −if ∗ fγ(q

2)
m2

π

~S

[

~k − k0

√
s
~p∆

]

√
s − M∆ + i

Γ(s)

2

√
s

M∆
I(π)×

×















~p∆√
s

(

~S† × ~q
)

p0
∆√
s

[

~S† ×
(

~q − q0

p0
∆

~p∆

)]















(5)

Mµ
DPC = −if ∗ fγ(q

2)
m2

π

(

MN
M∆

)

(E∆ + M∆)
(p2

∆ − M2
∆)

Ic(π)×

×
(

0

(~S × ~q )(~S†~k ) − ~B

)

(6)

with

~B =
1

3

{

i
(k0 + a)

E∆ + M∆

(~q 2~σ − (~q ~σ)~q ) +
(k0 − a)

2MN

[(~q × ~p ) − i(~q ~p )~σ + i~p (~σ~q )]

}

a = (p∆k)
1

M∆
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where
√

s is the invariant energy of the system virtual photon-initial nucleon, e(e > 0)
is the electron charge, mπ = 139.5 MeV is the pion mass, M∆ = 1238 MeV, the ∆
mass [32] and the free decay width of the ∆ is given by

Γ(s) =
1

6π

(

f ∗

mπ

)2
MN√

s
|~kcm|3Θ(

√
s − MN − mπ) (7)

On the other hand, fπNN , fγ, f
∗, F1, GM , FA, Fγππ, Fπ, are coupling constants and

form factors which we show in the appendix, as well as ~S, the spin transition operator
from spin 3/2 to 1/2.

The expressions given keep the Lorentz covariance up to terms O( P
mN

)2. The small
∆ crossed term of eq.(6) holds strictly in the frame where the outgoing nucleon is at
rest.

As mentioned before, in the KR term of eq.( 2) we have included corrections in the
zero component which come from the zero component of the NP and NCP terms when
using the vertex of eq.( 104) (this means from positive energy intermediate states).
On the other hand the q0/2MN terms in the spatial components of the KR term come
from the intermediate negative energy components of the NP and NCP relativistic
amplitudes. This trick serves us to concentrate on the KR term all the contributions
which do not vanish when the pion momentum goes to zero.

3.3 Gauge invariance and form factors

Gauge invariance implies that qµMµ = 0 where Mµ =
∑

i Mµ
i . From the expressions

given above we can see that the delta terms are gauge invariant by themselves. As
for the rest of the amplitudes they form a block of gauge invariance terms in the
absence of form factors. However, we must impose some restrictions in order to keep
gauge invariance when the form factors are included. If we consider the γ∗n → pπ−

amplitude we see

qµMµ 1

e
fπNN

mπ
B(N, N ′π)

=

= − 1
p0 − k0 − E(~p − ~k)

{(

q0F
p
1 − (2~p ~q − 2~k~q + ~q 2)

2MN
F p

1

)

~σ~k

}

−~σ~qFA − Fγππ~σ(~k − ~q) = 0

(8)

which together imply

⇒
[

F p
1 (q2) = Fγππ(q2) = FA(q2)

]

(9)

Gauge invariance in other isospin channels does not require extra relationships. In
the Appendix we can see that Λ ≃ MA ≃

√
2pπ and hence eq. (9) is fulfilled to a good

degree of approximation. However, in order to keep strict gauge invariance we take
only one form factor for all, which we choose to be F p

1 of eq.( 108). We have checked
that by taking any of the other form factors the changes induced in the cross sections
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are much smaller than the experimental errors (see fig.3.6), so we are rather safe with
any of these choices.

On the other hand, since in the pion pole term we have a form factor corresponding
to the coupling πNN with a virtual pion, Fπ((q − k)2), we have included this form
factor in the amplitudes of this block (NP,NCP,PP,KR) in order to preserve gauge
invariance.

3.4 Unitarity

Another refinement introduced in the model is unitarity. Watson’s theorem implies
that the phase of the πN → πN and πN → γN amplitudes in each term of the
partial wave decomposition must be the same. Such as our model stands, we have a
∆ term which by itself satisfies the theorem if we assume the πN → πN amplitude
dominated by the ∆, as it is the case. However, in the γN → πN amplitude we
have a sizeable background that in our model is real and the sum of the terms does
not satisfy Watson’s theorem. Although this violation of unitary does not result in
important numerical changes in the cross section, we nevertheless unitarize the model
as was done for real photons [32]. We follow the procedure of [59] introducing a small
phase φ(

√
s, q2) which corrects the ∆ term, where

√
s is the invariant energy of the

virtual photon-initial nucleon system and q2 the four–momentum squared of the virtual
photon. By means of an iterative method we find φ(

√
s, q2) such that

Im
[

(T∆(q2)eiφ(
√

s , q2) + TB(q2))(3/2,3/2)e−iδ(3/2,3/2)(q
2)
]

= 0 (10)

where T∆(q2) represents the ∆ pole direct term amplitude, TB(q2) is the contribution
of the rest of the terms to the (3/2, 3/2) channel (see details in [32] for the projection
of these terms in the (3/2, 3/2) channel) and δ(3/2,3/2)(q

2) are the πN phase shifts in
the 3/2,3/2 spin-isospin channel.

3.5 Cross sections for the eN → eNπ process

We follow here the steps and nomenclature of ref. [60]. In fig.3.3 we show diagram-
matically the process with the different variables which we use, ke, k

′
e, q, p, p

′ and k
representing the momenta of the incoming electron, outgoing electron, virtual photon,
initial nucleon, final nucleon and pion respectively.

The unpolarized cross section is given by [60]:

d2σ

dΩ′
edE ′

e

=
α2

q4

|~k ′
e|

|~ke|
Lµν(e, e

′)W̄ µν
e.m. (11)
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Fig.3.3 Feynman diagram for the eN → e′Nπ process.

where α = 1/137.036 is the fine structure constant (e2/4π) and Lµν the leptonic tensor
defined as

Lµν(e, e
′) = 2(ke

′
µkeν + ke

′
νkeµ +

q2

2
gµν) (12)

The hadronic tensor is given by

W̄ µν
em =

∑

spin

∫

d3p′N
(2π)3

MN

E ′

∫

d3k

(2π)3

1

2Eπ

(2π)3×

×δ4(p′N +k−pN−q) < N ′π|jµ
em|N >∗< N ′π|jν

em|N >

(13)

with jµ
em the γ∗N to N ′π amplitude defined in sect. 3.2.

We can separate from there the angular dependence of the pion and get

d3σ

dΩ′
edE ′

edΩπ
=

α2

q4

|~k ′
e|

|~ke|
Lµν(e, e

′)W µν
e.m.(N) (14)

where now

W µν
em =

∑

spin

∫

d3p′N
(2π)3

MN

E ′

∫

dk ~k2

(2π)32Eπ

(2π)3×

×δ4(p′N +k−pN− q) < N ′π|jµ
em|N >∗< N ′π|jν

em|N >

(15)

Now by taking ~q along the z direction, using gauge invariance and the explicit
expressions for Lµν we can write, following exactly the same steps as in [60, 48]
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d5σ
dΩ′

edE ′
edΩ∗

π
= Γ

{

dσT
dΩ∗

π
+ ǫ dσL

dΩ∗
π

+ ǫ
dσp

dΩ∗
π
cos2Φ∗

π+

+
√

2ǫ(1 + ǫ) dσI
dΩ∗

π
cosΦ∗

π

}

(16)

where

ǫ =

[

1 − 2
|~q |2
q2 tg2

(

θe

2

)]−1

Γ = α
2π2

|~k ′
e|

|~ke|

[

− 1
q2

]

kγ

1 − ǫ

kγ =
s − M2

N
2MN

(17)

and
dσT
dΩ∗

π
= e2

64π2kγ

MN√
s
|~kCM | [(Jxx + Jyy)]CM

Φ∗

π=0

dσL
dΩ∗

π
=

−q2

(q0
cm)2

e2

32π2kγ

MN√
s
|~kCM | [Jzz

CM ]Φ∗

π=0

dσp

dΩ∗
π

= e2

64π2kγ

MN√
s
|~kCM | [(Jxx − Jyy)]CM

Φ∗

π=0

dσI
dΩ∗

π
= −

√

√

√

√

−q2

(q0
cm)2

e2

64π2kγ

MN√
s
|~kCM | [(Jzx + Jxz)]CM

Φ∗

π=0

(18)

where the variables of the electron are in the lab frame while those of the pion are in
the γ∗N CM frame. Jµν in the former expressions is given by

Jµν = Tr(j†µemjν
em) (19)

The angular variables θe, θ
∗
π, Φ∗

π are depicted in fig. 3.4. The variables ke, k
′
e deter-

mine the (e, e′) reaction plane and ~q, the virtual photon momentum, determines the

z direction. The ~q direction and the pion momentum ~k determine the πN reaction
plane, and the angle between this plane and the (e, e′) plane is the angle Φ∗

π.
The normalization of dσi/dΩ∗

π is chosen in such a way that in the limit of real
photons dσi/dΩ∗

π coincides with the unpolarized cross section of γN → πN with real
photons. In this case the variable kγ becomes the lab momentum of the real photon.
The variables σT , σL, σp, σI are the so called transverse, longitudinal, polarization and
interference cross sections, respectively.
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Fig.3.4 Angular variables θe, θ
∗
π,Φ∗

π in the eN → e′Nπ process.

3.6 Results for eN → eNπ

In fig. 3.5 we show the W =
√

s dependence of the longitudinal (lower line) and
transverse (upper line) cross sections summing over the final charge of the pion and
integrating over Ω∗

π. The peak position, the strength and the shape of our results are
in good agreement with the data of [61]. In general terms our results are very close to
those obtained in [48] with a similar good agreement with experiment as found there.

In fig. 3.6, and as an illustration of our discussion about gauge invariance in sect.
3.3, we show the differences between the results for the inclusive cross sections σT and
σL, obtained: by using FA and taking (as gauge invariance forces) F p

1 = Fγππ = FA

(dotted lines); by using Fγππ and taking F p
1 = FA = Fγππ (dash lines); by using F p

1 and
taking FA = Fγππ = F p

1 (full lines) and, finally, by using FA, Fγππ and F p
1 (dash-dotted

lines). As one can see, the differences are negligible, relative to present experimental
errors.

In fig. 3.7 we show the results for dσI/dΩ∗
π/(sin θ∗π

√
2) in the channel ep → enπ+

and compare them with the experimental data of [62]. We can see that the agreement
is reasonably good and so is the case for dσP /dΩ∗

π/ sin2 θ∗π shown in fig. 3.8, where the
data are again from [62].

In fig. 3.9 we show the Φ∗
π dependence of the cross section in the channel ep → enπ+

for three different kinematics. The data are from [62] and we see again a reasonable
agreement with experiment.

Finally in fig. 3.10 we show the Φ∗
π dependence for another channel, the ep → epπ0,

in order to show a case where the agreement with the data, in this case from ref. [63], is
not as good as in general terms. Given the fact that the angle Φ∗

π will be integrated in
the (e, e′) reactions in nuclei, such punctual discrepancies will not matter in our study
of the nuclear processes.
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Fig.3.5 W =
√

s dependence of the longitudinal (lower line) and transverse (upper line) cross

sections summing over the final charge of the pion and integrating over Ω∗
π. Experimental

data from [61].
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Fig.3.6 Inclusive cross sections σT and σL obtained: by using FA and taking F p
1 = Fγππ = FA

(dotted lines); by using Fγππ and taking F p
1 = FA = Fγππ (dash lines); by using F p

1 and

taking FA = Fγππ = F p
1 (full lines) and, finally, by using FA, Fγππ and F p

1 (dash-dotted

lines). Experimental data from [61].
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Fig.3.7 Calculation of dσI/dΩ∗
π/(sin θ∗π

√
2) in the ep → enπ+ channel . Experimental data

from [62].

Fig.3.8 Calculation of dσP /dΩ∗
π/ sin2 θ∗π in the ep → enπ+ channel. Experimental data from

[62].
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Fig.3.9 Calculation of the Φ∗
π dependence of the cross section in the ep → enπ+ channel.

Experimental data from [62].
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Fig.3.10 Calculation of the Φ∗
π dependence of the cross section in the ep → enπ0 channel.

Experimental data from [63].

In the next sections we shall use this model to evaluate the pion production con-
tribution to the (e, e′) cross section, as well as the exchange currents which contribute
to the 2N emission channel.

4 The (e, e′) reaction in nuclei.

4.1 Formalism

We want to use a covariant many body formalism to evaluate the (e, e′) cross section.
For this purpose we evaluate the electron self-energy for an electron moving in infinite
nuclear matter. Diagrammatically this is depicted in fig. 4.1
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k kk’

q

Fig.4.1 Diagrammatic representation of the electron self-energy in nuclear matter.

The electron disappears from the elastic flux, by inducing 1p1h, 2p2h... excitations
or creating pions, etc., at a rate given by

Γ(k) = −2
me

Ee

ImΣ. (20)

where ImΣ is the imaginary part of the electron self-energy. This latter magnitude
can be readily evaluated from the diagram of fig. 4.1 and we find:

Σr(k) = ie2
∫

d4q

(2π)4 ūr(k)γµ
(/k′ + me)

k′ 2 − m2
e + iǫ

γνur(k)
Πµν

γ (q)

(q2 + iǫ)2 (21)

where Πµν
γ is the virtual photon self-energy. Eq.(21) displays explicitly the electron

propagator (fraction after γµ) and the photon propagator (q2 + iǫ)−1 which appears
twice. By averaging over the spin of the electron, r, we find

Σ(k) =
ie2

2me

∫ d4q

(2π)4

LµνΠ
µν
γ (q)

q4

1

(k′ 2 − m2
e + iǫ)

(22)

and since we are interested in the imaginary part of Σ we can obtain it by following
the prescription of the Cutkosky’s rules. In this case we cut with a straight horizontal
line the intermediate e′ state and those implied by the photon polarization (shaded
region). Those states are then placed on shell by taking the imaginary part of the
propagator, self-energy, etc. Technically the rules to obtain ImΣ reduce to making the
substitutions:

Σ(k) → 2iImΣ(k)Θ(k0)

Ξ(k′) → 2iImΞ(k′)Θ(k′0)

Πµν(q) → 2iImΠµν(q)Θ(q0)

(23)

where

Ξ(k′) =
1

k′ 2 − m2
e + iǫ

(24)

and Θ is the Heaviside, or step, function. By proceeding according to these rules we
obtain
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ImΣ(k) =
2πα

me

∫

d3q

(2π)3

(

ImΠµν
γ Lµν(k, k′)

) 1

q4

1

2Ee(~k
′)

Θ(q0) (25)

The relationship of ImΣ to the (e, e′) cross section is easy: ΓdtdS provides a prob-
ability times a differential of area, which is a contribution to a cross section. Hence we
find

dσ = Γ(k)dtdS = −2m

Ee

ImΣdl dS = −2m

|~k |
ImΣd3r (26)

and hence the nuclear cross section is given by

σ = −
∫

d3r
2m

|~k |
ImΣ(k, ρ(~r )) (27)

where we have substituted Σ as a function of the nuclear density at each point of the
nucleus and integrate over the whole nuclear volume. Eq. (27) assumes the local den-
sity approximation, which, as shown in [32], is an excellent approximation for volume
processes like here, hence we are neglecting the electron screening and using implicitly
plane waves for the electrons (corrections to account for the small distortion are usually
done in the experimental analysis of the data, see [64] ).

Coming back to eq. (25) we find then

d2σ

dΩ′
edE ′

e

= − α

q4

|~k ′|
|~k|

1

(2π)2

∫

d3r
(

ImΠµν
γ Lµν

)

(28)

which gives us the (e, e′) differential cross section in terms of the imaginary part of the
photon self-energy.

If one compares eq. (28) with the general expression for the inclusive (e, e′) cross
section [71, 72] (see also eq. (11))

d2σ

dΩ′
edE ′

e

=
α2

q4

|~k ′|
|~k|

LµνWµν (29)

we find

W µν = − 1

πe2

∫

d3r
1

2
(ImΠµν + ImΠνµ) (30)

Once again, by choosing ~q in the z direction and using gauge invariance one can
write the cross section in terms of the longitudinal and transverse structure functions
WL, WT as

d2σ

dΩ′
edE ′

e

=

(

dσ

dΩ

)

Mott

(

− q2

|~q |2
){

WL(ω, |~q |) +
WT (ω, |~q |)

ǫ

}

(31)

where
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q2 = ω2 − |~q |2

dσ
dΩ

∣

∣

∣

∣

Mott
=

α2 cos2
e(θ/2)

4E2
e sin4

e(θ/2)
(32)

and

WL = − q2

ω2W zz = − q2

|~q |2W 00

WT = W xx

(33)

Hence using eq. (30) we can write WL and WT in terms of the photon self-energy
as

WL = q2

πe2|~q |2
∫

d3rImΠ00(q, ρ(~r ))

WT = − 1
πe2

∫

d3rImΠxx(q, ρ(~r ))

(34)

where we see that we only need the components Π00 and Πxx.

4.2 The virtual photon self-energy in pion production

We must construct a self-energy diagram for the photon which contains pion production
in the intermediate states. This is readily accomplished by taking any generic diagram
of the γ∗N → πN amplitude of fig. 3.2 and folding it with itself. One gets then the
diagram of fig. 4.2 where the circle stands for any of the 6 terms of the elementary
model for γ∗N → πN . The lines going up and down in fig. 4.2. follow the standard
many body nomenclature and stand for particle and hole states respectively.

Fig.4.2 Photon self-energy obtained by folding the γ∗N → πN amplitude.

The photon self-energy corresponding to this diagram (actually 36 diagrams) is
readily evaluated and gives

23



Πµν
NN ′(q) = i

∫

d4k

(2π)4 2
∫

d3p

(2π)3

nN (p)[1 − nN ′(p + q − k)]

q0 − k0 + E(p) − E(p + q − k) + iǫ
×

×Dπ(k)1
2
TrSpin(T µT †ν)NN ′

(35)

where T µ is the amplitude for γ∗N → πN . The indices N, N ′ in eq. (35) stand for the
hole and particle nucleon states respectively and nN(~p) is the occupation number in

the Fermi local sea. E(~p) is the energy of the nucleon
√

~p 2 + M2
N and Dπ is the pion

propagator

Dπ(k) =
1

k2 − m2
π + iǫ

(36)

A further simplification can be done by evaluating the T µ amplitudes at an average
Fermi momentum. Explicit integration over ~p and also this approximation were done

is [32] and the approximation was found to be rather good. We take < ~p >=
√

3
5
kF

with kF the local Fermi momentum (3π2ρ(r)/2)1/3 and a direction orthogonal to that
of the virtual photon. The errors induced by this approximation are smaller than 5%.
Then we can use the Lindhard function ŪN,N ′ defined as

Ūr,s(q − k) = 2
∫

d3k

(2π)3

nr(~p )[1 − ns(~p + ~q − ~k )]

q0 − k0 + E(~p ) − E(~p + ~q − ~k ) + iǫ
(37)

where the indices, r, s correspond to protons or neutrons.
For the evaluation of the imaginary part we need an extra Cutkosky rule

U(p) → 2iImU(p)Θ(p0)

which is the general rule considering that the Lindhard function plays the role of a ph
propagator.

Hence we apply the Cutkosky rules of eq. (23) and the former one and we find

ImΠµν =
∫

d3k

(2π)3 ImŪNN ′(q − k)
1

2ω(~k )
θ(q0 − ω(~k ))×

× 1
2
TrSpin(T µT †ν

NN ′)
∣

∣

∣

k0=ω(~k )

(38)

Since there are analitycal expressions for ImŪNN ′ (see Appendix B of [32]), the ap-
proximation done saves us three integrals and a considerable amount of computational
time.

There is an interesting test to eq.(38). Indeed, in the limit of small densities the

Pauli blocking factor 1−n becomes 1 and ImŪNN ′(q) ≃ −πρNδ(q0− ~q 2

2MN
). Substituting

this into eq. (38) and (29),(30) one easily obtains that σeA = σepZ + σenN , the strict
impulse approximation. By performing the integral in eq. (38) one accounts for Pauli
blocking and in an approximate way for Fermi motion. Later on we shall introduce
other corrections due to medium polarization.
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4.3 The ∆ excitation term

One of the terms implicit in eq. (38) is the one where one picks up the ∆ excitation
term both in T µ and is T †ν . This term is depicted diagrammatically in fig. 4.3(a)
and, like in pion-nuclear and photo-nuclear reactions at intermediate energies, plays a
major role in this reaction.

In order to evaluate this piece one can go back to eq. (35) and perform the d4k
integration to factorize the ∆ width and on the other hand one will also have the
modulus squared of the ∆ propagator present in the ∆ term of eq. (5). This, however,
can be obtained more economically by reinterpreting the diagram 4.3 (a) as a ∆h
excitation with a ∆ width. We can also divert a little from the general formulation,
and in order to gain some extra accuracy we can implement Lorentz covariance exactly
simply boosting the tensor Πµν from a frame where the ∆ is at rest (~q + ~p = ~p∆ = 0),
where the amplitude of eq. (5) would be (by construction) equivalent to the relativistic
amplitude.

(e)

   

(a) (c)(b)

(d)

Fig.4.3 Diagrammatic representation of the ∆h photonuclear excitation piece.

Hence we get

ImΠµν
∆ =

∑

ij |cij|2
f 2

γ (q2)

m2
π

∫ d3p

(2π)3ni(p)Λµ
m(p, q)Λν

l (p, q)

×Tr
(

(~S† × ~qcm)m(~S × ~qcm)l
)

s
M2

∆

×

×
ImΣj

∆(p + q) − Γ̄

2
(p + q)

∣

∣

∣

∣

∣

√
s − M∆ + i

Γ̄(s)

2
− Σ∆(s)

∣

∣

∣

∣

∣

2

(39)

The Lorentz matrix Λ is such that Λγ
µ
νq

ν
cm = qµ and s = (p + q)2. The coefficients
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Cij, i, j = 1, 2 stands for proton or neutron, account for isospin and are given by

|Cij| =
(

2

3

)2

δij +
2

9
δi,j+1 +

2

9
δi,j−1 (40)

Eq. (39), however, seems to neglect the Pauli blocking factor 1−n of eq. (35). This
factor, however, is taken into account implicitly and leads to the Pauli blocked width
Γ̄, which is evaluated in [69]. Furthermore, in a nuclear medium the ∆ is renormalized
and acquires a self-energy Σ∆, which is also accounted for in eq.(39). The results of
[51] for Σ∆ are used in the calculation. This self-energy accounts for the diagrams
depicted in fig. 4.3, where the double dashed line stands for the effective spin -isospin
interaction, while the serrated line accounts for the induced interaction. The effective
spin-isospin interaction is originated by a pion exchange in the presence of short range
correlations and includes ρ-exchange as well. It is obtained by substituting

q̂iq̂jDπ(q) → q̂iq̂jVl(q) + (δij − q̂iq̂j)Vt(q) (41)

and expressions for Vl, Vt are found in [51] ( (fπNN/mπ)2Vl,t here is equivalent to Vl,t of
[51]). The induced interaction accounts for the series of diagrams depicted in fig. 4.4.

+ ...

= + + +

+ +

Fig.4.4 Feynman diagrams included in the evaluation of the ∆ self-energy.

There is an RPA sum through ph and ∆h excitation and is readily obtained as

Vind = q̂iq̂j
Vl(q)

1 − U(q)Vl(q)

(

fπNN

mπ

)2 +

(δij − q̂iq̂j)
Vt(q)

1 − U(q)Vt(q)

(

fπNN

mπ

)2

(42)

where now U(q) = UN(q) + U∆(q) is the Lindhard function for ph + ∆h excitations
including forward going and backward going bubbles [51] in contrast to Ū which only
contains the forward going bubble of a ph excitation (the only one which contributes
to ImUN for q0 > 0). UN in addition incorporates a factor two of isospin with respect
to Ū , such that ImUN = 2ImŪ for symmetric nuclear matter. However, all the work
which goes into the evaluation of Σ∆ is done in ref. [51], where a useful analytical
parameterization of the numerical results is given that we use here. The imaginary
part is parametrized as
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ImΣ∆ = −
{

CQ(ρ/ρ0)
α + CA2(ρ/ρ0)

β + CA3(ρ/ρ0)
γ
}

(43)

where the different coefficients are given in [51] as a function of the energy.
The separation of terms in eq. (43) is useful because the term CQ comes from the

diagrams (c) and (d) of fig. 4.3 when the lines cut by the dotted line are placed on
shell, and hence the term is related to the (γ∗, π) channel, while CA2, CA3 come from
the diagrams (b) and (e) and are related to two and three body absorption. Hence,
the separation in this formula allows us to separate the final cross section into different
channels.

+

   

γ∗

γ∗

γ∗

γ∗γ∗

γ∗

+

Fig.4.5 Irreducible pieces in the ∆h channel from the ∆h interaction.

It is also easy to realize that the RPA sum of ∆h excitations, shown in fig. 4.5, can
be taken into account by substituting ReΣ∆ by [32]

ReΣ∆ → ReΣ∆ +
4

9

(

f ∗

mπ

)2

ρVt (44)

γ∗

   
γ∗

Fig.4.6 Diagrammatic representation of the inclusion of a ph excitation between ∆h excita-

tions.

and furthermore, if we wish to include some ph excitation in between, see fig. 4.6,
(which is actually not relevant numerically), this is done easily by substituting ReΣ∆

by

ReΣ∆ +
4

9

(

f ∗

mπ

)2
Vt

(

1 − f 2
πNN

m2
π

UNVt

)ρ (45)
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4.4 Results for the ∆ contribution

In fig. 4.7 we show the results coming from the ∆ term discussed in the former section.
The experimental data are coming from [3]. We have separated the contribution from
the different channels. Besides the upper solid line which stands for the total contri-
bution, looking from up to down at about ω = 350 MeV the next line corresponds to
pion production, the following one is two nucleon absorption and the lowest one three
body absorption. We can see that most of the experimental strength in the ∆ region
is provided by this ∆ excitation term, but there is still some strength missing. In fig.
4.8 we show the contribution of the delta piece for the 208 Pb nucleus. The data are
now from [73]. The results are similar to those found in 12C and there is still some
strength missing. The study of this missing strength will occupy the next sections.

Fig.4.7 Contribution of the ∆ piece to the (e, e′) cross section in 12C. Experimental data

from [3]. See text for different contributions.

Fig.4.8 Contribution of the ∆ piece to the (e, e′) cross section in 208Pb. Experimental data

from [73].
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4.5 Two body photoabsorption

Let us go back to the generic diagram of pion electroproduction of fig. 4.2. Let us take
the pion line and allow the pion to excite a ph. This leads us to the diagram of fig.
4.9.

   

Fig.4.9 Photon self-energy obtained from the one in fig. 4.2 when the pion is allowed to

excite a ph.

This is still a generic diagram which actually contains 36 diagrams when in the
shaded circle we put each one of the terms of the γ∗N → πN amplitude of fig. 3.2.
One must avoid the temptation of factorizing these amplitudes in order to evaluate
these diagrams since some of them might be symmetric and then have a symmetry
factor 1/2. This is the case here with one diagram implicit in fig. 4.9, which is the one
corresponding to the pion pole term in each one of the γ∗N → πN amplitudes. This
diagram is shown explicitly in fig. 4.10.

   

Fig.4.10 Pion pole term included in fig. 4.9.

One can see that the diagrams in fig. 4.9 contribute to ImΠ according to Cutkosky
rules when we cut by a horizontal line and the 2p2h are placed on shell.

The contribution of the diagram of fig. 4.9 is readily done. We obtain

Π(2)µν(q) =
∑

N,N ′

i
∫

d4k
(2π)4

d3p
(2π)3

nN(p)[1 − nN ′(p + q − k)]
q0 − k0 + E(p) − E(p + q − k) + iǫ

×

D2
π(k)

f 2
πNN

m2
π

~k2Uλ(k)TrSpin(T µT †ν)NN ′SαF 4
π (k)

(46)
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where Uλ is the Lindhard function for ph by an object of charge λ: this is, twice Ūp,n or
Ūp,n for the excitation by a charged pion or Ūp,p + Ūn,n for the excitation by a neutral

pion and ~k is the pion momentum. The factor F 4
π (k), where Fπ is the pion form factor

appears because now the pions are off shell. Recall that we also take all form factors
equal in order to preserve gauge invariance (eq. (9)). The factor Sα is the symmetry
factor, unity for all diagrams and 1/2 for the symmetric one of fig. (4.10).

We can again simplify the expression by taking an average nucleon momentum of
the Fermi sea to evaluate the matrix elements of T µ T †ν . This allows us to factorize
the Lindhard function and we get

Π(2) µν(q) =
∑

NN ′

i
∫

d4k
(2π)4 ŪNN ′(q − k)D2

π(k)
f 2

πNN

m2
π

~k2Uλ(k)1
2
TrSpin(T µT †ν)NN ′SαF 4

π (k)

(47)

By applying Cutkosky rules we find

ImΠ(2) µν = −
∑

NN ′

∫

d4k
(2π)4Θ(q0 − k0)ImŪNN ′(q − k)Θ(k0)×

ImUλ(k)D2
π(k)

f 2
πNN

m2
π

~k2F 4
π (k)Sα×

TrSpin(T µT †ν)NN ′

(48)

The cut which places the two ph on shell in the diagrams of fig. 4.9 is not the only
possible one. In fig. 4.11 we show a different cut (dotted line) which places one ph and
the pion on shell.

   

Fig.4.11 Same as fig. 4.9 and showing the cut which places one ph and the pion on shell.

This contribution is taken into account in the ∆ excitation term by means of the
term CQ. As done for real photons in [32], we neglect this contribution in the other
terms, because at low energies where the background pieces are important, the (γ∗, π)
channel is small and at high energies where the (γ∗, π) contribution is important, this
channel is dominated by the ∆ excitation and there this correction is taken into account.
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We have also considered two body diagrams where each photon couples to different
bubbles: As found is [32] only one of them is relevant, the one in fig. (4.12), which
involves the KR term alone and which we take into account.

q   

q

k q−

k

Fig.4.12 Feynman diagram related to the KR term of fig. 4.9 with outgoing photon from

the second nucleon.

Following the same rules as above, this term is readily evaluated and gives

ImΠ00 = −2e2

(

f 2

m2
π

)2

2F 2
A(q2)×

∫

d4k
(2π)4D0(k)D0(k − q)

(~k~q)(~k − ~q)~q
M2

N

×

F 2
πNN(k)F 2

πNN (k − q)×
[

ImŪpp(q)ImŪpp(k − q) + ImŪpn(q)ImŪnp(k − q)+

+ ImŪnp(q)ImŪpn(k − q)
]

Θ(k0)Θ(k0 − q0)

(49)

Im(Πxx + Πyy) = −2e2

(

f 2

m2
π

)2

2F 2
A(q2)×

∫

d4k
(2π)4D0(k)D0(k − q)|~k|2sin2θF 2

πNN(k)F 2
πNN (k − q)×

{

1
2

(

q0

MN

)2

ImŪpp(q)ImŪpp(k − q) +
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[

−
(

1 − q0

2M

)√
2
]2

ImŪpn(q)ImŪnp(k − q)

+
[(

1 + q0

2M

)√
2
]2

ImŪnp(q)ImŪpn(k − q)

}

×

Θ(k0)Θ(k0 − q0)

(50)

The contribution of this term is roughly 1/2 of the KR × KR term in the generic
diagram of fig. 4.9.

4.6 Contributions tied to the (γ∗, 2π) channel

The γN → ππN reaction has been the subject of recent detailed experimental analyses
[74, 75] and also of recent theoretical analyses, some of them spanning a large energy
range [76, 77] and others concentrating only very close to threshold in order to test
predictions of chiral perturbation theory [78, 79].

The model in ref. [76] for the γp → π+π−p uses 67 Feynman diagrams, while ref.
[77], where the model is extended to the other isospin channels uses only 20 diagrams
which are necessary below Eγ = 800 MeV , where the new data have been measured.

Although the model is rather elaborate and contains many terms, one can see that
the gross features of the reaction can be obtained with the two terms of fig. 4.13,
accounting for about 80% of the cross section.

(b)(a)

Fig.4.13 Relevant Feynman diagrams that enter in the evaluation of the γ∗N → N2π cross

section.

Since here we are only concerned about corrections to the more important terms
which we have discussed above, it is sensible to just take these two diagrams. The
diagram in fig. (a) is the ∆Nπγ Kroll Ruderman (KR) term, while the one in fig. (b)
is the pion pole term. In both terms the ∆ is excited. The KR term, which appears
from the ∆Nπ vertex by minimal coupling, is given by,

Mµ =

{

0 , π0

1 , π±

}

(

e f ∗

mπ

)

×

(

11
2

3
2
|mπMNM∆

)











~S†~p∆√
s

~S†











(51)
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corresponding to π±∆ production in the γ∗N → ∆π vertex.
By following the same steps as before we obtain the many body diagrams of fig.

(4.14), where the dashed circle indicates any of the two terms of fig. 4.13.

(a) (b)

Fig.4.14 Photon self-energy diagrams obtained by folding the terms of fig. 4.13. Diagram

(b) is obtained when the pion is allowed to produce a ph excitation.

Furthermore, as discussed in ref. [32], in the diagrams of fig. 4.14 (b) we keep only
the term with the KR×KR in the vertices. This is done since the pion in flight term,
can be considered as a two step process of a γ∗N → πN with π, a real pion, followed
by the πN → ∆ excitation. The two step processes redistribute strength but do not
change the cross section and hence are not included in our approach.

Since the ∆ in the ∆h excitation in fig. 4.14 is also renormalized, we are accounting
for the physical channels depicted in fig. 4.15 when placing on shell the states cut by
the dotted line.

(2)

   

(3) (4) (1)

Fig.4.15 Detail of fig. 4.14 indicating the physical channels associated to the cuts.

As one can see there, (1) accounts for 1p1h 2π excitation, (2) and (3) for 2p2h 1π
excitation and (4) for 3p3h excitation.

The evaluation of these pieces follows exactly the same steps as for figs. 4.2 and
4.9, simply replacing the γ∗N → πN by the γ∗N → π∆ amplitudes and one nucleon
propagator by the ∆ propagator. The contribution of these terms below ω = 350 MeV
is very small. Their importance increases with the energy and at ω = 450 MeV they
account for about 1/5 of the cross section, as found for real photons.
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4.7 Polarization (RPA) effects

In the diagrams of fig. 4.9 we can consider the ph as just the first order of a series
of the RPA excitations through ph and ∆h excitations. If one replaces the ph by the
RPA series, one is led to the terms implicit in fig. 4.16. A similar series would appear
for the case of the (γ, π) process depicted in fig. 4.2.

In practical terms this is done in a simple way by having a bookkeeping of both the
spin longitudinal and spin transverse parts and replacing

ImUN → a
ImUN

|1 − Uλ(q)Vl|2
+ b

ImUN

|1 − UλVt|2
(52)

where a, b measure the strength of the longitudinal and transverse parts.
For the transverse part of the photon self-energy Πxx, Πyy the procedure to follow is

identical to the one explained in section 9 of [32] and we refer the reader to this paper
(see also [58]). The only novelty here is Π00, but this component is of spin longitudinal
character and is renormalized by means of eq.( 52) with a = 1, b = 0. In the ∆ term
the polarization effects are already included in the self-energy of ref. [51], hence, no
further corrections are needed.

5 Short range correlations

So far the calculations have been done using implicitly plane waves for the nucleon
states. Short range nuclear correlations modify the two nucleon relative wave function
and this has a repercusion in some of the matrix elements which we have calculated.
This is particularly true in those matrix elements which involve a p-wave coupling in
the vertex for each of the two nucleons, because the pion exchange generates a δ(~r)
function, which is rended inoperative in the presence of short range correlations. This
is not exactly the case if finite size effects by means of form factors are taken into
account, but the need to implement the effects of the short range correlations remains.
The correlations can also introduce spin transverse components in the p-wave-p-wave
terms which were originally of the spin longitudinal nature [65]. Hence, at the same
time that one introduces the effect of correlations, one takes advantage of this and
introduces the ρ meson exchange in this case. In this way, we generated Vl and Vt of
eq.(41).

The method to introduce the effects of correlations is to substitute a two nucleon
amplitude V (q) by

V (~q) → 1

(2π)3

∫

d3kV (~k)Ω(~q − ~k)

where Ω(~p) is the Fourier transform of a nuclear correlation function.
Once again the techniques to make these corrections can be seen in [32] (appendix

D, see also [58]), and we do not repeat them here.
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+ +

+

+ +

+ +

+

Fig.4.16 Terms of the KR and pion pole block implicit in fig. 4.9 showing the medium

polarization through RPA ph and ∆h excitations induced by the pion.
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6 Detailed study of the quasielastic peak

6.1 Formalism

So far we have studied the (γ∗, π) process and the γ∗ absorption by a pair or trio of
particles. This was done keeping a parallelism to the real photon case. However, unlike
the case with real photons, a virtual photon can be absorbed by one nucleon leading to
the quasielastic peak of the response function. We have left this problem till the end in
order to introduce the concepts of many body which proved relevant in the scattering
of real photons with nuclei and in the equivalent channels of virtual photons studied
before.

Then we can use the same concepts and ideas here in order to introduce the appro-
priate many body corrections to the quasielastic peak.

Thus we begin by evaluating Πµν for the 1ph excitation driven by the virtual photon,
as depicted in fig. 6.1.

   
p p+q

q

Fig.6.1 Photon self-energy diagram for the 1ph excitation driven by the virtual photon.

The photon self-energy associated to this diagram is given by

−iΠµν =
∫

d4p
(2π)4

ini(p)
p0 − E(~p ) + iǫ

×

× i(1 − nj(p + q))
p0 + q0 − E(~p + ~q ) − iǫ

T r(V µV †ν)

(53)

where V µ represents the γNN vertex and E(~p) is the nucleon kinetic energy. The
vertex V µ is given by

V µ = ūr(~p )
{

eF1γ
µ − ie

GM

2MN
µnσ

µρqρ

}

ur′(~p + ~q ) (54)

Once again the application of Cutkosky rules leads to

ImΠ00 = −
∫

d3p
(2π)2 ni(p)(1 − nj(p + q))×

×δ(p0 + q0 − E(~p + ~q ) )Tr(V 0V †0)

(55)
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ImΠxx = −
∫

d3p
(2π)2 ni(p)(1 − nj(p + q))×

×δ(p0 + q0 − E(~p + ~q ) )Tr(V xV †x)

(56)

and if we average Tr(V µV †ν) over the nucleon momentum in the Fermi sea we can
write

ImΠ00 =
1

2
ImŪ(q, ρ)〈Tr(V 0V †0)〉 (57)

ImΠxx =
1

2
ImŪ(q, ρ)〈Tr(V xV †x)〉 (58)

The average over the Fermi momentum can be done keeping terms up to q2/M2
N

and we find in terms of

Aµν =
1

e2
< Tr(V µV †ν) >

A00 =
1

M2
N























1

1 − q2

4M2
N

[

G2
E(q) − q2

4M2
N

G2
M(q)

]

1

2
(2p0 + q0)2 − 1

2
~q 2G2

M(q)























(59)

Axx =
1

M2
N























1

1 − q2

4M2
N

[

G2
E(q) − q2

4M2
N

G2
M(q)

]

2

5
k2

F − 1

2
q2G2

M(q)























(60)

where p0 = MN + 3
5

k2
F

2MN
and GE , GM are the Sachs form factors [60, 71].

6.2 Spectral function description and final state interaction

One of the corrections to the bare ph excitation studied above is the one induced by
final state interaction, as we indicated in section 2, which in our approach can be taken
into account by dressing up the nucleon propagator of the particle state in the ph
excitation, as depicted in fig. 6.2 (there the dashed line would account for the whole
NN interaction not just pion exchange). However, some caution must be exerted when
talking about this diagram.
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q

p

p+q

Fig.6.2 Photon self-energy diagram obtained from fig. 6.1 by dressing up the nucleon pro-

pagator of the particle state in the ph excitation.

In the first place, this is one of the terms implicit in the generic diagram of fig. 4.9
when the nucleon pole term is taken in each of the γ∗N → NN amplitudes. This term
poses no problem for real photons and leads to a small fraction of the two nucleon
absorption. However, for virtual photons this diagram is divergent. The reason is that
when placing the 2p2h excitation on shell through Cutkosky rules, we still have the
square of the nucleon propagator with momentum p+ q in the figure. This propagator
can be placed on shell for virtual photons (not for real photons) and we get a divergence.

Fig.6.3 Insertion of the nucleon self-energy on the nucleon line of the particle state.

The divergence is physical in the sense that its meaning is the probability per unit
time of absorbing a virtual photon by one nucleon times the probability of collision of
the final nucleon with other nucleons in the infinite Fermi sea in the lifetime of this
nucleon [66]. Since this nucleon is real, its lifetime is infinite and thus the probability
infinite. The problem is physically solved [66] by recalling that the nucleon in the
Fermi sea has a self-energy with an imaginary part which gives it a finite lifetime
(for collisions). This is also immediately taken into account technically by iterating
the nucleon self-energy insertion of fig. 6.3 on the nucleon line, following the Dyson
equation, hence substituting the particle nucleon propagator by a renormalized nucleon
propagator including the nucleon self-energy in the medium,
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G(p0, ~p ) =
1

p0 − ~p 2

2MN
− Σ(p0, ~p )

(61)

where
∑

(p0, ~p) is the nucleon self-energy. Alternatively one can use the spectral func-
tion representation [67]

G(p0~p) =
∫ µ

−∞
dω

Sh(ω, ~p)

p0 − ω − iǫ
+
∫ ∞

µ

Sp(ω, ~p)

p0 − ω + iǫ
dω (62)

where Sh, Sp are the hole and particle spectral functions related to Σ by means of [43]

* If ω ≥ µ , Sp(ω, p) = −1
πImG(ω, p) = −1

π
ImΣ(ω, p)

A + B

* If ω ≤ µ , Sh(ω, p) = 1
πImG(ω, p) = 1

π
ImΣ(ω, p)

A + B

(63)

and µ is the chemical potential and

A =

(

ω − ~p 2

2MN
− ReΣ(ω, ~p )

)2

B = (ImΣ(ω, ~p ))2

By means of eq.(62) we can write the ph propagator or new Lindhard function
incorporating the effects of the nucleon self-energy in the medium and we have for
ImŪ

Im Ū(q) = − 1
2π

∫ ∞

0
dp p2

∫ 1

−1
dx
∫ µ

µ−q0
dωSh(ω, p)×

×Sp(q
0 + ω,

√

~p 2 + ~q 2 + 2pqx)

(64)

We use the spectral functions calculated in [42], but since the imaginary part of the
nucleon self-energy for the hole states is much smaller than that of the particle states
under consideration we make the approximation of setting to zero ImΣ for the hole
states. This was found to be a good approximation in [45]. Thus, we take

Sh(ω, p) = δ(ω − Ẽ(~p ))Θ(µ − Ẽ(p)) (65)

where Ẽ(p) is the energy associated to a momentum ~p obtained selfconsistently by
means of the equation

Ẽ(~p ) =
~p 2

2MN
+ ReΣ(Ẽ(~p ), ~p ) (66)

The chemical potential was then taken as
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µ =
k2

F

2MN

+ ReΣ(µ, kF )

where kF is the Fermi momentum.
It must be stressed that it is important to keep the real part of Σ in the hole states

when renormalizing the particle states because there are pieces in the nucleon self-
energy largely independent of the momentum and which cancel in the ph propagator,
where the two selfenergies subtract.

The effect of the use of the spectral function, accounting for FSI is a quenching of
the quasielastic peak and a spreading of the strength at higher energy as can be seen
in fig. 6.4.

Fig.6.4 Effect of the use of the spectral function in the evaluation of the Lindhard function.

The uncorrelated Fermi sea results are obtained from eqs.(57),(58). Those with the medium

spectral function, with the same equations substituting the bare Lindhard function Ū by the

medium modified one of eq.(64).

6.3 Polarization (RPA) effects in the quasielastic contribution

We take now into account polarization effects in the 1p1h excitation, substituting it by
an RPA response as shown diagrammatically in fig. 6.5.
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Fig.6.5 Diagrammatic representation of the polarization effects in the 1ph excitation.

For that purpose we use an effective interaction of the Landau-Migdal type

V (~r1, ~r2) = c0δ(~r1 − ~r2) {f0(ρ) + f ′
0(ρ)~τ1~τ2 +

+ g0(ρ)~σ1~σ2 + g′
0(ρ)(~σ1~σ2)~τ1~τ2}

(67)

and we take the parameterization for the coefficients from ref. [68]

fi(ρ(r)) =
ρ(r)

ρ(0)
f

(in)
i +

[

1 − ρ(r)

ρ(0)

]

f
(ex)
i (68)

f
(in)
0 = 0.07 f

′(ex)
0 = 0.45

f
(ex)
0 = −2.15 c0 = 380 MeV fm3

f
′(in)
0 = 0.33

g
(in)
0 = g

(ex)
0 = g0 = 0.575

g
′(in)
0 = g

′(ex)
0 = g′

0 = 0.725

(69)

For consistency, in the S = 1 = T channel (~σ~σ~τ~τ operator) we have continued to
use the interaction used in [32] which has been used for the renormalization of the
pionic and pion related channels studied in the former sections. There is only a minor
difference of about 4% in g′

0 between the two parametrizations.
Recalling that we had

Πµν
(1) =

1

2
ŪN(q)Aνµ

N (q)e2 (70)

let us take the nonrelativistic reduction of Aνµ in order to see the effects of the RPA
renormalizations

Aµν ≡
∑

r,r′
χr

[

F p
1 (q)δµ0 − i

µpGM(q)
2MN

(~σ × ~q )iδ
µi + F p

1
(2~p + ~q )i

2MN
δµi

]

χr′×

×χr′

[

F p
1 (q)δν0 + F p

1
(2~p + ~q )i

2MN
δνi + i

µpGM(q)
2MN

(~σ × ~q )iδ
νi

]

χr+

+(p ↔ n)

(71)
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Given the spin-isospin structure, the electric and magnetic components will be
renormalized in the following way:

a) Interaction ~σ~σ~τ~τ : is the one we used to renormalize the pionic related channels
in former sections. It affects only the magnetic components. If we write

Aµν
mag. =

∑

r,r′
χr

[

−i
µpGM(q)

2MN
(~σ × ~q)iδ

µi

]

χr′×

×χr′

[

i
µpGM(q)

2MN
(~σ × ~q)iδ

νi

]

χr
(1 + τ3)

2 +

+[neutrons]
(1 − τ3)

2

(72)

it is easy to see that the magnetic part of Πij becomes

Πij
mag. = 1

2
ŪNAij

mag.(q)e
2 + e2

4M2
N

f 2
πNN

m2
π

Vt(q)

1 − f 2
πNN

m2
π

Vt(q)U(q)

×

×(~q 2δij − qiqj)G2
M(q)

(

µpŪp − µnŪn

)2

(73)

where U = UN + U∆.
b) Interaction ~τ~τ :
This interaction selects the non magnetic components of V µ. Thus A00 and the

convective terms of Aij (term with 2~p + ~q in eq.( 71)) are renormalized.
However, given the smallness of the convective terms (about 10% contribution to

the transverse response) we shall not consider their renormalization.
Thus we consider only the modification to A00 from this source. Since A00 is given

by

A00 =





∑

r,r′
χrF

p
1 (q)χ′χr′F

p
1 (q)χr





(1 + τ3)
2 +

+





∑

r,r′
χrF

n
1 (q)χr′χr′F

n
1 (q)χr





(1 − τ3)
2

(74)

the renormalized expression for Π00 will be

Π00 = e2

{

(F p
1 )2Ūp + (F n

1 )2Ūn +
c0f

′
0(F

p
1 Ūp − F n

1 Ūn)2

1 − c0f
′
0UN(q)

}

(75)

where in the denominator we do not have now U∆ since the operator ~τ~τ cannot excite
∆ components.

c) Interaction ~σ~σ:
Here again, like in case a), only the magnetic components are modified. We find
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Πij
mag. = 1

2
ŪNAij

mag.(q)e
2 + e2

4M2 c0g0
1

1 − c0g0UN(q)
×

×(~q 2δij − qiqj)G2
M(q)

(

µpŪp + µnŪn

)2

+ effect of (a)

(76)

The correction from the RPA sum is taken into account by means of the second
term of the right hand side of eq.( 76) to which we should add the same term in eq.( 73)
coming from the renormalization with the ~σ~σ~τ~τ operator.

d) Scalar interaction:
This one affects A00 and we find

Π00 = e2

{

(F p
1 )2Ūp + (F n

1 )2Ūn +
c0f0(ρ)(F p

1 Ūp + F n
1 Ūn)2

1 − c0f0UN (q)

}

+ effect of (b) (77)

We show in figs. 6.6, 6.7, 6.8 and 6.9 the effects on RL and RT (RL = −|~q |2
q2 WL

and RT = 2WT ) of the different polarization terms. The solid line corresponds to
the calculation including these effects and the dashed line, to the calculation without
polarization effects (we are using spectral functions in the calculation of the Lindhard
function):
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Fig.6.6 Polarization (RPA) effect (solid line) in the evaluation of RL: scalar interaction.

Fig.6.7 Polarization (RPA) effect (solid line) in the evaluation of RL: ~τ~τ interaction.
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Fig.6.8 Polarization (RPA) effect (solid line) in the evaluation of RT : ~σ~σ interaction.

Fig.6.9 Polarization (RPA) effect (solid line) in the evaluation of RT : ~σ ~σ ~τ ~τ interaction.
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One possible source of renormalization not yet considered is the one shown in fig.
6.10, where a ph is attached to one photon and a ∆h to the other one, plus any other
possible ph or ∆h excitations in between.

+ . . .

   
Fig.6.10 Diagrammatic representation of a possible source of renormalization: a ph is at-

tached to one photon and a ∆h to the other one, plus any other possible ph or ∆h excitations

in between.

This contribution affects the transverse part and both the quasielastic as well as
the ∆ peak. However, given the small interference between ph and ∆h excitations, the
contribution of these terms is not significant. We give, however, the expression here
for completeness

Πij = e
(

4
3

)2 fγ
mπ

ρ
(√

s − M∆ + i
Γ̄

2
− Σ∆

) i×

× Vt
(

1 − U
f 2

πNN

m2
π

Vt

)

fπNN
mπ

f ∗

mπ
[~q 2δij − qiqj ]×

× GM
4MN

[µpŪp − µnŪn]

(78)

The effect of the polarization is moderate, but relevant when aiming at a precise
description of the process.

We show in figs. 6.11 and 6.12 the effects of the polarization in the longitudinal
and transverse response functions. The net effect in the cross section is a quenching in
the quasielastic peak and a spreading of the strength at higher energies.
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Fig.6.11 Polarization (RPA) effect in the evaluation of RL.

Fig.6.12 Polarization (RPA) effect in the evaluation of RT .

6.4 Further considerations

Some other terms appearing in the generic diagram of fig. 4.11 require some special
thought. These are the terms in which one of the vertices contains the nucleon pole
term of the γ∗N → πN amplitude, while the other one contains all terms but that one.
This is depicted in fig. 6.13.
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(a)
(a)

   

+

(b)

(b)

Fig.6.13 Photon self-energy diagrams in which one of the vertices contains the nucleon pole

term of the γ∗N → πN amplitude, while the other one contains all terms but that one.

Unlike the case of real photons where only the cut (a) exciting 2p2h gives rise to an
imaginary part, now the cut (b) placing the ph on shell is a source of imaginary part
which produces strength is the quasielastic peak. The diagrams in fig. (6.13) for the
cut (b) could be then considered an ordinary ph excitation with a renormalized vertex.
We have evaluated the two sources of imaginary part in Πµν and find for the cut (a)

ImΠµν =
f 2

πNN

m2
π

∑

ij

∫

d4p
(2π)4ni(~p)(2π)Θ(p0)δ

(

p0 − E(~p ) − ReΣ

(

~p 2

2MN
, ~p

))

×

×
∫

d4k
(2π)4F 4

π (k)
~k2

CMΘ(k0)
(k2 − m2

π)22πΘ(p0 + q0 − k0)×

δ

(

p0 + q0 − k0 − E(~p + ~q − ~k ) − ReΣ

(

(~p + ~q − ~k )2

2MN
, ~p + ~q − ~k

))

×

×(1 − nj(~p + ~q − ~k ))
ImUλ(k)

1 − f 2
πNN

m2
π

Vl(k)U(k)

(1 − ni(~p + ~q ))×

×2Re























1

p0 + q0 − E(~p + ~q ) − ΣN

(

(~p + ~q )2

2MN

, ~p + ~q

) ×

Tr
(

M̄µ
NP (i → j)M̄†ν

KR,PP,NPC,∆,∆C
(i → j)

)}

(79)
where M̄NP is the nucleon pole amplitude of γ∗N → πN omitting the nucleon propa-
gator. On the other hand the contribution of the cut (b) is given by
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ImΠµν = −
∑

ij

∫

d4p
(2π)4ni(p)δ

(

p0 − E(~p ) − ReΣ

(

~p 2

2MN
, ~p

))

×

×Θ(p0)(2π)2(1 − ni(~p + ~q ))Θ(p0 + q0)×

×δ

(

p0 + q0 − E(~p + ~q ) − ReΣ

(

(~p + ~q )2

2MN
, ~p + ~q

))

×

∫

d4k
(2π)4F 2

π (k)Im

{

(1 − nj(p + q − k))

p0 + q0 − k0 − E(~p + ~q − ~k ) + iǫ
×

×
(

1
k2 − m2

π − Π
− 1

k2 − m2
π + iǫ

)

×

×Tr
(

M̄ν
KR,PP,NPC,∆,∆C

(i → j)M̄†µ
NP (i → j)

)}

(80)

where Π is the pion self-energy in the nuclear medium

Π = ~k2
CM

(

fπNN

mπ

)2

F 2
π (k2)

Uλ(k)

1 − g′
(

fπNN

mπ

)2

U(k)

(81)

the subtraction of the free pion propagator appearing in eq.(80) guarantees that in the
limit ρ → 0 the correction to the γNN vertex vanishes as it should be.

6.5 Considerations on gauge invariance

Most of the theoretical models found in the literature on inclusive (e, e′) scattering
from nuclei do not preserve gauge invariance. The requirement of invariance under
gauge transformations leads to relations between the components (charge and spatial
current) of the hadronic current which determines the nuclear response. Actually,
the longitudinal (charge) multipoles are related to the two transverse (spatial current)
multipoles of the electric type [80]. Several prescriptions have been used to restore
gauge invariance [80], [81]. However, in a recent work [82] the arbitrariness of the most
common prescriptions is discussed in detail with the conclusion that the standard
procedures to impose gauge invariance in calculations, based on models which do not
verify it, are misleading and for very low nuclear excitation energies do not ensure at
all that a better, or a more reasonable, description of the data will be obtained.

Our model, as we shall see, is gauge invariant at the lowest order (impulse approxi-
mation) of the density expansion and this symmetry is only partially broken when some
non-leading density corrections are included. In what follows, we will study the con-
sequences of the partial breaking of the gauge symmetry for the kinematics studied in
this paper (from the quasielastic peak to the ∆ excitation region), which involves larger
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nuclear excitation energies than those studied in [82]. We will also study the feasibil-
ity of non-gauge invariant models to disentangle between longitudinal and transverse
channels.

The unpolarized cross section for inclusive (e, e′) scattering from nuclei is given by
(eq.(29)):

d2σ

dΩ′
edE ′

e

=
α2

q4

|~k ′|
|~k|

LµνWµν (82)

Lorentz, space-inversion, time-reversal and gauge invariance constraint the form of
the hadronic tensor Wµν , which determines the nuclear response. Indeed, the most
general expression for this tensor assuming the latter symmetries is given by [83]:

W µν = {qµqν

q2
− gµν}W1

+

{(

P µ − P.q

q2
qµ

)(

P ν − P.q

q2
qν

)

W2

M2
A

}

(83)

with q and P the virtual photon and initial hadronic system four-momenta respectively
and M2

A = P 2. The structure functions W1,2 are unknown scalar functions of the virtual
photon variables which determine the nuclear response.

Using the expression for the hadronic tensor of eq. (83) and taking ~q in the z
direction the cross section of eq. (82) in the lab system becomes (eq. (31)):

d2σ

dΩ′
edE ′

e

=

(

dσ

dΩ

)

Mott

(

− q2

|~q |2
){

WL(ω, |~q |) +
WT (ω, |~q |)

ǫ

}

(84)

where the structure functions WL and WT are given in terms of W1 and W2 by:

WL ≡ −W1 −
|~q |2
q2

W2 = − q2

ω2
W zz = − q2

|~q |2W 00 = − q2

ω|~q |W
0z (85)

WT ≡ W1 = W xx = W yy (86)

Let us now suppose that the hadronic model does not preserve gauge invariance.
In these circumstances the hadronic tensor (we will call it Wµν to differentiate it from
the one defined in eq. (83)) is not conserved (ie, qµWµν 6= 0, qνWµν 6= 0 ), and is now
given in terms of four independent functions:

Wµν = {qµqν

q2
− gµν}W1

+

{(

P µ − P.q

q2
qµ

)(

P ν − P.q

q2
qν

)

W2

M2
A

}

+ W3
qµqν

q2
+ W4

P µP ν

M2
A

(87)
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Because of the loss of gauge invariance now W00, W0z and Wzz are no longer related
and become independent. Thus, we have now:

WL ≡ −W1 −
|~q |2
q2

W2 =
|~q |
ω

W0z −Wzz (88)

WT ≡ W1 = Wxx = Wyy (89)

W3 =
ω

|~q |W
0z −Wzz (90)

W4 = W00 + Wzz −
(

|~q |
ω

+
ω

|~q |

)

W0z (91)

If gauge invariance is restored and therefore the hadronic tensor is conserved, the
response functions W3 and W4 vanish and WL reduces to any of the expressions of
eq. (85). With this new hadronic tensor the differential cross section is now given by:

d2σ

dΩ′
edE ′

e

=

(

dσ

dΩ

)

Mott

(

− q2

|~q |2
){

WL(ω, |~q |) +
WT (ω, |~q |)

ǫ

}

(92)

with

WL(ω, |~q |) =

(

WL(ω, |~q |) − |~q |2
q2

W4(ω, |~q |)
)

= −ω2

q2
Wzz − |~q |2

q2
W00 + 2

|~q |ω
q2

W0z (93)

The function W3 does not appear in the expression for the cross section because the
leptonic tensor is conserved. Note that, one can still factor out the differential cross
section in the form A + B/ǫ and therefore, despite the breaking of gauge invariance,
one can still compare the results to the experimental response functions obtained via
the Rosenbluth plot. Then, the breaking of gauge invariance in the theoretical model
for the nuclear response leads to a redefinition of the response function which has to
be compared to the experimental one, in the longitudinal channel, and thus one should
compute WL given in eq. (93) instead of WL of eq. (85). In fact, the latter one is not
well defined and there is an arbitrariness in its definition because the 00, 0z and zz
components of Wµν are no longer related.

Traditionally, the longitudinal response function is calculated from the “charge-
charge” component of the hadronic tensor (−q2/|~q |2W00). In general, the response
function calculated in this way will differ from that calculated by means of eq. (93).
Now we will examine the difference between both approaches as a function of the energy
and momentum transferred to the nucleus. In order to do that, we define

Wzz =
ω2

|~q |2W
00 + ∆Wzz (94)

W0z =
ω

|~q |W
00 + ∆W0z (95)
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where ∆Wzz and ∆W0z account for the breaking of the gauge symmetry. By construc-
tion one expects:

∆Wzz

W00
≈ δ1

ω2

|~q |2 (96)

∆W0z

W00
≈ δ2

ω

|~q | (97)

where δ1 and δ2 would be 1 in the case that ∆Wzz = Wzz and ∆W0z = W0z. We
certainly expect that in our case δ1 and δ2 are smaller than 1 because at order ρ in the
density expansion we exactly fulfill gauge invariance (see comments below). Taking a
conservative point of view one sees that the ratios in eqs. (96), (97) are at most of
order 1. Using the definitions of eq. (94), we can now write

WL = − q2

|~q |2W
00

{

1 +
ω2|~q |2

q4

∆Wzz

W00
− 2

ω|~q |3
q4

∆W0z

W00

}

(98)

The size of the corrections to the “charge-charge” prescription (the term proportional
to 1 in the formula) traditionally used in the literature depends on the kinematics under
study. Here we will pay a special attention to three different regions (keeping always
the momentum transferred to the nucleus smaller than about 500 MeV) : ∆-resonance
and quasielastic peaks and the region (dip) between both peaks.

• Quasielastic peak: In this region we have ω ≈ |~q |2/2MN and then the coefficients
of the ratios ∆Wzz

W00 and ∆W0z

W00 in eq. (96) turn out to be

ω2|~q |2
q4

≈ |~q |2
4M2

N

(99)

2
ω|~q |3

q4
≈ |~q |

MN
(100)

Thus, taking also into account the estimates of eq. (96), one finds corrections to
the “charge-charge” prescription of the order of δ2|~q |2/2M2

N which at most could
be of the order of 5− 10% for the momenta and energies transfers studied in this
paper, assuming δ2 ≈ 1, which is certainly an overestimate for the reasons pointed
above. From this discussion, in this region we have decided to use the traditional
prescription “charge-charge” to compute the longitudinal response function.

• Dip area: In this region the conclusions are similar to those drawn in the previ-
ous point. However, we would like to point out that gauge symmetry breaking
corrections to the longitudinal response function are not now as small as before.

• ∆-resonance peak: In this region ω/|~q | ≈ 1 and the situation is radically dif-
ferent. The corrections due to gauge symmetry breaking are significantly more
important than in the quasi-free scattering region. For instance, taking the in-
coming electron energy equal to 620 MeV and the outgoing electron scattering
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angle equal to 600, one finds values for the coefficients of the ratios ∆Wzz

W00 and
∆W0z

W00 in eq. (98) of the order of two. Thus the corrections to unity in the bracket
of eq. (98), are of the order of 2(δ1 − δ2), much larger than in the quasielastic
peak. We have evaluated δ1 and δ2 in this region and we find δ1 ≈ 0.01 − 0.06,
δ2 ≈ 0.01 − 0.02 and 2(δ1 − δ2) ≈ 0.0 − 0.08. Hence a 10% error in the lon-
gitudinal response due to the breaking of gauge invariance of our results seems
realistic in this region. In any case, we should mention that the contribution of
the longitudinal response to the cross section is very small here and hence the-
oretical cross sections are largely free of uncertainties due to the small breaking
of gauge invariance. Since there is no experimental separation of RL and RT in
this region, we do not give these results either.

We finish this section discussing the origin of the breaking of the gauge invariance
within our model. Let us consider the diagram of fig. 6.1 whose contribution to the
virtual photon self-energy in the medium is given in eqs.(53) and (54). One can easily
check that the imaginary part (when the intermediate nucleons are put on shell) of
this self-energy is gauge invariant (qµΠµν ∝ qµV

µ = 0). The first medium correction
is given by the diagram depicted in fig.6.2. When the two ph excitations are put on
shell, this diagram contributes to the imaginary part of the photon self-energy. This
new contribution is not gauge invariant because the intermediate nucleon with four
momentum p + q is not on shell and then the contraction qµV

µ does not vanish now.
However, to this level we restore gauge invariance because we consider not only the
term of fig. 6.2, but also all terms implicit in fig. 4.9. Though the NP amplitude in
not gauge invariance by itself, the thick dots of fig. 4.9 account for the six amplitudes
(NP+NPC+KR+PP+DP+DPC) of our model for the eN → e′Nπ reaction. In section
3, we fixed the different form-factors entering in the amplitudes to end up with a gauge
invariant model (Eqs.(8-9)). Thus, the leading terms in our density expansion (fig.6.1,
fig. 4.2 and fig. 4.9) lead to a gauge invariant photon self-energy.

However, we break again the gauge invariance in section 4.7 when we include the
polarization corrections to the 36 diagrams of fig. 4.9: we do not renormalize in the
same way for instance the KR×KR term (which is purely longitudinal and therefore
gets renormalized only with Vl) than the NP × NP term (which contributes to both
longitudinal and transverse channels and thus gets renormalized not only with Vl but
also with Vt). As a consequence, the cancellations in eq.(8) which ensured the gauge
invariance of the model are altered.

7 Results

We have already shown results on the different effects in previous sections. Here we
will show results with emphasis in comparison with experiment.

Let us first show results in the quasielastic peak in figs. 7.1, 7.2 we show results for
RL and RT for 12C and compare them to the data of [70]. The lower line shows the
results obtained with the medium spectral function, while the upper one includes also
the rest of the effects discussed in the former section.
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Fig.7.1 Calculation of RL for 12C. The lower line in the high energy region corresponds

to the result obtained with the contribution of the 1p1h excitation (fig. 6.3) using the

medium spectral function of eq.(64). The upper line is the result when one adds the rest of

contributions: vertex corrections (fig. 6.13), two body absorption diagrams (fig. 4.9), (γ∗, π)

terms (fig. 4.2), (γ∗, 2π) related terms (fig. 4.15), etc. Experimental data from [70].

Fig.7.2 Calculation of RT for 12C. Same meaning of the lines as in fig. 7.1. Experimental

data from [70].

In fig. 7.3, 7.4, we show results for 40Ca compared to the data of [7] (fig. (7.3) and
lower points in fig. (7.4)) and those of [1] (upper points in fig. (7.4)).
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Fig.7.3 Calculation of RL for 40Ca. Same meaning of the lines as in fig. 7.1. Experimental

data from [7].

Fig.7.4 Calculation of RT for 40Ca. Same meaning of the lines as in fig. 7.1. Experimental

data from [7] (lower points) and [1] (upper points).

As one can see, we find a good agreement with the recent reanalysis of [7].
On the other hand much of the work done here has gone into the evaluation of two

body mechanisms. In fig. 7.5 we show the results for two body photon absorption
(solid line) and compare them to pion production (dotted line). Similarly, in fig. 7.6
we show the contribution of three body photon absorption (solid line) versus the two
body one (dotted line). We can see that at low energies, the contribution of three body
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absorption is negligible while at energies around 450 MeV the three body contribution
becomes sizeable. These results agree qualitatively with the findings of [84] for real
photons. Let us recall that this classification corresponds to the primary step in the
collision. The particles produced still undergo secondary collisions in their way out
of the nucleus. This does not change the inclusive cross section but redistributes the
strength. The treatment of this FSI and the evaluation of the exclusive channels will
be treated in a forthcoming paper [57].

Fig.7.5 Two body photon absorption (solid line) versus pion production (dotted line) for
12C.

Fig.7.6 Three body photon absorption (solid line) versus the two body one (dotted line) for 12C.
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Finally let us see the global results including the quasielastic peak, the dip region
and the delta region. They can be seen in figs. 7.7, 7.8 and 7.9 for the nuclei of 12C
and 208Pb.

The global agreement is good and the three regions are well reproduced (a bit
overestimated for 208Pb).

Fig.7.7 Inclusive (e, e′) cross section for 12C. Ee = 620 MeV and θe = 600. The dotted line

corresponds to the pion production contribution. Experimental data from [3].

Fig.7.8 Inclusive (e, e′) cross section for 12C. Ee = 680 MeV and θe = 360. Experimental

57



data from [3].

Fig.7.9 Inclusive (e, e′) cross section for 208Pb. Ee = 645 MeV and θe = 600. The dotted

line corresponds to the 1p1h excitation contribution. Experimental data from [73].

In fig. 7.7 we also show with a dotted line the results for pion production.
In fig. 7.9 instead we show with a dotted line the results for the 1p1h excitation

alone.

8 Conclusions

We have undertaken the task of constructing a microscopic many body model of the
(e, e′) reaction including all the reaction channels which appear below ω = 500 − 600
MeV, and which is suited to study the inclusive (e, e′) reaction from the quasielastic
peak up to the ∆ peak, passing through the dip region. Although many studies have
been devoted to particular energy regions of the spectrum, this is the first work, to our
knowledge, which ranges this wide energy spectrum.

Our model has no free parameters. All the input consists of basic couplings of
photons to nucleons and isobars, and some phenomenological inputs, as correlations,
which has been tested in former pionic reactions.

We include explicitly the 1N knockout channel, the virtual photon absorption by
pairs or trios of particles, the pion production plus exchange currents mechanisms tied
to the (γ∗, 2π) channel and which contribute to (γ∗, NNπ) or (γ∗, NNN) channels.

We include effects which have been found important in earlier works, like polariza-
tion, renormalization of ∆ properties in a nuclear medium, FSI effects through the use
of spectral functions and meson exchange currents.

The meson exchange currents are generated in a systematic way from a model for
the elementary pion electroproduction on the nucleon, which reproduces accurately the
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experimental data.
We have payed some attention to the question of gauge invariance, showing that it

is preserved in our approach in leading order of the density expansion. We also show
that the appropriate prescription to evaluate the longitudinal response is from the W 00

component of the hadronic tensor, which minimizes the breaking of gauge invariance
at higher orders in ρ.

We evaluate cross sections in the energy range from the quasielastic peak to the ∆
peak and find good agreement with experimental data. The three traditional regions:
quasielastic peak, dip region and delta peak, are well reproduced in our scheme.

We also separate the longitudinal and transverse response functions in the quasielas-
tic peak and find good agreement with the latest results of the analysis of Jourdan from
the world set of data.

We have used the technique of the local density approximation, which has been
shown before to be particularly suited to deal with inclusive cross sections and which
makes unnecessary the use of sophisticated finite nuclei wave functions.

Finally, the method used here allows the separation of the contribution of different
channels to the inclusive cross section. This information is the seed to produce exclusive
cross sections like (e, e′N), (e, e′NN), (e, e′π), (e, e′πN) etc. However, this still requires
to follow the fate of all the particles produced from their production point in the
nucleus, which is usually done using Monte Carlo simulation techniques, and this will
be the subject of some future work.

We would like to acknowledge useful discussions with R.C. Carrasco, C. Garćıa-
Recio and A. Lallena. This paper is partially supported by CICYT contract no. AEN
96-1719. One of us (J. Nieves) thanks to DGES contract PB95-1204.
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Appendix

The Galilean invariant vertices which appear in the model for eN → eπN , are:

(a) γNN vertex (fig. 3.1(a)):

V µ
γNN = −ie



















F N
1 (q2)

F N
1 (q2)

[

~p + ~p ′

2MN

]

+ i~σ × ~q
2MN

GN
M(q2)



















(101)

(b) γN∆ vertex (fig. 3.1(c)):

V µ
γN∆ =

√

2

3

fγ(q
2)

mπ

√
s

M∆



























~p∆√
s
(~S† × ~q )

p0
∆√
s

{

~S† ×
(

~q − q0

p0
∆

~p∆

)}



























(102)

(c) πN∆ vertex (fig. 3.1(d)):

VπN∆ = I
f ∗

mπ

~S†.

(

~k − k0

√
s
~p∆

)

(103)

(d) πNN vertex (fig. 3.1(b)):

VπNN =
fπNN

mπ

B(N, N ′π)

{

~σ ~k − k0

2MN

~σ (~p + ~p ′)

}

(104)

where ~q, ~p, ~p ′, ~p∆ y ~k are the photon, incoming nucleon, outgoing nucleon and pion
momenta, respectively;

√
s, the invariant energy in the γ∗ N system and MN , mπ and

M∆ are the nucleon, pion and delta resonance masses. In equations (103) and (104)
we are including the corresponding isospin factors I y B(N, N ′π), respectively.

Besides the vertices shown in fig. 3.1, in our elementary model for electroproduction
two more vertices appear:

q

p

k

(b)
k

k’

q

Fig. A.1

(a)

In fig. A.1(a) one can see the seagull vertex. It appears from the LπNN lagrangian
via minimal coupling. This vertex is exactly zero for the π0n and π0p channels and has
the following expression:

V µ
seagull = e

fπNN

mπ
B(N, N ′π)FACµ (105)
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where

Cµ(π−p) =











~σ (2~p + ~q − ~k)
2MN

~σ











; Cµ(π0n) = 0

Cµ(π+n) =











~σ(~k − ~q − 2~p)
2MN

~σ











; Cµ(π0p) = 0

In figure A.1, the vertex (b) corresponds to the ππγ∗ coupling and it is defined as:

V µ
ππγ∗ = ie(kµ + k′µ) (106)

With respect to form factors and coupling constants, their expressions are the
following:

We use Sachs Form Factors:

GN
M(q2) = µN

(

1 − q2

Λ2

)2 ; GN
E (q2) = 1

(

1 − q2

Λ2

)2
(107)

with Λ2 = 0.71 GeV 2; µp = 2.793; µn = −1.913. The relationship between F p
1 (q2)

(Dirac form factor) and Gp
E is:

F p
1 (q2) = Gp

E

(

1 − q2

4MN
2µp

)

(

1 − q2

4MN
2

) (108)

and F n
1 = 0.

For the rest of form factors and coupling constants we take:

f 2
πNN
4π = 0.08 ;

f ∗2

4π = 0.36 ; FA(q2) = 1
(

1 − q2

MA
2

)2
(109)

where MA = 1.08 GeV .

Fγππ(q2) =
1

(

1 − q2

p2
π

) (110)

with p2
π = 0.47 GeV 2.

Fπ(q2) =
Λ2

π − m2
π

Λ2
π − q2 ; Λπ ∼ 1250 MeV (111)
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fγ(q
2) = fγ(0)

(

1 − q2

(M∆ + MN)2

)

(

1 − q2

4MN
2

)

Gp
M(q2)

µp

(M∆ + MN )2

(M∆ + MN )2 − q2 (112)

where fγ(0) = 0.122. It is the γN∆ coupling constant for real photons.

With respect to the ~S and ~T operators (transition operator between 3
2 spin states

to 1
2 spin states and respectively between 3

2 isospin states to 1
2 isospin states), their

normalization is:

<
3

2
, M |S†

λ|
1

2
, m >= (1

1

2

3

2
|λmM) (113)

<
3

2
, M |T †

λ |
1

2
, m >= (1

1

2

3

2
|λmM) (114)

where λ is a spherical basis index.
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