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José Caro1, Carmen Garćıa-Recio2 and Juan Nieves2

1 Physik Department, Technische Universität-München, D-85747-Garching, Germany.
2 Departamento de F́ısica Moderna, Universidad de Granada, E-18071 Granada, Spain.

Abstract

We fit the 1S0 ΛΛ interaction in the nuclear medium to the masses of the ex-
perimentally known double−Λ hypernuclei: 6

ΛΛHe, 10
ΛΛBe and 13

ΛΛB. We derive this
effective interaction from OBE Jülich ΛΛ-type potentials and using both Hartree-
Fock and variational approaches. We find that the inclusion of ΛΛ correlations in
the variational scheme leads to significant differences and a better understanding of
the dynamical features of the system. We investigate the sensitivity of the binding
energies and the mesonic decay widths of the above double−Λ hypernuclei to the
ωΛΛ coupling and the form factor at the σΛΛ vertex. We also use this effective
interaction to predict binding energies and pionic decay widths of heavier double−Λ
hypernuclei, not discovered yet. Finally, we discard the existence of 1S0 ΛΛ bound
states provided the ΛΛ − ΞN coupling can be neglected.

PACS: 21.80.+a,21.30.-x,21.10.Dr,21.45+v

Keywords: single and double−Λ hypernuclei, ΛΛ interaction, Bonn potential, Jülich
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Hypernucleus BΛΛ(MeV) ∆BΛΛ(MeV)
6

ΛΛHe [5], [10] 10.9 ± 0.8 4.7 ± 1.0
10
ΛΛBe [6], [10] 17.7 ± 0.4 4.3 ± 0.4
13
ΛΛB [7], [10] 27.5 ± 0.7 4.8 ± 0.7

Table 1: Experimental double−Λ hypernuclei binding energies, BΛΛ, and values for the quantity
∆BΛΛ defined in Eq. (2). As it is discussed with great detail in [25], we have considered that
the event reported by [7] corresponds to the double−Λ hypernucleus 13

ΛΛB. We use the notation
A+2
ΛΛ Z.

1 Introduction

In the past years a considerable amount of work has been done both in the experimen-
tal ([1]-[11]) and the theoretical ([12]-[41]) aspects of the physics of single and double−Λ
hypernuclei (for a general overview see the proceedings of the most recent International

Conferences on Hypernuclear and Strange Particle Physics [42]).

Up to now, the experimental community has reported the existence and has measured
the 1S0 ground state (angular momentum and spin of the two interacting Λ’s coupled to
zero, L = S = 0) binding energy of three double−Λ hypernuclei1: 6

ΛΛHe, 10
ΛΛBe and 13

ΛΛB
which energies are reported in Table 1. Let us consider the hypernucleus A+2

ΛΛ Z, composed
of a nuclear core AZ and two bound Λ particles. The quantity BΛΛ is defined as the total
binding energy (> 0) of the double−Λ hypernucleus, and thus it is given by

BΛΛ = −
[
M
(

A+2
ΛΛ Z

)
− M

(
AZ
)
− 2mΛ

]
, (1)

where M(· · ·) denotes the mass of the system which appears inside the brackets and mΛ

(1115.6 MeV) is the Λ mass. To learn about the nature of the ΛΛ interaction, it is usual
to define the magnitude ∆BΛΛ as

∆BΛΛ = BΛΛ − 2BΛ, (2)

where BΛ (> 0), given by

BΛ = −
[
M
(

A+1
Λ Z

)
− M

(
AZ
)
− mΛ

]
, (3)

is the binding energy of a hyperon Λ in the hypernucleus A+1
Λ Z. Neglecting saturation

effects, ∆BΛΛ is suppressed with respect to BΛΛ by one power of the nuclear mass number.

Data on Λ-proton scattering constitute an indirect source of information about the
ΛΛ interaction. Although the available hyperon-nucleon scattering data are scarce, this

1There has been some confusion about the exact nature of the event reported by Aoki. et. al. [7]. This
event was identified as 10

ΛΛ
Be or 13

ΛΛ
B, resulting, respectively, in a repulsive or attractive ΛΛ interaction.

However, the theoretical analysis of Yamamoto et. al. [24] and Dover et. al. [25] helped to discard the
possibility of 10

ΛΛ
Be, and thus it is commonly accepted an attractive nature for the ΛΛ interaction.
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information has been successfully used by the Nijmegen [43, 44], Jülich [45, 46] and
Tübingen [47, 48] groups to determine realistic hyperon-nucleon and thus also some pieces
of the hyperon-hyperon interactions. The Tübingen model is mainly a constituent quark
model supplemented in the long and intermediate range part by π and σ exchange; the
latter is treated as an SU(3) singlet, with a mass of 520 MeV. On the other hand, the
Nijmegen and Jülich models are based on meson exchange. In both models most of
the required intermediate range attraction is provided by the exchange of mesons in the
scalar-isoscalar channel.

The Jülich Y N interaction models have been constructed following the same ideas as
those used in the Bonn NN potential [49]. Thus, these models account for the interme-
diate range attraction by the exchange of a fictitious scalar-isoscalar meson, σ, with a
mass of about 600 MeV. The σ is not treated as a physical particle to which the SU(3)
relations should be applied, but merely as an effective description of correlated 2π and
KK̄-exchange processes. However, the Nijmegen group views the scalar-isoscalar inter-
action as generated by genuine scalar meson exchanges (S∗, δ, ǫ and κ). Then, the
SU(3) symmetry is used to relate the couplings of the above mesons to the nucleons and
hyperons.

Jülich and Nijmegen models, or some inspired in them, have been extensively used to
analyze single–Λ hypernuclei [15, 17, 21, 31, 33, 36].

Because the direct measurement of the ΛΛ scattering process is impractical due to
the lack of targets, the data on ΛΛ hypernuclei provide a unique method to learn details
on the ΛΛ interaction in the vacuum. Thus, since the first double−Λ hypernuclei were
discovered, suggestions to extract the vacuum ΛΛ interaction from these systems were
made [50]. Since then, many other authors have tried to shed light on this interesting
issue [16, 18, 24, 27, 28, 35, 37]. Near threshold (2mΛ) , the S (strangeness) = −2 baryon-
baryon interaction might be described in terms of only two couple channels [24]: ΛΛ and
ΞN . For two Λ hyperons bound in a nuclear medium and because of Pauli-blocking,
it is reasonable to think that the ratio of strengths of the ΛΛ → ΞN → ΛΛ and the
diagonal ΛΛ → ΛΛ (with no ΞN intermediate states) transitions is suppressed respect
to the free space case. This is explicitly shown for 6

ΛΛHe in Ref. [37]. Thus, the data
of double−Λ hypernuclei would mainly probe the free space diagonal ΛΛ element of the
ΛΛ−ΞN potential. In principle, some information about this piece can be extracted from
the hyperon-nucleon interaction models developed by the Nijmegen, Jülich and Tübingen
groups.

In references [16, 18] a variational approach and a α-cluster decomposition of the
considered nuclear cores (4He and 8Be) are used. However, neither the Nijmegen nor the
Jülich or Tübingen models for the ΛΛ interaction are used in these references. In Refs. [24,
27, 28, 37] different Nijmegen ΛΛ interactions are considered and G−matrix calculations
show that the double−Λ hypernuclei data favor the Nijmegen model D. Despite of the
success of Jülich type ΛN interactions to describe the structure of single–Λ hypernuclei
physics [21, 33, 36], double−Λ hypernuclei studies using Jülich ΛΛ one boson exchange
(OBE) potentials have not been performed yet.
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Other problems of great interest connected with the ΛΛ hypernuclear physics are the
possible existence of the S = −2 six quark H dibaryon [51, 52], and the breaking of SU(3)
symmetry in baryon-baryon interactions [53]. Six quarks bound states would explore new
dynamical features of the color interactions different to those accessible by means of the
study of normal mesons (qq̄) and baryons (qqq). The existence of ΛΛ bound states may
obstruct the experimental detection of the dibaryon H . On the other hand, some authors
have shown that the existence of double−Λ hypernuclei restricts the feasibility of a long-
living H dibaryon [54].

The experimental community has also invested a lot of effort in the subject, partially
aimed to discover the H particle (see Refs. [8]-[10]). Both at KEK and at BNL facilities,
cascade particles (Ξ−) are being produced by means of the (K−, K+) reaction and then
stopped in matter to produce S = −2 nuclei. At KEK it is planned [9] to increase
the number of stopped Ξ− events by roughly a factor 10 with respect to the experience
of Refs. [7, 8], where the double−Λ hypernuclei 13

ΛΛB was first discovered. At BNL the
reaction

Ξ− AZ → A
ΛΛ (Z − 1) n, (4)

will be used to produce light and medium double−Λ hypernuclei [10, 11].

This work is the first of a series of two where we aim to describe the ΛΛ interaction,
both inside of the nuclear medium and in the vacuum. In this first work we find the effec-
tive ΛΛ potential in the medium. Elsewhere we study the nuclear medium modifications
of the ΛΛ interaction and from this study and the effective potential obtained here we
will try to extract the ΛΛ interaction in the free space, including its spin dependence [55].

In this paper, we take the Jülich model for the interaction between the two Λ hyperons
and fit its parameters to the binding energies of the three experimentally known double−Λ
hypernuclei. This model does not account for ΞN intermediate states. Thus, the ΛΛ diag-
onal interaction parameters fitted here, might effectively include some contributions from
this non-elastic intermediate channel, though we expect them to be reasonably small,
as discussed above. We use three different approaches: perturbative, Hartree-Fock and
variational, and find that, though the first two are practically equivalent, the inclusion of
ΛΛ correlations in the variational scheme leads to significant differences and a better un-
derstanding of the dynamical features of the system. We also study the sensitivity of the
hypernuclear data to the cutoff masses, used in the Jülich model for the ΛΛ interaction,
and also examine potentials with dynamical breaking of the SU(3) symmetry. Thus, we
end up with a whole family of potentials describing the ground state binding energy of
the three known double−Λ hypernuclei. With the aim of trying to distinguish between
the different potentials, we calculate the mesonic decay width of boron double−Λ hyper-
nuclei. Finally, we predict binding energies and mesonic widths of heavier hypernuclei,
not detected yet, we discuss the possible existence of ΛΛ bound states and devote a few
words to relate the free space ΛΛ interaction to that found in this work.

The paper is organized as follows. Our approach to the double−Λ hypernuclei is
described in Sect. 2, including the details on the ΛΛ interaction. In Sect. 3 our model to
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the mesonic decay of double−Λ hypernuclei is discussed. Results are presented in Sect. 4,
which is split in different subsections: “Λ-core potentials”, “ΛΛ interaction: Hartree-Fock

results”, “Perturbative approach”, “ΛΛ interaction: variational results”, “Contribution of

the φ−exchange” , “Mesonic decay and binding energies of double−Λ hypernuclei” and
“Nuclear medium and free space ΛΛ interactions.” Finally in Sect. 5 we present our
conclusions. In addition, there is an appendix, where we give some of the needed matrix
elements within the variational scheme.

2 Model for the Double−Λ Hypernuclei

We approximate the double−Λ hypernuclei by systems composed by two interacting Λ’s
moving in the mean field potential created by the nuclear cores (VΛA). Thus, we solve


∑

i=1,2


−

~∇2
i

2µA
+ VΛA(~ri)


+ VΛΛ(~r1 − ~r2) −

~∇1 · ~∇2

MA
+ BΛΛ


ΦΛΛ(~r1, ~r2) = 0, (5)

where MA and µA are the nuclear core and the Λ-core reduced masses respectively,
ΦΛΛ(~r1, ~r2) is the wave–function of the ΛΛ pair and the ~∇1 · ~∇2 piece is the Hughes-
Eckart (HE) term [56]. The spin dependence in the equation above is implicit in the
operators and wave–function. The Λ-nuclear core potential, VΛA, is adjusted to repro-
duce the binding energies of the corresponding single–Λ hypernuclei and a σ-ω meson
exchange potential is used for the ΛΛ interaction in the medium, VΛΛ. More details will
be given in the next subsections.

In this approximation we neglect the dynamical re-ordering effect in the nuclear core
due to the presence of the second Λ and assume that both hyperons move in the same
mean field as one single hyperon does. Both, the ΛΛ interaction and this re-ordering
of the nuclear core, contribute to ∆BΛΛ. However, the latter effect is suppressed with
respect to the former by one power of the nuclear density, which is the natural parameter
in all many body quantum theory expansions [57]. Thus, we expect the nuclear core
dynamical re-ordering effects to be of the order of ∆BΛΛ/A, that is to say around 0.5
MeV for beryllium and boron and around 1 MeV for helium. However, in view of the
large binding and incompressibility of an α particle, it is reasonable to think that the
nuclear-core distortion effects in helium will not be as large as the naive estimate given
above. Thus, we will assume an uncertainty of the order of 0.5 MeV in all hypernuclei
due to these effects, which is of the order of the experimental errors of BΛΛ reported in
Table 1. This lack of our model will be translated into an increase of the size of the
systematic error of our determination of the ΛΛ potential in the medium.

To take properly into account, in the boron region, the effects due to dynamical re-
ordering in the nuclear core is out of the scope of this paper. Indeed, it would likely require
the use of variational montecarlo techniques to solve the system of A + 2 interacting
particles and the use of realistic NN , ΛN and ΛΛ interactions. The only attempt to
take partially into account these effects can be found in Refs. [16, 18, 50] for the case of
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10
ΛΛBe. There, the 8Be nuclear core is described in terms of two interacting α particles
and the corresponding four-body (ααΛΛ) problem is solved and it is found that nuclear
core polarization effects change BΛΛ by about 0.5 MeV, in agreement with our previous
estimate based in qualitative arguments. This model, however, is difficult to use for any
other nuclear core that beryllium.

Note also that the HE term, which naturally appears in our framework, contributes
to ∆BΛΛ and accounts for the variation of the core–kinetic energy due to the presence
of the second Λ. As we will see, this piece improves the simultaneous description of an
extremely light hypernucleus, as helium, and not as light ones, as beryllium or boron.

Taking into account Fermi statistics for the system of two identical Λ’s, the most
general wave function in the 1S0 channel is given by

ΦΛΛ(~r1, ~r2) = K [f(r1, r2, r12) + f(r2, r1, r12)] χS=0, (6)

where K is a normalization constant, r12 = |~r1 − ~r2| and χS=0 represents the spin-singlet.

It is also interesting to define the density of probability, P(r12), of finding the two Λ
particles at relative distance r12. This is given by

P(r12) =
∫

d 3r1

∫
d 3r2 δ (|~r1 − ~r2| − r12) |ΦΛΛ(~r1, ~r2)|2 . (7)

We apply both the Hartree-Fock (HF) and variational (VAR) approximations to solve
Eq. (5).

In the HF approach, the wave function of the two Λ’s is given by

ΦHF

ΛΛ
(~r1, ~r2) = φΛ(~r1) φΛ(~r2) χS=0, (8)

φΛ(~r) = RΛ(r) Y00(r̂), (9)

where Ylm(r̂) are the spherical harmonics and RΛ(r) represents the mono-particle radial
wave function which is obtained using a self-consistent procedure [56].

In the VAR approach we allow for a wider family of wave–functions ΦΛΛ(~r1, ~r2), in-
cluding r12−correlations. In analogy with calculations on the atomic three–body prob-
lem [58] – [61], we use a series of standard Hylleraas type wave functions [62] to expand
the wave–function of the two Λ’s system. Thus, our ansatz for the wave function is

ΦVAR

ΛΛ
(~r1, ~r2) =

[
∞∑

abc

Cabc(r
a
1r

b
2 + rb

1r
a
2) rc

12 exp {−α(r1 + r2)}
]

χS=0, (10)

with α a real parameter, a, b, c non–negative integer numbers and a ≤ b. Note that, even
in the case c = 0, where no correlations of the type r12 are included, this variational
scheme does not reduce to the HF one because our ansatz of Eq. (10) can not be always
gathered as the product of a function which depends only on the radial coordinate r1 times
the same function of the radial coordinate r2. We would like to mention that, though
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the expected value of the HE term is zero in the HF ground state, it is not when VAR
wave–functions, with explicit dependence on r12, are used.

For practical purposes, the latter series should be truncated and following the findings
in atomic physics [59] we choose to fix

a + b + c ≤ N, (11)

Thus, the integer number N determines the dimension, NEL, of our basis2. The unknown
parameters, α and Cabc, are to be determined to give the lowest value of the energy. The
linear parameters Cabc are obtained by solving a generalized eigenvalue problem [63], while
to find the non-linear parameter α one needs to use a standard numerical minimization
algorithm. We have performed calculations up to N = 10 for which we estimate that
the uncertainties in the determination of the binding energies, BΛΛ, are one order of
magnitude smaller than their experimental errors. Our ansatz for ΦVAR

ΛΛ
and N = 10

consists of 161 terms. In atomic physics with such a basis one gets precisions of the order
of 10−6, [60, 61], much better than those obtained here. That is because the ratio between
the mass of the orbiting particles and the mass of the nuclear core is much more bigger
here than in the case of two electrons bound systems. The accuracy could be improved
by allowing for different exponential behaviors for the radial coordinates r1 and r2 and
symmetrizing the resulting wave function [64].

In the VAR approach, each of the Λ particles is orbiting around the nuclear core not
only in the l=0 wave, as in the HF case. Indeed, if the angular momenta of the two Λ’s
are coupled to give zero total angular momentum (~L = ~l1 + ~l2 = ~0), any Λ-nuclear core
orbital angular momentum is permitted. Of course, the only possibility is that both Λ’s
have the same orbital angular momentum, l1 = l2 = l, with respect to the nuclear core.

Given a wave function for the two Λ’s system ΦΛΛ(r1, r2, r12), the probability, Pl, of
finding each of the two particles with angular momentum l and coupled to L = 0 is given
by

Pl = 4π2(2l + 1)
∫ +∞

0
dr1 r2

1

∫ +∞

0
dr2 r2

2

∣∣∣∣
∫ +1

−1
dµ Pl(µ)ΦΛΛ(r1, r2, r12)

∣∣∣∣
2

, (12)

where Pl is the Legendre Polynomial of order l and µ is the cosine of the angle between
the vectors ~r1 and ~r2, being r12 = ( r2

1 + r2
2 − 2r1r2µ)

1
2 .

In Refs. [16] and [18], the problem of double−Λ hypernuclei using a variational ap-
proach was also addressed. However, the configuration space for the trial wave function
(ΦVAR

ΛΛ
), used in these references to describe the ΛΛ relative motion, is much more reduced

than the one used in this work.

2NEL is given by

NEL =





1

24
(2N3 + 15N2 + 34N + 24) N even

1

24
(2N3 + 15N2 + 34N + 21) N odd
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With a basis of the size of the one used here, one needs to compute more than twenty
five thousand matrix elements of the Hamiltonian, for each value of α. Furthermore, be-
cause of the non-orthogonality of the chosen basis there exist large numerical cancelations
in the linear parameters (Cabc) minimization process and it is necessary to have analytical
expressions for the matrix elements. These can be found in the Appendix.

2.1 Model for the ΛΛ Interaction

Given the quantum numbers of the Λ particle, the lightest carriers of the strong interaction
between two Λ’s, in the scalar-isoscalar and vector-isoscalar channels, are the σ (I =
0, JP = 0+) and ω (I = 0, JP = 1−) mesons, respectively. As it was mentioned in
the introduction, the σ is not treated as a physical particle, but merely as an effective
description of correlated 2π and KK̄-exchange processes, as it is done in the context of
the Jülich models for Y N interaction [45, 46]. The η and η′ meson exchanges lead to a
ΛΛ potentials in the pseudoscalar-isoscalar channel which contributions are negligible at
low momentum transfers 3, and are not considered in the context of the Jülich models for
Y N interaction [45, 46]. Thus, we will not consider those in this work.

In the spirit of the Bonn-Jülich potentials, we should also study the exchange of the
φ (I = 0, JP = 1−) meson. In Ref. [35], where the Nijmegen model D contributions of
different mesons are studied and compared for the 1S0 ΛΛ system, it is shown that the
contribution next in importance to that of the σ and ω mesons is the φ− exchange, being
its contribution attractive. By taking the so-called “ideal” mixing angle (tan θv = 1/

√
2),

the φ meson comes out as a pure ss̄ state and thus in Refs. [45, 46] a vanishing φNN
coupling is required. This provides a relation between the singlet and octet couplings,
which determines the φΛΛ couplings in terms of the ωΛΛ ones.

The mass of the φ meson is significantly larger (mφ = 1019.41 MeV) than those of
the σ and ω mesons. Then its contribution will be relevant at very short distances, where
any potential model based on meson exchanges suffers of some uncertainties which are
translated into the inclusion of form-factors and uncertainties in the precise values and
shapes of them. To explore the dynamics at short distances one needs high momentum
transfers, thus though one might expect the φ−exchange to be relevant in scattering
processes at large energies and scattering angles, it is also reasonable to think that such
contribution is much less relevant to study the dynamics of a ΛΛ pair below threshold.
Furthermore, because the φ meson does not couple to nucleons within the Bonn-Jülich
model, its contribution was not taken into account in their phenomenological studies of the
NN and Y N scattering data. Thus, we count with any empirical determination neither
of the φNN nor of the φΛΛ form-factors. We have checked that the importance of the
φ−exchange in the 1S0 ΛΛ system at threshold is small and, depends strongly on the used
form-factor, as one could expect. Taking as reference the cutoff used for the ω−exchange,
we find that small changes in the cutoff lead to big changes in the small role played by the
φ meson in double−Λ hypernuclei. Given that we count with only three piece of data, that

3 This is explicitly shown in Refs. [35, 44] also for the Nijmegen model D.
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we expect the φ− exchange contribution to be small and furthermore is not completely
determined by that of the ω− exchange and thus its inclusion would require additional
free parameters, we will not include the φ− exchange from the beginning. We will try to
keep our model for the effective ΛΛ interaction in the medium reasonably simple, and thus
we will construct it in terms only of σ− and ω−exchanges. In any case, in Subsect. 4.5
we will discuss qualitatively and quantitatively the influence of the φ−exchange in the
results presented through the paper.

Apart from single meson exchanges, in principle, one should also include the ΛΛ −
ΞN coupling, as mentioned in the Introduction. For simplicity, we will first ignore this
possibility. The possible contribution of this coupled channel and that of the φ meson
exchange (and that of heavier mesons, not explicitly mentioned in this discussion) will be
in any case accounted for in the obtained effective coupling constants of the considered σ
and ω exchanges. We will comment on this when we try to link the effective ΛΛ interaction
obtained in this work, from the double−Λ hypernuclei data, to the interaction in the free
space.

The couplings of the σ and ω mesons to the Λ are described by the following interaction
Lagrangians [36, 45]:

LσΛΛ = gσΛΛΨ̄Λ(x)φσ(x)ΨΛ(x), (13)

LωΛΛ = gωΛΛΨ̄Λ(x)γµφµ
ω(x)ΨΛ(x) +

fωΛΛ

4mN

Ψ̄Λ(x)σµνΨΛ(x) (∂µφν
ω(x) − ∂νφµ

ω(x)) (14)

where we have used mN = 938.926MeV for the nucleon mass. ΨΛ, φσ and φω are the
Λ, σ and ω fields, γµ are the Dirac matrices and σµν = i[γµ, γν ]/2. The parameter fωΛΛ

accounts for the tensorial part of the ωΛΛ coupling.

The ΛΛ OBE potential in configuration space is obtained via Fourier transform from
the ΛΛ Feynman amplitudes4 obtained from the above Lagrangians and reads [49]

Vσ(mσ, r) = −g2
σΛΛ

4π
mσ

{[
1 − 1

4

(
mσ

mΛ

)2
]
Y (mσr)

+
1

4m2
Λ

[
∇2Y (mσr) + Y (mσr)∇2

]
+

1

2
Z1(mσr) ~L · ~S

}
, (15)

Vω(mω, r) =
g2

ωΛΛ

4π
mω

{[
1 +

1

2

(
mω

mΛ

)2
]
Y (mωr) − 3

4m2
Λ

[
∇2Y (mωr) + Y (mωr)∇2

]

+
1

6

(
mω

mΛ

)2

Y (mωr) ~σ1 · ~σ2 −
3

2
Z1(mωr) ~L · ~S − 1

12
Z(mωr)S12

}
+

+
1

2

gωΛΛfωΛΛ

4π
mω

mΛ

mN

{(
mω

mΛ

)2

Y (mωr) +
2

3

(
mω

mΛ

)2

Y (mωr) ~σ1 · ~σ2

4A non-relativistic expansion of the amplitudes is performed, keeping only up to quadratic terms in
momenta over baryon masses.
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− 4Z1(mωr) ~L · ~S − 1

3
Z(mωr)S12

}

+
f 2

ωΛΛ

4π

(
mΛ

mN

)2

mω

{
1

6

(
mω

mΛ

)2

Y (mωr) ~σ1 · ~σ2 −
1

12
Z(mωr)S12

}
, (16)

Y (x) =
e−x

x
, ∇2 =

1

r

d2

dr2
r −

~L
2

r2
, (17)

where mσ (ω) is the σ (ω) meson mass for which we take 550 (782.6) MeV. The operators

~σ, ~S, ~L and S12 are the Pauli matrices, total spin and angular momentum and the second
order rank spin tensor operator respectively. Finally, the functions Z, Z1 can be found
in [49].

The potentials should also contain form factors describing the extended hadron struc-
ture. Although they in general depend on all the three four-momenta involved at the
vertex, they are usually parameterized in a simple form depending only on the four-
momentum, q, of the exchanged meson. Taking a monopolar form and neglecting the
energy transfer dependence at the vertex [49, 45], we use form factors of the type

Fα(~q ) =
Λ2

αΛΛ − m2
α

Λ2
αΛΛ + ~q 2

, (18)

where the α symbol stands for σ or ω.

The use of the given form factor at each vertex leads to the following extended ex-
pressions for the potentials:

Vα(r) = Vα(mα, r) −
{

Vα(z, r) − (Λ2
αΛΛ − m2

α)

2ΛαΛΛ

∂Vα(z, r)

∂z

}

z=ΛαΛΛ

. (19)

Furthermore, for the 1S0 channel, in which we will be interested in this work, one can
replace

~σ1 · ~σ2 → −3, (20)

~L · ~S → 0, (21)

S12 → 0. (22)

Thus, finally and after including the above substitutions, the ΛΛ potential reads

V L=S=0
ΛΛ (r) = V L=S=0

σ (r) + V L=S=0
ω (r), (23)

where

V L=S=0
σ (r) = −g2

σΛΛ

4π
mσ

{
Ỹ(σ, r) +

1

2m2
Λ

[(
~∇Ỹ(σ, r)

)
L
· ~∇ + Ỹ(σ, r)∇2

]}
, (24)

V L=S=0
ω (r) =

mω

4π

{
ĝ2

ωΛΛỸ(ω, r) +
(g2

ωΛΛ − ĝ2
ωΛΛ)

m2
ω

(Λ2
ωΛΛ − m2

ω)2

2mωΛωΛΛ

e−ΛωΛΛ r

− 3g2
ωΛΛ

2m2
Λ

[(
~∇Ỹ(ω, r)

)
L
· ~∇ + Ỹ(ω, r)∇2

]}
. (25)
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Vertex gα/
√

4π fα/
√

4π Λα (GeV)

ωΛΛ 2.981 −2.796 2
σΛΛ 2.138 − 1

Table 2: Coupling constants gα, fα and cutoff masses Λα found in Ref. [46] for model Â.

The subindex L means that the operator ~∇ only acts on the function Ỹ(α, r). On the
other hand, ĝ2

ωΛΛ and Ỹ(α, r) are given by

ĝ2
ωΛΛ = g2

ωΛΛ − 1

2

(
mω

mΛ

)2
(

3g2
ωΛΛ

2
+

mΛ

mN
gωΛΛfωΛΛ +

(
mΛ

mN

)2

f 2
ωΛΛ

)
, (26)

Ỹ(α, r) = Y (mαr) −
{
1 +

r

2ΛαΛΛ

(
Λ2

αΛΛ − m2
α

)} ΛαΛΛ

mα
Y (ΛαΛΛr). (27)

The phenomenological Lagrangians of Eqs. (13) – (14) and form factors of the type
of Eq. (18) have been used in Refs. [45, 46] to describe ΛN elastic scattering data5. The
interactions of Ref. [46] are obtained from those in Ref. [45] by neglecting their small time
dependence and performing again a fit to the same set of data. The NN vertices are
taken from the Bonn potential [49]. The model Â of Ref. [46] leads to a ΛΛ potential
of the same form of that of Eqs. (15) – (16) and in Table 2 we give the values of the
coupling constants and cutoff masses found in this reference. Note that in Ref. [46], the
strength of the ωΛΛ coupling is fixed by means of the SU(6) symmetry (gωΛΛ = 2

3
gωNN

and fωΛΛ = 5
6
fωNN − 1

2
fρNN) and thus gσΛΛ, ΛσΛΛ and ΛωΛΛ are the only free parameters

adjusted to the empirical data. In that reference is also pointed out that the fit has little
sensitivity to the cutoff mass ΛσΛΛ.

In principle, in this work the free parameters would also be the coupling constants of
the σ (gσΛΛ) and ω (gωΛΛ and fωΛΛ ) mesons to the hyperon Λ and the cutoffs (ΛσΛΛ, ΛωΛΛ)
of the corresponding form factors. However, due to the limited set of data available to this
study, we fix ΛωΛΛ = 2 GeV and fωΛΛ = −2.796, as in Table 2. To check the sensitivity
of the hypernuclear data to gωΛΛ and ΛσΛΛ, we consider different families of potentials
obtained by using different values for the ratio gωΛΛ/gωNN above and below the SU(6)
prediction, 2/3, and taking for each value of the former ratio, two different values (1 and 2
GeV) of the cutoff ΛσΛΛ. Thus, for each potential we are left with just one free parameter,
gσΛΛ, which is obtained from a best χ2 fit to the values of BΛΛ reported in Table 1.

As we will see, there is a strong correlation between the parameters gσΛΛ and ΛσΛΛ,
and the quantity gσΛΛ×(1 − m2

σ/Λ2
σΛΛ) remains constant within approximately 10%. This

is due to the fact that for bound Λ particles in the double−Λ hypernucleus, the average

momentum transfered in the ΛΛ vertex is much smaller than the typical values (≈ 1

5In these references, it is not only studied the ΛN → ΛN process, but all hyperon-nucleon reaction
channels measured experimentally (ΛN → ΛN , ΣN → ΛN ′ and ΣN → Σ′N ′) using a coupled channel
formalism.
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GeV) of the cutoff mass. In these circumstances the form factor at the σΛΛ vertex can
be approximated by

Fσ(~q ) = 1 − m2
σ

Λ2
σΛΛ

+ O
(

~q 2

Λ2
σΛΛ

)
. (28)

Similar conclusions can be drawn in the case of gωΛΛ and ΛωΛΛ.

Finally, we would like to mention that the ΛΛ interaction determined in this work
corresponds to an effective interaction in the nuclear medium and it is not directly com-
parable with that of Ref. [46]. We will come back to this point in Subsect. 4.7.

2.2 Model for the Λ-Core Interaction

The detailed study of the Λ-nuclear core dynamics is not the aim of this paper. However,
we need to check the sensitivity of the parameters of the ΛΛ interaction, obtained from
an overall fit to the available BΛΛ data, to the used Λ-nuclear core potential. Thus, we
have considered different Λ-nucleus potentials suggested in the literature, which have been
adjusted to reproduce the binding energies BΛ of the single–Λ hypernuclei ground states.

In this subsection we will give details of the different Λ-core potentials used through
this work. All except for one are obtained from models to describe the dynamics of the ΛN
system. To obtain a Λ-nucleus potential (VΛA) from a ΛN interaction (VΛN) we fold the
latter with the corresponding nuclear density of the core. For closed–shell nuclear cores
and Λ particles in the ground state (1s

1
2 ), all the couplings involving the total angular

momentum ~L or spin couplings of the type ~σ1 · ~σ2 or S12 in the VΛN potential do not
contribute, and thus for this particular scenario the VΛA potential is given by

VΛA(r) =
∫

d3r′ρc(|~r − ~r ′ |)VΛN(r′), (29)

where ρc corresponds to the density for the centers of nucleons which is obtained from the
charge density by taking into account the finite size of the nucleon (for details see Sect. 4
of Ref. [68]).

A considerable amount of work has been devoted to the study of the mesonic decay of
the hypernucleus 5

ΛHe as a mean to investigate the repulsive part of the ΛN interaction.
Then, different types of Λ-4He potentials have been suggested in the literature [22, 29].
Among them we have selected two potentials, with (YNG) and without (ORG) a repulsive
part in the elementary ΛN interaction. These potentials are determined by the following
ΛN interactions:

VΛN(r)ORG = −38.19 e−(r/1.034)2 MeV, (30)

VΛN(r)Y NG =
[
919 e−(r/0.5)2 − 206.54 e−(r/0.9)2 − 9.62 e−(r/1.5)2

]
MeV. (31)

In all cases r is given in fermis. The parameters of the above interactions have been
adjusted to reproduce the ground state binding energy of the 5

ΛHe [22].

To perform a simultaneous analysis of the three double−Λ hypernuclei we are inter-
ested in, we have also considered other two Λ-core potentials.
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• In the spirit of the previous subsection for the ΛΛ dynamics, the first Λ-core potential
(SW) considered here, is obtained from an effective σ−ω exchange model to describe
the ΛN interaction given by

V σ
ΛN(mσ, r) = − ḡσΛΛgσNN

4π
mσY (mσr), (32)

V ω
ΛN(mω, r) =

mω

4π

{
ḡωΛΛgωNN − 1

4

(
m2

ω

mΛmN

)

×
(
ḡωΛΛgωNN − mΛ

mN
ḡωΛΛfωNN − gωNN f̄ωΛΛ

)}
Y (mωr). (33)

The potential above is a simplified version of the more general one described in
Eqs. (38) – (39) of Ref. [43]. Firstly, as we will mention below, we use monopolar
type form factors instead of Gaussian type form factors as it is done there. Secondly,
we have neglected all terms of order O

(
(mmeson/mbaryon)

4
)

and also all terms of

order O
(
m2

meson(m
2
Λ − m2

N)/m4
baryon

)
. Thirdly, we have neglected all type of spin

terms which will not contribute for closed–shell nuclear cores and Λ particles in
the ground state (1s

1
2 ). Finally, we have neglected non-local terms of the potential

which would be proportional to the Λ momentum squared over the product of the
Λ and nucleon masses (· · · (∇2φΛ(~r))/4mΛmN ). For a bound particle, one expects
these contributions to be quite small.

We do not consider potentials due to the exchange of strange mesons (K, K∗, · · ·),
which though relevant to describe the ΛN scattering process [43, 46], contribute to
the binding energy only as Fock terms and thus are suppressed at least by a 1/A
factor. In Ref. [14] these Fock contributions were evaluated and found to be small.

To take into account the finite size of the baryons involved at the vertices, monopolar
form factors are used here as well. In coordinate space the inclusion of form factors
is implemented by means of the substitution [49]

V α
ΛN(r) = V α

ΛN(mα, r) − Λ2
αNN − m2

α

Λ2
αNN − Λ2

αΛΛ

V α
ΛN(ΛαΛΛ, r)

+
Λ2

αΛΛ − m2
α

Λ2
αNN − Λ2

αΛΛ

V α
ΛN(ΛαNN , r), (34)

where the α symbol stands for σ or ω. Thus, finally the ΛN potential reads

V SW
ΛN (r) = V σ

ΛN(r) + V ω
ΛN(r). (35)

In principle, the couplings gωΛΛ, gσΛΛ and fωΛΛ introduced in Eqs. (15) – (16)
should coincide with those appearing in Eqs. (32) – (33), and denoted there with
an overline. However, these couplings might be significantly different, because in
both cases we are dealing with effective interactions (ΛΛ or ΛN ) which parameters

12



Vertex gα/
√

4π fα/
√

4π Λα (GeV)

ωNN 4.472 0 1.5
σNN 2.385 − 1.7

Table 3: Coupling constants gα, fα and cutoff masses Λα for the NN vertices. Values are taken
from Ref. [49].

also account for some contributions (φ−exchange, intermediate states: ΞN , ΣN ,
etc..) not explicitly included. Furthermore, these effective interactions are affected
by renormalization effects due to the nuclear medium, which could be significantly
different for each interaction. On top of that, as we mentioned above, some non-
localities and Fock contributions have been neglected in the treatment of the Λ-core
interaction, and their effect, though presumably small, could affect the value of
the effective couplings in Eqs. (32) – (33). Thus, to avoid confusions with the
ΛΛ couplings, we denote with an overline those couplings which appear in the ΛN
potential.

In Eqs. (33) – (34) we fix the ωΛΛ coupling parameters to the values given above
in Table 2. The ωNN and σNN coupling parameters are taken from the Bonn
potential [49] and compiled here in Table 3. Finally, for each hypernucleus (A+1

Λ Z)
we fit ḡσΛΛ to reproduce the ground state binding energy, using two values, 1 (SW1)
and 2 GeV (SW2), for the cutoff parameter ΛσΛΛ, as we discussed in the previous
subsection.

• The second Λ-nuclear core potential (BOY) considered, is phenomenological and it
is not based on any model for the ΛN interaction. It was suggested long time ago
for medium nuclei by A. Bouyssy [13]. It has only one parameter, V0, which we
adjust for each hypernucleus (A+1

Λ Z) to reproduce the ground state binding energy.
The potential reads:

VBOY
ΛA (r) =

V0

1 + e(r−R)/a
,

R = 1.1 A
1
3 fm, a = 0.6 fm. (36)

A similar potential was also suggested in Ref. [19]. There, it is also shown that,
despite of not including a spin−orbit part, these type of potentials give also rea-
sonable descriptions of non s-wave Λ bound states, in agreement with the previous
findings of Ref. [12].

3 Mesonic Decay of Double−Λ Hypernuclei

The mesonic decay has been computed following the method exposed in Refs. [20] and [30]
which uses shell-model baryon wave functions and distorted pion waves. For light nuclei
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in the p shell, as boron, the low lying state structure might not be correctly represented
simply by unoccupied single–particle orbitals, and a residual interaction of the Cohen-
Kurath type [67] has been added. Reviews on the subject can be found in Refs. [34] and
[41]. We compute the decay widths corresponding to the following processes

A+2
ΛΛ Z →

(
A+2

ΛZ
)

b
+ π0, (37)

A+2
ΛΛ Z →

(
A+2

Λ(Z + 1)
)

b
+ π−, (38)

A+2
ΛΛ Z →

(
A+1

ΛZ
)

gs
+ n + π0, (39)

A+2
ΛΛ Z →

(
A+1

ΛZ
)

gs
+ p + π−, (40)

where b denotes that the remaining Λ is in the ground state and the outgoing nucleon is
in an unoccupied bound state of the daughter hypernucleus. On the other hand gs means
that the daughter hypernucleus is left on its ground state. In the two last reactions the
outgoing nucleon goes to the continuum.

We use a model in which the pionic decay is produced by a one-body operator

δH̃ΛπN = −Gm2
π

{
S − (

P

mπ
)~σ · ~q

}
τλ, (41)

where (Gm2
π)2/8π = 1.945 10−15, the constants S and P are equal to 1.06 and 0.527

respectively and mπ is the pion mass (139.6 or 135.0 MeV for π− or π0). Finally, ~q is
the momentum of the outgoing pion and the Pauli matrices ~σ and τλ act on the spin and
isospin Hilbert spaces respectively. The τλ operator in Eq. (41) implements the ∆T = 1/2
rule by means of which the rate of Λ → π−p is twice as large as that of Λ → π0n.

The vacuum Λ decay width is readily evaluated and leads for proton or neutron decay
to

Γ
(α)
free = C (α) (Gm2

π)2

4π

mN qcm

mΛ

{
S2 +

(
P

mπ

)2

q2
cm

}
, (42)

qcm =
λ1/2(m2

Λ, m2
N , m2

π)

2mΛ

, (43)

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz, (44)

with the isospin coefficients C (p) = 4 and C (n) = 2, and qcm the pion momentum in the
center of mass frame. One can see from Eq. (42) that the parity violating term, S, is the
dominant one in the decay.

To illustrate the main ingredients entering in the decay, we reproduce below the decay
width for any of the processes of Eqs. (37) – (40), in the simple shell–model case where
the spin–orbit splitting of the nuclear–core levels is not taken into account:

Γ (α) = C (α)
∑

N 6=F

∫
d 3q

(2π)3

1

2ω(q)
2πδ(mΛ − BΛΛ + BΛ − ω(q) − EN)(Gm2

π)2

×
{

S2

∣∣∣∣
∫

d 3x1

[∫
d 3x2ΦΛΛ( ~x1, ~x2)ϕ

∗
Λ( ~x2)

]
ϕ̃(−)

π (~q, ~x1)
∗ϕ∗

N( ~x1)

∣∣∣∣
2

+
(

P

mπ

)2 ∣∣∣∣
∫

d 3x1

[∫
d 3x2ΦΛΛ( ~x1, ~x2)ϕ

∗
Λ( ~x2)

]
~∇1ϕ̃

(−)
π (~q, ~x1)

∗ϕ∗
N( ~x1)

∣∣∣∣
2
}

, (45)
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where ϕN and EN are the wave function and energy of the outgoing nucleon in the Λ
decay, ΦΛΛ is the wave–function of the ΛΛ pair, ϕΛ is the Λ wave function in the daughter
hypernucleus, ω(q) the pion energy, and the sum over N runs over the unoccupied nuclear
orbitals given by n and l since spin sums are already performed. In Eq. (45) the sums over
N are over proton or neutron orbitals according to α. Note that if the ΛΛ interaction and
the HE term were neglected and if BΛΛ were replaced by 2BΛ in the energy conservation
delta, then Eq. (45) would yield a width of twice the corresponding one for the decay of
a Λ in a single–Λ-hypernucleus.

The corresponding expression for the decay width when the spin–orbit splitting of the
nuclear–core levels is considered, can be easily deduced from Eqs. (6)-(15) of Ref. [20].

The pion wave function (ϕ̃(−)
π (~q, x)∗) as a block corresponds to an incoming solution

of the Klein Gordon equation,

[
−~▽2

+ m2
π + 2ω(q)Vopt(~x)

]
ϕ̃(−)

π (~q, ~x)∗ = (ω(q) − VC(~x))2ϕ̃(−)
π (~q, ~x)∗, (46)

with VC(~x) the Coulomb potential created by the nucleus considering finite size and
vacuum polarization effects and Vopt(~x) the optical potential which describes the π-nucleus
interaction. This potential has been developed microscopically and it is presented in detail
in Refs. [68, 69]. It contains the ordinary lowest order optical potential pieces constructed
from the s– and p–wave πN amplitudes. In addition second order terms in both s– and
p–waves, responsible for pion absorption, are also considered. Standard corrections, as
second-order Pauli re-scattering term, ATT term, Lorentz–Lorenz effect and long and
short range nuclear correlations, are also taken into account. This theoretical potential
reproduces fairly well the data of pionic atoms (binding energies and strong absorption
widths) [68] and low energy π-nucleus scattering [69].

The Λ wave function in the daughter hypernucleus, ϕΛ, is computed using the Λ-
core potentials described in Subsect. 2.2. For the nucleons we have used the following
potential [70]

V (r) =
−50 MeV

1 + exp[(r − R)/a]
, (47)

with R = 1.25A1/3 fm, a = 0.65 fm, which provides a fair reproduction of the nuclear
levels for the average energy of major shells, as well as realistic nucleon wave functions.

Because, the strength of the spin–orbit force is small in the boron region (about 4
MeV), we will neglect it, and to calculate the mesonic decay of the 13

ΛΛB hypernucleus
we will use the potential of Eq. (47) and Cohen-Kurath spectroscopic factors [71] for
the 1p−shell. Those are obtained from effective interactions for the 1p−shell deduced in
Ref. [67] by fitting different nuclear energy levels. Thus, the contribution to the mesonic
width of the processes where the outgoing nucleon is trapped in the 1p−shell is computed
as follows. The initial state consists of seven nucleons in the 1p−configuration6 plus two

6The 1s 1

2

−shell is full, and it behaves, in a very good approximation, as an inert core [72].
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Λ hyperons coupled to L = 0 = S, whereas the final state consists of eight nucleons in the
1p−configuration plus a Λ hyperon and a pion. The transition operator annihilates a Λ
hyperon and creates a nucleon in the 1p−configuration. To compute the nuclear matrix
elements involved in the mesonic decay, one needs the angular momentum–isospin reduced
matrix element of the nucleon creation operator, a†

ρ, between fully antisymmetric states
of n and n − 1 nucleons in the angular momentum–isospin configuration ρ and coupled
respectively to ΓR and Γi angular momentum and isospin quantum numbers. This is
given by [73],

〈ρnΓR|||a†
ρ|||ρn−1Γi〉√

n
√

2ΓR + 1
= 〈ρnΓR|}ρn−1Γi〉, (48)

where the reduced matrix element is defined by Eq. (A.3.a17) of Ref. [73] and 〈...|}...〉 are
the coefficients of fractional parentage. They are related to the spectroscopic factors, S,
by

S(ΓR; Γi, ρ) = n 〈ρnΓR|}ρn−1Γi〉2. (49)

After a little of Racah-algebra, one finds that the averaged modulus squared of the
nuclear matrix element (M) which determines the 1p−shell contribution to the decay
processes of Eqs. (37) – (38) is given by

∑

i

∑

f

|M|2 =

∑

JR,TR,αR,j

2JR + 1

(2Ji + 1)(2j + 1)
C(Ti,

1

2
, TR|τi, τR − τi, τR)2S(JR, TR, αR; Ji, Ti, gs, j)

×
∑

m,mΛs

∣∣∣∣
〈
Λ

1

2
mΛs

|δH̃ΛπN |Njm,
1

2
(τR − τi) ⊗ π ~q (αR)

〉∣∣∣∣
2

(50)

where Ji = 3/2, Ti = 1/2 and τi = −1/2 are the total angular momentum, isospin and
third isospin component quantum numbers of the initial nuclear core (11B), JR, TR and
τR = 0 for π− decay or −1 for π0 decay, are the corresponding quantum numbers for
the final nuclear core. In addition gs and αR stand for the ground state energy of the
11B core and the excitation energy of the final cores 12B∗ or 12C∗ and C is a Clebsch–
Gordan coefficient. On the other hand j, m and τR − τi determines the wave function of
the outgoing nucleon after the decay. The sum over the “R” quantum numbers gives us
the sum over p−shell excited states in the final nuclear core. For π− (π0) decay, we sum
the contribution of the eighteen (eight) excited states which spectroscopic factors and
energies are given in Table 17 (label: “Stripping for target A = 11 (3

2
, 1

2
)”) of Ref. [71].

Finally, |π ~q (αR)〉 and |ΛmΛs
〉 stand for the pion wave function in the continuum, being

its momentum determined by energy conservation, and the spectator Λ wave function,
being its spatial wave-function determined by the projection

7Note that in this table the origin of energies is that of the 12C ground state.
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〈ϕΛ(~x2)|ΦΛΛ(~x1, ~x2)〉 =
∫

d 3x2ΦΛΛ(~x1, ~x2)ϕ
∗
Λ(~x2). (51)

The matrix element of the interaction δH̃ΛπN in Eq. (50) is of the same type of that
given in Eqs. (6)-(15) of Ref. [20].

Further details of the calculation of the mesonic decay width as the treatment of the
outgoing nucleons in the continuum, the correct energy balance in the reaction, the correct
treatment of the quasielastic collisions of the outgoing pion, the procedure to perform the
d 3q and dΩ1 integrations, etc., can be found in Ref. [30].

Experimentally, what can be observed are the inclusive processes

A+2
ΛΛ Z → X + Λ + π0, (52)
A+2
ΛΛ Z → X + Λ + π−. (53)

The main contribution to these processes is given by the exclusive ones shown in Eqs. (37) –
(40). This can be seen by looking at the overlap integral defined in Eq. (51), which appears
in Eq. (45). If one uses HF wave functions for the ΛΛ pair and the pure spectator approx-
imation, in which the monoparticle wave function used to construct ΦHF

ΛΛ
coincides with

that of the Λ ground state in the daughter hypernucleus, then, due to the orthogonality
of the Λ wave functions, only those processes where the non-decaying Λ in the daughter
hypernucleus remains in the ground state will contribute. Even if these approximations
are not used, we have checked that those processes included in Eqs. (52) – (53) and not
included in Eqs. (37) – (40) represent less than 2-3% of the total. Therefore, in what
follows we will approximate the inclusive double−Λ hypernucleus mesonic decay widths
(to π0 or to π−) by those corresponding to the processes specified in Eqs. (37) – (40).

4 Results

Before we start discussing the results concerning double−Λ hypernuclei, we show briefly
the results for the Λ-core potentials described in the Subsect. 2.2.

4.1 Λ-Core Potentials

We have studied not only the three experimentally observed double−Λ hypernuclei. To
study the A dependence of ∆BΛΛ and the mesonic decay width, we have also consid-
ered the nuclear core closed–shell hypernuclei 42

ΛΛCa, 92
ΛΛZr and 210

ΛΛPb. Unfortunately, the
binding energies of the corresponding single–Λ hypernuclei (41

ΛCa, 91
ΛZr and 209

ΛPb ) are
not known and we have had to approximate them by the binding energies of the closest
hypernuclei known experimentally. Thus, we have used the experimental binding energies
corresponding to 40

ΛCa, 89
ΛY and 208

ΛPb. In Table 4 the binding energies, Λ-core reduced
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Hypernucleus Bexp
Λ [MeV] density A R (c) [fm] α (a [fm]) µA (MeV)

5
ΛHe 3.12±0.02 [1], [2] HO 4 1.358 0 858.6
9
Λ Be 6.71±0.04 [1] HO 8 1.77 0.631 970.4
12
Λ B 11.37±0.06 [1] HO 11 1.69 0.811 1006.1

40
Λ Ca 18.7± 1.1 [3]

41
Λ Ca 2pF 40 3.51 0.563 1083.17
89
Λ Y 22.0± 0.5 [4]

91
Λ Zr 2pF 90 4.84 0.55 1100.95

208
Λ Pb 26.5± 0.5 [4]

209
Λ Pb 2pF 208 6.624 0.549 1109.21

Table 4: Binding energies, charge densities ([74]), nuclear mass numbers, and Λ-core reduced
masses for several single–Λ hypernuclei used through this work. 2pF stands for a two parameter

Fermi density, ρ2pF(r) = ρ0/
(
1 + e(r−c)/a

)
, and HO stands for an harmonic oscillator density,

ρHO(r) = ρ0

(
1 + α (r/R)2

)
e−(r/R)2 . The density of nucleon centers, which appears in Eq. (29),

is obtained from the charge density by taking into account the finite size of the nucleon (for
details see Sect. 4 of Ref. [68]).

masses and details of the charge densities for all single–Λ hypernuclei considered in this
work can be found.

In Table 5, we show the binding energies and mean squared radius obtained for the
ground state of different single–Λ hypernuclei by using the Λ-core potentials described in
Subsect. 2.2. In this table we also give the parameters V0 and ḡσΛΛ fitted to the ground
state binding energy for each hypernucleus. We would like to make a few remarks:

• YNG and ORG potentials were only adjusted in Ref. [22] for 5
ΛHe. Thus, we will

restrict their use only to the case of helium.

• In the original work of Ref. [13] an overall fit to light-medium hypernuclei was
performed which provided a value of V0 = −32±2 MeV, which is in good agreement
with the values shown in Table 5.

• One might think that for the case of the σ − ω interaction with a cutoff ΛσΛΛ =
1 GeV, the fitted parameter ḡσΛΛ/

√
4π should coincide with the value found in

Ref. [46], 2.138, for hyperon-nucleon scattering in the vacuum. We find significantly
different values, 3.1-3.5, which may be due to the fact that we are dealing with
a medium interaction, that we have neglected Fock terms and some non-localities
which may be significant for light and heavy nuclei respectively, that we are using
a Λ-core potential designed for closed–shell cores, for some hypernuclei where this
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is not the case, and finally that we have not explicitly considered here the channel8

ΛN → ΣN which is included in the analysis of Ref. [46]. To trace back the origin
of this discrepancy is even more complicated when one realizes that, in both this
work and that of Ref. [46], for a given set of ω−couplings, what is determined is the
product of gσΛΛgσNN rather that the gσΛΛ− coupling alone. Hence, the observed
discrepancy could also be due to differences between the σNN coupling in the
vacuum and inside of the nuclear medium.

• In contrast to the findings of Ref. [46], our fits depend appreciably on the cutoff
parameter ΛσΛΛ. Indeed we find that the quantity ḡσΛΛ × (1 − m2

σ/Λ2
σΛΛ) remains

constant within approximately 2%, as we expected from our discussion in Eq. (28).
Despite of the fact that the latter quantity remains almost constant, for very light
hypernucleus as 5

ΛHe, the short-distance behavior of the potential depends strongly
on the specific value of the cutoff ΛσΛΛ, as can be seen in Fig. 1.

• Because of the folding in Eq. (29), the repulsive or attractive character at short
distances of the ΛN interaction can be appreciably seen in the Λ-core potential
only for very light hypernuclei as 5

ΛHe. This is clearly shown in Fig. 1, where one
can also see that for medium and heavy hypernuclei none of the Λ-core potentials
provide repulsion at short distances despite of the fact that some of them are being
constructed out of ΛN potentials with repulsive cores.

• For σ − ω type potentials, there is a strong cancelation between both components
of the interaction which is translated into a great sensitivity of the binding energy
to very small changes of the coupling constants, as the extremely small statistical
errors of the parameter ḡσΛΛ in Table 5 indicate.

4.2 ΛΛ Interaction: HF Results

In Table 6 we show, within the HF scheme, the parameter gσΛΛ obtained from a best fit
to the available BΛΛ experimental data (Table 1). The value of the ωΛΛ coupling is kept
fixed to gωΛΛ = 2gωNN/3 and we consider several Λ-core potentials and cutoff parameters
ΛσΛΛ. The χ2 by degree of freedom for each fit is also shown. YNG and ORG potentials
have been considered only for helium.

The fits using the ORG for helium and BOY for beryllium and boron Λ−core in-
teractions, provide the best χ2/dof (≈ 0.1) among all Λ−core interactions considered.
Anyhow, most of the fits presented in Table 6 with different Λ−core interactions are sta-
tistically acceptable, and in all the cases the differences in gσΛΛ from the different fits
are of the order of the statistical errors. Indeed, the fitted values of gσΛΛ only depends
significantly on the value of the cutoff parameter ΛσΛΛ. Thus, the ambiguities in the

8Though relevant far beyond the ΛN threshold, we expect the contribution of this new channel to
be small for Λ-bound states because of Pauli-blocking [32]. In any case it will contribute to the above-
mentioned difference between the gσΛΛ couplings.
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YNG ORG BOY SW1 SW2
ΛσΛΛ [GeV] 1 2

Hypernucleus
5
ΛHe BΛ [MeV] 3.12 3.10 3.12(2) 3.12(2) 3.12(2)

〈r2〉1/2[fm] 3.16 2.77 3.02(1) 3.12(1) 3.00(1)
par: −V0 or ĝσΛΛ 29.95(6) 3.4916(11) 2.5662(7)

9
ΛBe BΛ [MeV] 6.71(4) 6.71(4) 6.71(4)

〈r2〉1/2[fm] 2.46(1) 2.61(1) 2.533(5)
par: −V0 or ĝσΛΛ 28.02(7) 3.4389(16) 2.5436(12)

12
Λ B BΛ [MeV] 11.37(6) 11.37(6) 11.37(6)

〈r2〉1/2[fm] 2.216(3) 2.259(4) 2.183(3)
par: −V0 or ĝσΛΛ 31.98(10) 3.3938 (14) 2.506(1)

41
Λ Ca BΛ [MeV] 18.7 ± 1.1 18.7 ± 1.1 18.7 ± 1.1

〈r2〉1/2[fm] 2.47(3) 2.21(3) 2.26(3)
par: −V0 or ĝσΛΛ 29.7 ± 1.3 3.194(16) 2.390(12)

91
Λ Zr BΛ [MeV] 22.0(5) 22.0(5) 22.0(5)

〈r2〉1/2[fm] 2.91(1) 2.562(7) 2.645(8)
par: −V0 or ĝσΛΛ 28.9(5) 3.129(7) 2.353(5)

209
Λ Pb BΛ [MeV] 26.5(5) 26.5(5) 26.5(5)

〈r2〉1/2[fm] 3.588(7) 3.341(5) 3.428(5)
par: −V0 or ĝσΛΛ 30.7(5) 3.145(7) 2.371(5)

Table 5: Binding energies and Λ-mean squared radius obtained for the ground state of different
single–Λ hypernuclei by using the Λ-core potentials described in Eqs. (30), (31), (35) and (36).
In the case of the YNG and ORG potentials , we use the parameters given in Eqs. (30) and (31).
For the BOY potential we fit the parameter V0 (MeV) in Eq. (36) whereas for the SW1 and SW2
potentials, the best fit parameter is ĝσΛΛ = ḡσΛΛ/

√
4π in Eq. (32). The errors (in brackets) in

the fit parameters and in the mean squared radius are due to the experimental errors in the
binding energies which are being fitted to.
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Figure 1: Λ-core potentials (in MeV) for different hypernuclei. Solid lines correspond always to
the BOY or SW1 potentials. For 9

ΛBe and 209
Λ Pb, the dotted lines stands for the SW2 potential,

and for 5
ΛHe we also give the YNG and ORG potentials.
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Λ-core potential ΛΛ Interaction
4He 8Be - 11B ΛσΛΛ (GeV) gσΛΛ/

√
4π χ2/dof

BOY BOY 1 3.23 ± 0.03 1.2
ORG BOY 1 3.22 ± 0.03 0.09
YNG BOY 1 3.23 ± 0.03 3.0
SW1 SW1 1 3.27 ± 0.03 2.4
ORG SW1 1 3.25 ± 0.03 0.4
YNG SW1 1 3.27 ± 0.03 2.7
BOY BOY 2 2.37 ± 0.02 1.3
ORG BOY 2 2.36 ± 0.02 0.03
YNG BOY 2 2.37 ± 0.02 3.6
SW2 SW2 2 2.37 ± 0.02 2.1
ORG SW2 2 2.36 ± 0.02 0.6
YNG SW2 2 2.37 ± 0.02 4.1

Table 6: HF results for gσΛΛ obtained from a best fit to the BΛΛ data. The several rows
correspond to different Λ-core potentials and different values of the cutoff ΛσΛΛ. In all fits, the
ωΛΛ coupling is kept fixed to gωΛΛ = 2gωNN/3. The last column gives the χ2 by degree of
freedom for each fit. Errors are statistical and have been obtained by increasing the value of χ2

by one unit.

determination of the Λ-core potential do not constitute an important obstacle to learn
details about the ΛΛ interaction.

Fits using short distance repulsive Λ-helium core potentials (YNG or SW1) provide
significantly higher values of χ2/dof than those obtained when the ORG or BOY poten-
tials are used for helium. Besides, the only statistically significant contribution to the
χ2/dof comes from the helium datum. From this fact, one might conclude that short
distance repulsive potentials for helium are not favored by the experimental value of the
6

ΛΛHe binding energy. That contradicts the findings of Refs. [22, 29] where it was shown
that short distance repulsive Λ-helium potentials were favored by the experimental value
of the mesonic decay width of the 5

ΛHe hypernucleus. However it is difficult to draw any
firm conclusion because, as we will see in Subsect. 4.4, YNG and SW1 potentials for
helium are not so much statistically disfavored when r12−correlations are included in the
ΛΛ wave–function. The HE term in Eq. (5), which expected value vanishes for HF-type
wave–functions but does not when r12−correlations are included, improves the simulta-
neous description of an extremely light hypernucleus, as helium, and not as light ones, as
beryllium or boron.

For the sake of simplicity, when quoting our final HF results, we take for the central
value and its statistical error the results obtained with a BOY Λ−core interaction for all
hypernuclei9. The results obtained with the rest of the potentials are used to estimate
the size of the systematic error due to the Λ-core potential uncertainties. To be more

9The gσΛΛ values obtained when we use the ORG or BOY Λ-core potentials for helium are practically
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specific, for a given value of the cutoff mass ΛσΛΛ we take for this systematic error the
statistical dispersion between the different values of gσΛΛ obtained with each of the Λ−core
potentials. Besides we also include another systematic error to account for the dynamical
re-ordering effect in the nuclear core due to the presence of the second Λ, as we discussed
in Sect. 2 after Eq. (5).

Thus for the results of Table 6 corresponding to gωΛΛ/gωNN =2/3, we find

gσΛΛ/
√

4π =

{
3.23 ± 0.03 ± 0.02 ± 0.03 ΛσΛΛ = 1 GeV
2.37 ± 0.02 ± 0.01 ± 0.02 ΛσΛΛ = 2 GeV

(54)

where the first error is statistical and the second and third ones are the systematic errors
due to our uncertainties in the Λ−core potential and in our treatment of the dynamics
of the nuclear core, respectively. The latter one should account for an uncertainty of
about 0.5 MeV, as discussed in Sect. 2, in our theoretical determination of BΛΛ. For this
systematic error we have taken an error of the same size as the statistical one. Thus, the
inclusion of this error should account for an uncertainty of about 0.5 MeV (approximate
size of the typical errors of the experimental data for ∆BΛΛ) in our determination of the
total energies of the double−Λ hypernuclei. By adding all errors in quadratures, because
all of them come from totally uncorrelated sources, we finally obtain

gσΛΛ/
√

4π =

{
3.23 ± 0.05 ΛσΛΛ = 1 GeV
2.37 ± 0.03 ΛσΛΛ = 2 GeV

(55)

As mentioned above, in Ref. [46] the hyperon-nucleon scattering data were fitted with
gωΛΛ/gωNN =2/3, ΛσΛΛ = 1 GeV and gσΛΛ/

√
4π=2.138. This coupling constant is not

directly comparable with that in Eq. (55), because the one determined in this work cor-
responds to an effective interaction. We will give some more details in the Subsects. 4.5
and 4.7.

The ΛΛ potential used up to here has some non-localities, namely the terms propor-
tional to

· · ·
[(

~∇Ỹ(α, r)
)

L
· ~∇ + Ỹ(α, r)∇2

]
(56)

in Eqs. (24) and (25). Because of the small momentum of the Λ particles in the hypernuclei
and because these terms are suppressed by powers of (mmeson/mbaryon)

2, the contribution
of these non-localities is small. In order to have a local potential to be plotted, we have
dropped out these terms and redone the fits. We find fits of similar quality to those
obtained with the non-local ΛΛ interaction and values of gσΛΛ smaller than the previous
ones by less than about 0.5%, indicating that the effect of the non-local terms is negligible.

In Fig. 2, we analyze the dependence of the ΛΛ interaction on the value of the ωΛΛ
coupling parameter, gωΛΛ, and the cutoff ΛσΛΛ. We show different local ΛΛ potentials,

the same, and they only differ by less than one third of the statistical error of any of them. Thus, we
have decided to quote those results obtained from a BOY Λ−helium core interaction in order to be able
to use the same Λ−core potential for all hypernuclei studied in this paper.

23



obtained from best fits to the data. Despite the different shape and magnitude of the
interactions shown in the figure, all of them give values for χ2/dof of the order of 1,
indicating the goodness of the fits and the impossibility of selecting any of them only by
means of the binding energies, BΛΛ. The greater the parameter gωΛΛ, the smaller the
statistical and systematic errors in the fitted parameter gσΛΛ are. Thus, the systematic
(statistical) errors due to the uncertainty in the Λ-core potential vary from 2% (2%) for
gωΛΛ/gωNN =1/3, to 0.2% (0.3%) for gωΛΛ/gωNN =4/3. Also the χ2/dof values decrease
moderately for increasing values of the ratio gωΛΛ/gωNN .

As can be seen in Fig. 2 for a fixed value of the cutoff ΛσΛΛ, all potentials coincide at
the same point. That implies10 that there is a linear correlation between the couplings
g2

σΛΛ, ĝ2
ωΛΛ , defined in Eq. (25), and (ĝ2

ωΛΛ − g2
ωΛΛ). Indeed we find excellent fits of the

couplings to a dependence of the type

g2
σΛΛ = a + b × ĝ2

ωΛΛ + c × (g2
ωΛΛ − ĝ2

ωΛΛ), (57)

with approximately similar values for the parameters b and c, and certainly compatible
within the statistical errors. Thus, there is an accidental cancelation of the dependence
of Eq. (57) on ĝ2

ωΛΛ. To take advantage of this fact, we perform a two parameter fit and
we find

g2
σΛΛ

4π
=





(2.97 ± 0.19) + (0.830 ± 0.011) × g2
ωΛΛ

4π
, χ2/dof = 0.01, ΛσΛΛ = 1 GeV

(1.58 ± 0.09) + (0.448 ± 0.005) × g2
ωΛΛ

4π
, χ2/dof = 0.02, ΛσΛΛ = 2 GeV

(58)
for our local family of potentials.

For the the full non-local ΛΛ potential, we find

g2
σΛΛ

4π
=





(3.00 ± 0.19) + (0.836 ± 0.011) × g2
ωΛΛ

4π
, χ2/dof = 0.02, ΛσΛΛ = 1 GeV

(1.58 ± 0.09) + (0.454 ± 0.005) × g2
ωΛΛ

4π
, χ2/dof = 0.02, ΛσΛΛ = 2 GeV

(59)

To perform the fits in both the local (Eq. (58)) and non-local (Eq. (59)) cases, we add
in quadrature, for each value of gωΛΛ, the statistical and systematic errors of the fitted
parameter gσΛΛ.

We would like also to mention that, here again, as we expected after our discussion in
Eq. (28), and in contrast to the findings of Ref. [46], there is a strong correlation between
the parameters gσΛΛ and ΛσΛΛ and the quantity gσΛΛ × (1 − m2

σ/Λ2
σΛΛ) remains constant

within approximately 3%. This means that, within the HF frame of the analysis of ΛΛ
hypernuclei, the use of different cutoffs ΛσΛΛ only amounts to redefine the gσΛΛ coupling.
Then the point at which the potentials coincide is approximately the same for both sets
of ΛΛ potentials (ΛσΛΛ = 1 GeV and ΛσΛΛ = 2 GeV), as can be seen in Fig. 2.

10Let us suppose that the point where all potentials coincide is r0 and the common value of the potential
is V0. Then one finds

V0 = V L=S=0

σ (r0) + V L=S=0

ω (r0),

equation which automatically provides a linear relation between the couplings g2
σΛΛ

, ĝ2
ωΛΛ

and (ĝ2
ωΛΛ

−
g2

ωΛΛ
).
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Figure 2: Different 1S0 ΛΛ potentials, obtained from fits to BΛΛ. Left (right) figures correspond
to results obtained within the HF (VAR) approach. In all figures the five curves correspond to
the values 1/3, 1/2, 2/3, 1 and 4/3 for the ratio gωΛΛ/gωNN . The cutoff mass ΛσΛΛ is 2 GeV
(top) or 1 GeV (bottom). We have used a local ΛΛ potential, as described in the text after
Eq. (56). BOY Λ-core potentials were used in all cases.
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ΛσΛΛ = 1 GeV ΛσΛΛ = 2 GeV

gωΛΛ/gωNN
gpert

σΛΛ−gHF
σΛΛ

gHF
σΛΛ

(%) stat[gHF
σΛΛ] (%)

gpert
σΛΛ−gHF

σΛΛ

gHF
σΛΛ

(%) stat[gHF
σΛΛ] (%)

1/3 5.2 1.8 5.9 1.8
1/2 3.2 1.2 3.7 1.2
2/3 1.9 0.9 2.5 0.8
1 0.7 0.5 1.0 0.5

4/3 0.3 0.3 0.4 0.3

Table 7: Comparison of perturbative (pert) and HF results for different types of ΛΛ interaction
(the small non-local terms have been neglected). BOY Λ-core potentials have been used for all
hypernuclei. The columns labelled by stat[gHF

σΛΛ] stands for the statistical error (in percentage)
of the fitted parameter gHF

σΛΛ.

4.3 A Perturbative Approach

The fact that the quantity ∆BΛΛ/2BΛΛ is smaller than one for all hypernuclei considered
in this work has made us to explore the possibility of using a perturbative scheme. Sur-
prisingly, we find that in a good approximation the ΛΛ potential, VΛΛ, can be treated
perturbatively, as the results of Table 7 indicate. In this table, we compare the HF-local
results of Eq. (58) with those obtained from best fits to the data using the approximation

∆BΛΛ = −
〈

VΛΛ(~r1 − ~r2) −
~∇1 · ~∇2

MA

〉

Φ
(0)
ΛΛ

, (60)

where 〈O〉Φ denotes the expected value of the operator O in the state Φ and Φ
(0)
ΛΛ

=
ϕΛ(~r1) · ϕΛ(~r2), where ϕΛ is the Λ-wave function in the single–Λ hypernucleus A+1

Λ Z. To
simplify we have also neglected the non-local terms in VΛΛ. Note also that the expected
value of the HE term is zero in the state Φ

(0)
ΛΛ

.

In the worst of the cases (gωΛΛ/gωNN = 1/3 and ΛσΛΛ = 2 GeV) the ratio
gpert

σΛΛ−gHF
σΛΛ

gHF
σΛΛ

,

which accounts for the difference between the HF and the perturbative approaches, is
only 5.9% and its value decreases to only 0.3% for the case gωΛΛ/gωNN = 4/3, being this
latter value of the same order as the the statistical error (in percentage) of the fitted
parameter gHF

σΛΛ. Perturbative values of the fitted parameter gσΛΛ are always larger than
the HF ones, though for most of the cases both sets of couplings are compatible within
total (statistical and systematic) errors. The values of χ2/dof are about a factor of 1.5
larger within the perturbative approximation than in the HF one.

The fact that the perturbative and the HF schemes give the same results within
approximately 5% can be used to understand the existence of strong linear correlations of
the type of Eq. (57). For simplicity let us discuss only the case of the local ΛΛ potential.
For each hypernucleus (helium, beryllium and boron), because Eq. (60) is satisfied in
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a good approximation, one gets a linear relation between the couplings g2
σΛΛ, g2

ωΛΛ and
ĝ2

ωΛΛ, namely

g2
σΛΛ ≈ −∆BΛΛ

〈V L=S=0
Lσ /g2

σΛΛ〉Φ(0)
ΛΛ

−
〈V 1

ω 〉Φ(0)
ΛΛ

〈V L=S=0
Lσ /g2

σΛΛ〉Φ(0)
ΛΛ

× ĝ2
ωΛΛ

−
〈V 2

ω 〉Φ(0)
ΛΛ

〈V L=S=0
Lσ /g2

σΛΛ〉Φ(0)
ΛΛ

× (g2
ωΛΛ − ĝ2

ωΛΛ), (61)

where

V 1
ω (r) =

mω

4π
Ỹ(ω, r), (62)

V 2
ω (r) =

[
V L=S=0

Lω (r) − ĝ2
ωΛΛV 1

ω (r)
]
/(g2

ωΛΛ − ĝ2
ωΛΛ), (63)

and V L=S=0
Lα (α = σ, ω) is the local part of V L=S=0

α . The fact that we find a reasonable
simultaneous description of the three hypernuclei, with the same value of the parameter
gσΛΛ for each value of gωΛΛ, implies that the coefficients of the couplings in Eq. (61) are
rather independent of the nuclear core.

Note that in the case of the non-local potential, linear relations between the couplings
can be also obtained once the non-local terms of the ΛΛ potential are included in the
right hand side of Eq. (61).

4.4 ΛΛ Interaction: Variational Results

In Table 8, for given values of the ratio gωΛΛ/gωNN and of the cutoff ΛσΛΛ, we show
the values of the parameter gσΛΛ obtained from best fits to the BΛΛ binding energies
by using the variational method described in Subsect. 2. We use the same procedure to
give the central values and the statistical and systematic errors as in the HF case. In
all situations (i.e., different ratios gωΛΛ/gωNN , different values for the cut-off parameter
ΛσΛΛ and Λ-core potentials), we find statistically acceptable fits. We would like just to
mention that the use of the ORG potential for helium provides smaller χ2/dof than the
BOY Λ-core potential used to quote the central value of the fitted parameter. Namely,
values of χ2/dof smaller than 0.1 for the ORG potential versus values around 0.5 for the
BOY case. The HE term improves significantly the simultaneous description of all three
hypernuclei when Λ-core potentials (BOY,YNG, SW1 or SW2) not as attractive at short
distances as the ORG one are used for helium. To be more specific, for the case of the
BOY (YNG) potential, if the HE term is not included the typical values for χ2/dof are
of the order of 1.5 (4.0), between two or three times larger than those obtained when the
HE piece is considered. In all cases the largest contribution to the χ2/dof comes from
the helium piece of data.

Local and non-local potentials lead to different values for the fitted coupling gσΛΛ.
These changes vary from 1% to 7% when the ratio gωΛΛ/gωNN increases and they are
significantly greater than the statistical errors (except for the lowest value of gωΛΛ) and
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gσΛΛ/
√

4π

gωΛΛ/gωNN ΛσΛΛ (GeV) LOCAL NON-LOCAL

1/3 1 1.89 ± 0.03 ± 0.02 1.91 ± 0.03 ± 0.02
1/2 1 2.33 ± 0.03 ± 0.02 2.38 ± 0.03 ± 0.02
2/3 1 2.76 ± 0.03 ± 0.02 2.85 ± 0.03 ± 0.02
1 1 3.55 ± 0.03 ± 0.02 3.74 ± 0.03 ± 0.02

4/3 1 4.26 ± 0.03 ± 0.02 4.56 ± 0.03 ± 0.02

1/3 2 1.397 ± 0.018 ± 0.008 1.415 ± 0.018 ± 0.008
1/2 2 1.764 ± 0.017 ± 0.007 1.796 ± 0.016 ± 0.007
2/3 2 2.145 ± 0.016 ± 0.007 2.199 ± 0.016 ± 0.006
1 2 2.876 ± 0.017 ± 0.006 3.005 ± 0.017 ± 0.006

4/3 2 3.551 ± 0.019 ± 0.006 3.772 ± 0.018 ± 0.006

Table 8: VAR results for gσΛΛ obtained from best fits to the BΛΛ data. The several rows
correspond to different values for the ratio gωΛΛ/gωNN and different values of the cutoff ΛσΛΛ.
Central values and their statistical uncertainties (first set of errors) are obtained using BOY Λ-
core potentials for all hypernuclei. The χ2/dof values for all cases are about 0.4-0.5. Statistical
errors are obtained by increasing the value of χ2 by one unit. The second set of errors account for
the dispersion in the results due to the use of different Λ-core potentials, as it was discussed in
Subsect. 4.2. To account for dynamical re-ordering effects in the nuclear core due to the presence
of the second Λ, further systematic errors should be added. As it was discussed in Subsect. 4.2,
the statistical errors provide a reasonable estimate of these additional systematic errors. We
give results for the full ΛΛ interaction (non-local) and the local reduction of it discussed in the
text after Eq. (56).
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much more appreciable than those found within the HF scheme. Variations of the cutoff
mass ΛσΛΛ lead to changes in the quantity gσΛΛ × (1 − m2

σ/Λ2
σΛΛ) from 3% to 10% when

the ratio gωΛΛ/gωNN increases from 1/3 to 4/3. These changes are again much more
pronounced here than in the HF case, indicating that the variational wave functions
for the two Λ’s system lead to bigger values of the transfered momentum between both
particles. This is also consistent with the fact, mentioned above, that within the VAR
scheme non-local and local potentials lead to differences much more significant than in
the HF one.

In Fig. 2 (right) we show the local ΛΛ potentials corresponding to the different com-
binations of the ratio gωΛΛ/gωNN and the cutoff mass parameter ΛσΛΛ given in Table 8.
In this figure, for comparison, and in the same scale, the HF local potentials discussed in
the previous section are also shown. VAR potentials are significantly less attractive than
HF ones, as the variational principle ensures. The larger the ratio gωΛΛ/gωNN , the bigger
this effect is.

For both local and non-local VAR potentials, we find that the coupling constants are
correlated in the form given in Eq. (57), but with poorer χ2/dof values (with χ2/dof
ranging from 0.12, for a local ΛΛ interaction and ΛσΛΛ = 1 GeV, to 0.8, for a local ΛΛ
interaction and ΛσΛΛ = 2 GeV) than in the HF case. But, for this variational scenario, the
values of parameters b and c of Eq. (57) are not similar, and a linear relationship between
g2

σΛΛ and g2
ωΛΛ can not be casted. Therefore, unlike the HF families, the obtained families

of variational potentials do not coincide at a single point11.

The existence of a relation of the type of Eq. (57) also in the VAR scheme can be un-
derstood if one applies the same type of considerations used in the discussion of Eqs.(60) –
(61) to the relation

BΛΛ = −
〈
∑

i=1,2


−

~∇2
i

2µA

+ VΛA(~ri)


+ VΛΛ(~r1 − ~r2) −

~∇1 · ~∇2

MA

〉

ΦVAR

ΛΛ

. (64)

In Fig. 3 we show graphically the differences between the fitted parameter gσΛΛ ob-
tained in the HF and VAR schemes for different values of gωΛΛ, different cutoffs ΛσΛΛ

and using local (dotted lines) and non-local (solid lines) ΛΛ interactions. The non-local
part of the ΛΛ potential is repulsive, as can be deduced from the figure. However, the
differences between VAR local and non-local parameters are always much smaller than
the differences between HF and VAR parameters.

Once we have seen that within the HF approach (or even in the perturbative approx-
imation) we could described reasonably well the experimental data, one might question
about the need of performing a variational study of the double−Λ hypernuclei. To check
this in Table 9 we compare, for a fixed ΛΛ interaction, the results of the perturbative, HF

11 The equation dVΛΛ(r)/dgωΛΛ = 0 has as solution a value of r independent of gωΛΛ (what implies
that all potentials coincide in a single point) only if there exist a linear relation between the couplings
g2

σΛΛ
and g2

ωΛΛ
and a small term proportional to (mω/mΛ)2gωΛΛfωΛΛ, in the ω−exchange part of the

potential is neglected.
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Figure 3: Different couplings gσΛΛ/
√

4π versus gωΛΛ/gωNN found for the 1S0 ΛΛ potentials
obtained from best fits to BΛΛ data within the HF and VAR approaches. The cutoff mass ΛσΛΛ

is 1 GeV (left) or 2 GeV (right). In both plots the solid (dotted) lines correspond to a non-local
(local, as described in the text after Eq. (56)) ΛΛ interaction and the five points with errors
correspond to the values 1/3, 1/2, 2/3, 1 and 4/3 for the ratio gωΛΛ/gωNN . The lines have been
drawn only for guiding the eye. BOY Λ-core potentials were used in all cases. For comparison,
the square in the left figure stands for the potential of model Â of Ref. [46].

and VAR approaches for the binding energy of 13
ΛΛB. We also show the result obtained

if no correlations (i.e., dependence on r12) are included in the variational wave function
(that corresponds to fix c = 0 in the variational basis of Eq.(10)). Even in this latter
case the VAR scheme does not reduce to the HF one because the wave function can not
be gathered as a product of a function of r1 times the same function now of r2. The
HF approach can be considered as a variational one, where the space of functions are
limited to those which can be written in a factorizable way. The numbers of the ta-
ble show that enlarging this space to include some non-factorizable wave–functions (but
without dependence on r12 yet) does not modify drastically the HF results. However, the
inclusion of r12−correlations has a drastic effect in the binding energy. This can be also
appreciated in Fig. 4, where the dependence on r12 of the ΛΛ potential (used to obtain
the numbers of Table 9) and the HF and VAR densities of probability of finding the two
Λ’s at a relative distance r12 (P(r12), defined in Eq. (7)) are shown. The effect of the
inclusion of r12−correlations is twofold. First, it reduces the probability of finding the
two particles at very short distances, where the potential is highly repulsive, with values
at r12 = 0 as large as tens of thousands of MeV. Second, it increases the probability of
finding the particles at relative distances of the order of 1 fm, where the potentials have
their maximum attraction. Thus, as a net effect an important reduction of the expected
value of the energy of the system is provided.

The ΛΛ interactions obtained by σ − ω exchange behave almost like a hard-core at
short distances, then in a very small region and close to the origin (r12 ≈ 0.5 fm), they
pass from being extremely repulsive to reach their maximum attraction. On the other
hand, note that due to the phase space P(r12) is suppressed at small values of r12 by
at least a factor r2

12. Thus the HF two body probability P(r12) takes very small values
in the region where the potential is repulsive but it also misses the maximum attraction
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BΛΛ [13ΛΛB] [MeV]

PERT. 27.3
HF 27.8

VAR NO CORR. 28.4
VAR 36.9

Table 9: Comparison of the results obtained for BΛΛ in boron double−Λ hypernuclei, using
different approximations. In all cases the same local ΛΛ interaction (with parameters gσΛΛ/

√
4π,

gωΛΛ/gωNN and ΛσΛΛ fixed to 3.22, 2/3 and 1 GeV respectively) and BOY Λ-core potential were
used. The coupling gσΛΛ was obtained from a best fit to the data within the HF approach (see
results of Eq. (58)). The first, second and fourth rows correspond to the standard perturbative,
HF and VAR calculations. The third (labeled VAR NO CORR.) row corresponds to a variational
calculation where the ansatz wave function does not depend on r12 (that corresponds to fix
c = 0 in the variational basis of Eq.(10)). The experimental binding energy for boron double−Λ
hypernuclei is 27.5 ± 0.7 MeV.

l 0 1 2 3 4 5 6

Pl 0.9727 0.02280 0.00200 0.00075 0.00054 0.00040 0.00028
∑l

k=0 Pk 0.9727 0.9955 0.9975 0.9982 0.9988 0.9991 0.9994

Table 10: Probabilities Pl (defined in Eq. (12)) for several waves. Results were obtained for
boron double−Λ hypernucleus. A local ΛΛ interaction (with parameters gσΛΛ/

√
4π = 2.76,

gωΛΛ/gωNN = 2/3 and ΛσΛΛ = 1 GeV, see Table 8) and BOY Λ-core potentials were used. The
errors are always less than one unit in the last digit.

region of the ΛΛ interaction. The inclusion of a dependence on r12 in the variational
wave function allows both to keep small (and even smaller than in the HF case) the two
body probability in the hard-core region and to increase this two body probability in
the adjacent region where the potential reaches its maximum attraction. The steeper
ΛΛ potential, the bigger the difference between the VAR and HF predictions becomes.
Thus, the effects of including r12−correlations are much more pronounced for values of
the ratio gωΛΛ/gωNN bigger than the standard 2/3 one used in this discussion. Therefore,
the VAR approach, including correlations, provides the same binding energies than the
HF approach with significantly less attractive ΛΛ interactions, as we showed in Figs. 2
and 3.

To finish this section we would like to devote a few words to the multipolar content
of the VAR wave functions. In Table 10 we show the probability Pl, defined in Eq. (12),
of finding each of the two Λ’s with angular momentum l and coupled to L = 0 for
boron. Although a particular ΛΛ interaction is used, the gross features of the multipolar
decomposition do not depend significantly on the selected interaction. Only few multipoles
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gσΛΛ/
√

4π gσΛΛ/
√

4π

(ΛσΛΛ = 1 GeV) (ΛσΛΛ = 2 GeV)

ΛφΛΛ[GeV] HF VAR HF VAR

without φ − 3.23 ± 0.03 2.85 ± 0.03 2.37 ± 0.02 2.199 ± 0.016

1.5 3.38 ± 0.03 2.85 ± 0.03 2.48 ± 0.02 2.232 ± 0.018
with φ 2.0 3.52 ± 0.03 2.74 ± 0.03 2.58 ± 0.02 2.16 ± 0.02

2.5 3.60 ± 0.03 2.62 ± 0.03 2.64 ± 0.02 2.06 ± 0.02

Table 11: Best fit results for the σΛΛ-coupling obtained from different non-local
ΛΛ−interactions for both HF and VAR approximations. We compare results for both σ + ω
(already presented in Tabs. 6 and 8 ) and σ + ω + φ−interactions. BOY Λ-core potentials were
used for the three double−Λ hypernuclei. The parameter gωΛΛ/gωNN has been fixed to 2/3.
Furthermore, the φ− couplings have been fixed, by means of SU(6)-symmetry, (see Eq. (65)).
Errors are only statistical.

contribute12, being l = 0 the dominant one and contributing appreciably only up to the
waves l = 2 or l = 3. The higher the orbital angular momentum of each Λ, the farer from
the origin the corresponding wave function is and therefore the smaller the overlap of the
two-body wave function with the attractive part of the potential is.

Results of Table 10, which show predominance of the l = 0 component in the VAR
wave–function, do not contradict the fact that correlations are important to lower the
energy of the double−Λ hypernuclei. Indeed, the hamiltonian is not diagonal in the basis
with well defined single–particle orbital angular momentum. Hence, non-diagonal matrix
elements contribute significantly to the hamiltonian expectation value.

4.5 Contribution of the φ−Exchange.

In this Subsection we discuss qualitatively the effect of the φ−exchange in the ΛΛ potential
in the medium. The φ−potential can be obtained from that of the ω−exchange given in
Eqs (25) – (27) by the obvious substitutions: mω → mφ, and [g, f, Λ]ωΛΛ → [g, f, Λ]φΛΛ.
In the spirit of the Bonn-Jülich models we use SU(6) symmetry to fix the φ−couplings,

gφΛΛ = −gωΛΛ/
√

2

fφΛΛ =
√

2fωΛΛ. (65)

As it was discussed in Subsect. 2.1 because within this model the φ meson does not couple
to nucleons, we do not have much information about the cutoff-mass ΛφΛΛ. Assuming
that this cutoff should be similar to that entering in the ωΛΛ−coupling and certainly

12Note that we show probabilities: the components of the wave function for each value of l are given,
up to a sign, by the squared root of the numbers presented in the table.
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bigger than the φ meson mass, we have studied three different values, 1.5, 2 and 2.5 GeV.
Results are presented in Tables 11 and 12. We would like to make a few remarks,

• The effect of the φ−exchange depends strongly on the value of the cutoff mass ΛφΛΛ,
such that this effect passes from being small (ΛφΛΛ = 1.5 GeV) to be significant
(ΛφΛΛ = 2.5 GeV). Indeed, this is easily understood by looking at the top graph of
Fig. 5 where the ω and the three ω +φ potentials considered in Table 11 are plotted
(neglecting the small non-local pieces). The several ω + φ potentials significantly
differ in the region of relative ΛΛ distances ranging from 0.1 to 1.3 fm, where the
product of the ΛΛ-interaction times the probability (P(r12)) of finding the two Λ
particles at relative distance r12 takes non negligible values.

As the numbers of Table 12 indicate, the φ−contribution is smaller than the ω me-
son one and at maximum it might be of the order of 20% of the latter one. This
is not surprising, because as we mentioned earlier, the exchange of heavier mesons
than the σ and ω ones, essentially modify the short range behavior of the inter-
action, and hence becomes more significant for processes where larger momentum
transfers than those involved here are relevant. On the other hand, by the use of
different values of the σ−cutoff and also different values of gωΛΛ we have already
explored a wide range of short distance behaviors of the effective ΛΛ−interaction
in the medium. The above discussion, together with the very scarce set of data
available, have prevented us to include the φ−meson contribution in the present
determination of the effective ΛΛ interaction. Its inclusion would require, even as-
suming SU(6)−symmetry, to deal with at least one more free parameter, and it
might obscure the analysis presented in this work (differences between HF, pertur-
bative and VAR approaches, size of systematic errors · · ·). On the other hand, the
possible effect of the φ−exchange potential in the tail of ΛΛ wave–function, though
small, is mostly reabsorbed by the use of effective σ + ω−couplings and thus, the
inclusion of the φ contribution in the potential would not modify significantly the
mesonic decay of the double−Λ hypernuclei studied in the next Subsection. How-
ever, when trying to simultaneously analyze the double−Λ hypernuclei data and the
S = −2 baryon dynamics in the free space, one should not neglect this contribution
because it might lead to sizeable changes in the values of the σ−coupling, as the
numbers presented in Table 11 clearly show.

• A distinctive feature of the results presented in Tables 11 and 12, is that the char-
acter of the φ− contribution though attractive within the VAR scheme, is repulsive
within the HF one. Hence, the differences between the HF and VAR approaches get
amplified. φ−exchange does not lead to a purely repulsive potential, as it is the case
for the ω− meson, because the ratio f/g is positive, instead of negative, and bigger
(in absolute value) for the φ−potential than for the ω− one. Thus, the φ− potential
though much more repulsive than the ω− one at short distances, becomes however
attractive at distances bigger than let us say 0.4 fm (see Fig. 5 13). In the case of
the HF approach, though the probability P(r12) is quite small at short distances,

13Note that in the limit ΛφΛΛ → ∞, the repulsive core becomes a δ peak at the origin.
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〈
V L

φ

〉
Φ

(σ+ω)
ΛΛ

[MeV]

ΛφΛΛ[GeV] HF VAR

1.5 1.95 −0.002
2.0 3.68 −1.14
2.5 4.53 −2.33

Table 12: Expected values of the local part of the φ−potential, for several φΛΛ cutoffs, in the
ΛΛ state corresponding to the HF and VAR solutions (with no φ contribution and ΛσΛΛ = 1
GeV) given in the first row of Table 11. φ− couplings have been fixed by means of SU(6)-

symmetry. For comparison, the expected values of
〈
V L

ω

〉
Φ

(σ+ω)
ΛΛ

are 14.68 and 10.02 MeV for the

HF and VAR wave–functions respectively.

because the huge and repulsive values taken by the φ−potential close to zero, the
balance between the repulsive and attractive contributions favors the former ones.
The inclusion of r12−correlations in the VAR scheme allows to have simultaneously
smaller and bigger values of P(r12) than in the HF case in the regions where the
φ−potential is repulsive and attractive respectively. As a net effect, the balance
between the repulsive and attractive contributions favors now the latter ones. This
is easy to appreciate in Fig. 5.

4.6 Mesonic Decay and Binding Energies of Double−Λ Hyper-

nuclei

One might think that the mesonic decay of these double−Λ hypernuclei could depend
significantly on the details of the effective ΛΛ interaction and thus it could be used to
differentiate between the different potentials shown in Fig. 2. There are some theoretical
uncertainties14 in the calculation of the mesonic decay of 5

ΛHe [22, 29, 41], related to the
nuclear core–Λ interaction, and this has prevented us from looking at 6

ΛΛHe to check the
dependence of the mesonic decay on the details of the ΛΛ interaction15. Thus, we have
looked at the case of 13

ΛΛB. For this hypernucleus, we find that the pionic decay width of
12
ΛB changes only around a 5% when different Λ-core potentials (BOY, SW1, SW2) are

considered.

The mesonic decay has been computed following the method exposed in Sect 3. We
use the ten VAR non-local potentials presented in Table 8, and we find that the mesonic

14As can be seen in Fig. 1 and in Table 5, different Λ-core potentials for helium lead to significantly
different mean squared radius of the Λ orbiting around the nuclear core. The mesonic decay process is
quite sensitive to the tail of the Λ wave–function and then it depends strongly on the details of the Λ-core
potential used.

15In Refs. [22] and [39] the mesonic decay of the double−Λ hypernucleus 6
ΛΛ

He has been calculated.
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Figure 5: Top: ω− (solid line) and ω + φ− local pieces of the ΛΛ potentials predicted by
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of these probabilities times the ΛφΛΛ = 2.0 GeV local φ−potential used in Table 12. This latter
set of curves have been divided by a factor 50 and the area below these curves gives, up to a
factor 50, the expected values given also in Table 12.
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decay width varies by 5% at most, making then this quantity unappropriated to choose
between the different potentials discussed above. However, this fact allows us to predict
the mesonic decay and, by using the potential of Eq. (47) in addition to Cohen–Kurath
spectroscopic factors for the 1p−shell to describe the 11B, 12C∗ and 12B∗ nuclear cores, we
find

Γ(13
ΛΛB → X + Λ + π0)

ΓΛ
= 0.062 ± 0.002 ± 0.002, (66)

Γ(13
ΛΛB → X + Λ + π−)

ΓΛ
= 0.270 ± 0.008 ± 0.008, (67)

where ΓΛ = Γ
(p)
free + Γ

(n)
free is the total decay width of the Λ in the vacuum, with Γ

(α)
free

defined in Eq. (42). The central values are obtained with gωΛΛ/gωNN = 2/3 and ΛσΛΛ = 1
GeV. The first set of errors accounts for the statistical error of gσΛΛ whereas the second
one accounts for the spreading of the results obtained with the different combinations of
ratios gωΛΛ/gωNN (1/3, 1/2, 2/3, 1, 4/3) and values (1 and 2 GeV) for the cutoff ΛσΛΛ.

Further systematic errors should be added to those quoted in Eqs. (66) – (67) due to
both the uncertainties in the Λ-core potential (error of about 5%, as mentioned above)
and the no inclusion of the nuclear core distortion effects (errors of about of the same size
than the statistical ones, as discussed in Subsects. 4.2 and 4.4). Adding all the systematic
and statistical errors in quadratures we end up with total errors of about 7% for both the
π0 and π− decay widths.

The main (≥ 95%) contribution to these decay widths comes from processes where the
outgoing nucleon is in a bound state of the daughter hypernucleus, processes described in
Eqs. (37) – (38).

Note that the final nuclear state is described by means of a simple shell–model sup-
plemented by an effective interaction (Cohen-Kurath) for the 1p−shell nucleons. Results
presented above might depend on the specific details of the used central and residual inter-
actions. This is a problem, which is not specific of the mesonic decay of double−Λ hyper-
nuclei and it is already present in the studies of the mesonic decay of single Λ−hypernuclei.
Indeed, if the residual interaction is neglected, we obtain with the potential of Eq. (47)
values for decay widths (in units of ΓΛ) of 0.074±0.004±0.004 and 0.370±0.008±0.008
for π0 and π− decays. The difference between these values and those quoted in Eqs. (66) –
(67) might give us an estimate of the size of our uncertainties. A recent calculation of the
π− decay [40], where the nuclear states are been constructed in the shell model within
p−shell configurations with Cohen-Kurath interaction [67], gives 0.325. This value fits
within our range of results.

To minimize the effects of this new source of systematic errors, it is interesting to
define the ratios
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Γ(13
ΛΛB → X + Λ + π0)

2Γ(12
ΛB → X + π0)

= 0.63 ± 0.02 ± 0.02 ± 0.02, (68)

Γ(13
ΛΛB → X + Λ + π−)

2Γ(12
ΛB → X + π−)

= 0.67 ± 0.02 ± 0.02 ± 0.02, (69)

which differ from the naively expected value 1. These values have been obtained by using
the potential of Eq. (47) and Cohen-Kurath 1p−shell spectroscopic factors to describe
the nuclear cores involved. Neglecting the residual interaction the potential of Eq. (47)
leads to similar values (0.65 and 0.72 for π0 and π− decays respectively) for these ratios,
as we expected. The meaning of the first two set of errors in the equations above is the
same as in Eqs. (66) – (67). The last set of error accounts for the systematics due to the
no inclusion of the nuclear core distortion effects. On the other hand, in these ratios, the
uncertainties due to the details of the Λ-core potential mostly cancel out.

The mesonic decay depends both on the momentum carried by the outgoing nucleon
(the greater the nucleon momentum, the less effective the Pauli suppression is) and on
the tail of the overlap function defined in Eq. (51). The first factor is totally determined
by the energy balance in the reaction, which is the same for all potentials used. Thus, the
fact that the mesonic widths calculated in the VAR scheme do not depend appreciably
on the specific potential means that all overlap functions have a similar behavior at large
distances. This is shown for two potentials in the bottom plot of Fig. 6.

On the other hand, HF wave functions lead to results similar, within a 5%, to those
presented in Eqs. (66) – (69) and one would again expect that both HF and VAR overlap
functions have similar tails. This can be seen in the top plot of Fig. 6. Finally, in this
figure we also compare the HF and VAR overlap functions with the Λ wave function
in the daughter hypernucleus (ϕΛ). Because the ratio BΛΛ/2BΛ is greater than one,
the exponential decay at large distances of ϕΛ is less pronounced. This, together with
the change in the energy balance of the reaction, which makes more effective the Pauli
blocking for double- than for single–Λ hypernuclei, explains why the ratios defined in
Eqs (68) – (69) are smaller than one.

To finish this section, in Fig. 7 we show the A dependence of the ratios ∆BΛΛ/2BΛ and
Γ(A+2

ΛΛ Z → X +Λ +π0,−)/2Γ(A+1
Λ Z → X +π0,−). As can be seen in the figure, we are able

to give accurate predictions for both ratios which also turn out to be rather independent
of the details, gωΛΛ and ΛσΛΛ, of the effective ΛΛ interaction.

In Ref. [38] the A-dependece of ∆BΛΛ has been also studied within a Skyrme-Hartree-
Fock approach. There, it is also found that ∆BΛΛ is a decreasing function of A. We find
values for ∆BΛΛ within the broad range of possible results quoted in that reference.

4.7 Nuclear Medium and Free Space ΛΛ Interactions.

It is essential to state that the ΛΛ potentials determined in this work, effectively de-
scribe the dynamics of the ΛΛ pair in the nuclear medium, but they do not describe
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Figure 6: The projection of the two-particle ΛΛ state in a double−Λ hypernucleus, ΦΛΛ, over
the one-particle Λ state, ϕΛ, in the corresponding single–Λ hypernucleus is shown versus r for
Boron. This projection is the overlap defined in Eq. (51). In all cases, the Λ-core interaction
is of the BOY type and the cutoff parameter ΛσΛΛ is 1 GeV. The different lines correspond to
different calculations of ΦΛΛ as follows. Top: Perturbative (solid), non-local HF (dotted) and
VAR (dot-dashed) results, with gωΛΛ/gωNN = 4/3 for the two last ones. Bottom: Perturbative
(solid) and non-local VAR with two values for the ratio gωΛΛ/gωNN , 1/3 (dotted) and 4/3 (dot-
dashed). In the VAR and HF approaches gσΛΛ is obtained from the overall fit to the BΛΛ data.
Within the perturbative scheme, the overlap 〈ϕΛ(~r2)|ΦΛΛ(~r,~r2)〉 coincides with ϕΛ(~r) (Λ wave
function in the (A+1

ΛZ) hypernucleus).
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Figure 7: Ratios ∆BΛΛ/2BΛ (top) and Γ(A+2
ΛΛ Z → X+Λ+π0,−)/2Γ(A+1

Λ Z → X+π0,−) (bottom)
computed for different double−Λ hypernuclei. In the case of the ratio of mesonic widths with a
π0 in the final state, the results have been multiplied by a factor 1/2. BOY Λ-core potentials have
been used for all hypernuclei and the non-local ΛΛ interaction associated to gωΛΛ = 2gωNN/3
and ΛσΛΛ = 1 GeV has been used to determine the central value (see Table 8). Statistical and
systematic errors in the fitted parameter gσΛΛ lead to the error bars in the shown ratios, as it is
explained in the text after Eqs. (66) - (67). Experimental errors in BΛ have not been considered.
In some cases the size of the errors (systematic and statistical errors are added in quadrature)
is smaller than the symbols.
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their dynamics in the free space. Indeed, what has been determined in this work is an
effective interaction in the medium. This effective interaction is usually approximated by
an induced interaction [57, 75, 76] (V ind

ΛΛ ) which is built up in terms of the ΛΛ → ΛΛ
(GΛΛ), ΛN → ΛN (GΛN) and NN → NN (GNN ) G−matrices, as depicted in Fig. 8.
The induced interaction, V ind

ΛΛ , has the virtue of combining the dynamics at short dis-
tances (accounted by the effective interaction GΛΛ) and at long distances (polarization
phenomenon) which is taken care of by means of the iteration of the particle-hole (ph)
excitations (RPA series) through the effective interactions GΛN and GNN . The GΛΛ−,
GΛN− and the GNN−matrices can be obtained from the S = −2, S = −1 and S = 0
baryon-baryon interactions in the free space [17, 24, 75]. In the S = −2 channel and
near threshold, as discussed in the introduction, one needs to solve the ΛΛ−ΞN coupled
channel G–matrix equations16. In a nuclear medium and with total energies of the order
of 2mΛ, the ΛΛ − ΞN coupling might be suppresed due to Pauli blocking and thus the
data of double−Λ hypernuclei would probe primarily the ΛΛ diagonal element17, V free

ΛΛ ,
of the ΛΛ − ΞN potential. Thus, GΛΛ might be roughly approximated by V free

ΛΛ .

To establish the connection between V ind
ΛΛ and V free

ΛΛ is the aim of a future work [55]
and it is out of the scope of this work. As discussed above, it requires to understand the
renormalization of the σ, ω propagation (it will be necessary to take into account that
both carriers can excite ph components on their propagation through the nucleus [57, 68])
and the role played by the ΞN intermediate states in the nuclear medium. Note that,
within the Bonn-Jülich model, the φ− meson does not couple to nucleons, and hence its
propagation in the nuclear medium is not renormalized.

In Table 13 we present the smallest values of the gσΛΛ parameter which lead to 1S0 ΛΛ
bound states in the free space, when σ+ω+φ− ΛΛ interactions, with different cutoffs for
the φ potential, are considered. For the sake of simplicity, we have fixed gωΛΛ/gωNN = 2

3

and ΛσΛΛ = 1 GeV. φ−couplings are given in Eq. (65). As can be deduced from the
numbers quoted in this table and those already presented in Table 11 the derived HF ΛΛ
potentials would lead to ΛΛ bound states. However within the variational scheme in all
cases the potentials are not attractive enough to bind the two hyperons18.

Preliminary results of Ref. [55] show that the ΛΛ interaction in the medium, V ind
ΛΛ , is

more attractive than that in the free space, V free
ΛΛ . Variational results (our best results)

provide effective interactions unable to bind the ΛΛ pair in the 1S0 channel. Therefore we
can discard the existence of ΛΛ bound states in the free space when only the ΛΛ diagonal
element, V free

ΛΛ , of the ΛΛ − ΞN potential is considered. An independent confirmation
of the no existence of ΛΛ bound states is given by the σ−coupling (gσΛΛ/

√
4π = 2.138)

extracted from the study of hyperon-nucleon scattering processes which is well below of
any of the σ−couplings quoted in Table 13. However, the ΛΛ−ΞN coupling, though likely

16The ΛΛ − ΞN mass difference is about 25 MeV. The mass difference between the ΛΛ and ΣΣ pairs
is about 150 MeV. Thus one can safely neglect the influence of the latter channel in the study of the ΛΛ
dynamics at threshold.

17It is to say that the contribution of the ΛΛ → ΞN → ΛΛ transition would be much smaller than
the direct ΛΛ → ΛΛ one (with no ΞN intermediate states and accounted for by the V free

ΛΛ
piece of the

S = −2 potential), in this context.
18The conclusion is the same for the case ΛσΛΛ = 2 GeV.
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without φ with φ

ΛφΛΛ[GeV] − 1.5 2.0 2.5

gσΛΛ/
√

4π 3.098 3.105 3.003 2.889

Table 13: Smallest values of the gσΛΛ−coupling leading to 1S0 ΛΛ bound states in the vacuum.
Different non-local interactions, all of them with gωΛΛ/gωNN = 2

3 and ΛσΛΛ = 1 GeV, without
and with the inclusion of the φ−meson exchange potential, which coupling to the hyperons is
fixed by means of the SU(6)−symmetry, have been considered. In the latter case three different
cutoffs have been studied.

suppresed in the nuclear medium, might contribute significantly in the free space. In the
model proposed in Ref. [37], the inclusion of the above coupling leads to more attractive
interactions in the S = −2 sector, allowing for values of the ΛΛ 1S0 free space scattering
length as large as that of the nn system. Thus, to draw any firm conclusion about the
existence of bound states in the S = −2 baryon-baryon sector, a combined studied of the
ΛΛ and ΞN systems is needed.

We would like to stress that the important issue now is to clarify whether or not
the difference between the gσΛΛ/

√
4π values of 2.138 (obtained from hyperon-nucleon

scattering data in Ref. [46]) and of 2.85 (obtained in this work for gωΛΛ/gωNN = 2/3
and ΛσΛΛ = 1 GeV within the VAR scheme19) can be explained in terms of medium
renormalization effects and/or the contribution of ΞN intermediate states to the induced
interaction V ind

ΛΛ and/or the contribution of heavier mesons not included here, such as
the φ meson. As discussed in Subsect. 4.5, the inclusion of the φ−exchange piece of the
ΛΛ potential reduces in some extent the difference between the gσΛΛ couplings mentioned
above. For instance, if a ΛφΛΛ cutoff of 2.5 GeV is used, one finds values for gσΛΛ/

√
4π of

the order of 2.6 (Table 11).

Finally a word of caution must be said here. The Jülich group has also shown [77, 78]
that the correlated 2π and KK̄ exchanges lead to a value for the ratio gσΛΛ/gσNN of
0.49. This value is much smaller than the results obtained in any of the present Y N
models [43, 44, 45, 46, 47, 48], for which this ratio varies from 0.58 to 1. Therefore, the
intermediate range attraction in the ΛN and ΛΛ channels will be significantly reduced if
one assumes the results of the microscopical calculations of Refs. [77, 78]. Then, a value
for the ratio gωΛΛ/gωNN smaller than 2/3, predicted by SU(3) and commonly accepted,
would be needed to reproduce the ΛN scattering data. Thus, once all nuclear medium
effects are understood, it will also be worth studying if a new set of parameters with
gσΛΛ/gσNN = 0.49 and gωΛΛ/gωNN < 2/3 provides a simultaneous acceptable description
of both double−Λ hypernuclei and Λp scattering data.

19These values for the ratio gωΛΛ/gωNN and cutoff ΛσΛΛ correspond to those used in Ref. [46].
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Figure 8: Feynman diagrams relating the ΛΛ → ΛΛ,ΛN → ΛN and NN → NN G–matrices
to the induced interaction (V ind

ΛΛ ) in the nuclear medium, which approximately accounts for the
effective interaction determined in this work.

5 Conclusions

The dynamics of the ΛΛ system can not be studied directly in the free space. Λ p scattering
provides an indirect source of information about it. Thus, the physics of double−Λ
hypernuclei provides an independent and valuable method to confirm the findings obtained
in the studies of hyperon-nucleon scattering. From these studies, it is commonly accepted
that there exist three kinds of realistic models for the ΛΛ diagonal element of the ΛΛ−ΞN
potential, those developped by the Nijmegen, Tübingen and Jülich groups. The Jülich
OBE potential for the hyperon-hyperon interaction is a natural extension of the Bonn
model for the NN -interaction [49]. In this paper we have used for the first time Jülich
type ΛΛ OBE potentials to study the dynamics of double−Λ hypernuclei. We have found:

• Effective ΛΛ interactions in the medium extracted from Jülich type models provide
a simultaneous fairly good description of the binding energies of the three known
double−Λ hypernuclei.

• Uncertainties in the exact nature of the Λ-nuclear core dynamics lead to uncertain-
ties in the determination of the effective ΛΛ potential in the medium smaller than
those due to the experimental errors in the fitted quantities ∆BΛΛ. Thus, the ambi-
guities in the determination of the Λ-core potential do not constitute an important
obstacle to learn details about the ΛΛ interaction.

• The HF and the perturbative approaches, discussed in Subsects. 4.2 and 4.3 respec-
tivelly, lead to quite similar effective ΛΛ potentials.

• The inclusion of ΛΛ correlations in the variational scheme provides a better un-
derstanding of the dynamical features of the system. It also enables less attractive
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effective ΛΛ potentials than in the HF or perturbative approaches and more similar
to those extracted from hyperon-nucleon scattering to describe the binding energies
of the double−Λ hypernuclei.

• Only few waves (up to l = 3) contribute appreciably to the multipolar expansion of
the VAR wave functions.

• The inclusion of the φ−exchange might be relevant to understand the effective ΛΛ
interaction derived in this work in terms of the free space one.

• The existing double−Λ hypernuclei data can not conclusively favour any particular
choice neither of the ratio gωΛΛ/gωNN in the interval [1/3, 4/3] around the SU(3)
prediction 2/3, nor of the cuttoff ΛσΛΛ in the range = 1–2 GeV. Thus, we end up
with a whole family of effective ΛΛ potentials describing the ground state binding
energy of the three known double−Λ hypernuclei.

• The mesonic decay of 13
ΛΛB and the binding energies and pionic decay widths of heav-

ier double−Λ hypernuclei (not discovered yet) turned out to be rather independent
of the details of the effective ΛΛ interaction within the family of potentials described
in the previous point. This fact has allowed us to predict accurately, for the very
first time, the mesonic decay widths of medium and heavy double−Λ hypernuclei.

• We have discarded the existence of 1S0 ΛΛ bound states in the free space if the
ΛΛ − ΞN coupling is negligible.

The natural continuation of this work [55] is the study of the nuclear medium mod-
ifications of the ΛΛ interaction. Such study, together with the effective ΛΛ interactions
derived here, will allow us to better understand the dynamical features of the ΛΛ interac-
tion, at low energies, in the vacuum. Thus, it will be possible to contrast features of such
interaction from two different and independent sources of data: hyperon-nucleon scatter-
ing and ΛΛ hypernuclei. Statisticaly improved and new experimental data on double−Λ
hypernuclei, exploring not only light but also medium and heavy nuclei, will be extremely
valuable to achive such an objective.
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Appendix

Matrix Elements in the VAR Scheme

The basic integrals to compute the matrix elements of the hamiltonian of Eq. (5) in the
basis defined in Eq. (10) are:

Γlmn(a, c) = 8π2
∫ +∞

0
dr1 rl

1

∫ +∞

0
dr2 rm

2

∫ r1+r2

|r1−r2|
dr12 rn

12 e−(a(r1+r2)+c r12) , (70)

with a, c and l, m, n real positive and integer numbers respectively. To compute the matrix
elements of the Λ kinetic terms, of the HE term, of the Λ-core potentials and of the local
part of the ΛΛ interaction, only non-negative values of l, m and n are needed. In this
case, all the integrals can be obtained from Γ000 by means of a recursion formula proposed
in Ref. [65]:

Γlmn =
1

2a
[l Γl−1,m,n + m Γl,m−1,n + Blmn] , (71)

Blmn =
1

a + c

[
l Bl−1,m,n + n Bl,m,n−1 + δl 0

(4π)2(m + n)!

(a + c)m+n+1

]
, (72)

with Γ000 given by:

Γ000 =
(4π)2

2a(a + c)2
. (73)

To compute the matrix elements of the non-local part of the ΛΛ interaction, integrals of
the type Γl,m,−1, with l, m = 0, 1, 2 · · · are also needed. These can be obtained from a
recursion as well [66],

Γl,m,−1 =
1

2a

[
l Γl−1,m,−1 + m Γl,m−1,−1 +

l! m!

l + m + 1

(4π)2

(a + c)l+m+1

]
, (74)

with Γ0,0,−1 given by

Γ0,0,−1 =
(4π)2

2a(a + c)
. (75)

A final detail, related to the non-local part of the ΛΛ interaction, concerns to the
implementation of ~∇12 when acting on functions of r1,r2 and r12. The operator ~∇12 has
to be understood as the gradient on the direction ~r12 = ~r1 − ~r2 when the coordinates of
the center of mass of the ΛΛ pair, ~Rcm = (~r1 + ~r2)/2, are kept fixed. Thus,

~∇12f(r1, r2, r12) =
1

2

(
~∇1 − ~∇2

)
f(r1, r2, r12), (76)

=
1

2

(
~r1

r1

∂

∂r1
− ~r2

r2

∂

∂r2
+ 2

~r12

r12

∂

∂r12

)
f(r1, r2, r12), (77)

with ~∇1 (2) the gradient on the direction ~r1 (2) when ~r2 (1) is kept fixed.
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