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Abstract

We evaluate pionic decay widths of Λ hypernuclei using a shell model for, both
the nuclear bound and the continuum nucleon wave functions in the final state, and
distorted waves for the outgoing pion. An excellent agreement with the recent KEK
measurement of π−-decay widths of 12

ΛC and 28
ΛSi is found. Besides, results for 56

ΛFe
are consistent with the existing upper bound.
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1 Introduction

The pionic decay of Λ hypernuclei has received attention in the past both from the exper-
imental [1]–[7] and theoretical [8]–[22] points of view (for a recent review see Ref. [23]).
It is well known that the mesonic decay is largely suppressed by Pauli blocking, although
the consideration of proper pion distorted waves [13, 16, 20] weakens the effect of the
Pauli blocking considerably. On the other hand, it was also pointed out in Ref. [16] the
relevance of the use of a correct energy balance in the decay. Two theoretical frameworks
have been traditionally used to describe this process: Polarization Propagator Method
(PPM) [12, 18, 21], supplemented by quantum field theory functional techniques [22, 23],
and the Wave Function Method (WFM) [13]–[17]. In the PPM, the calculation of the
pionic widths is performed in nuclear matter and the results are translated to finite nuclei
by means of the Local Density Approximation (LDA). Both methods PPM and WFM
turn out to be related in a semiclassical limit [19], being the WFM more reliable than the
PPM+LDA, since the mesonic decay channel is quite sensitive to the details of the shell
structure of the hypernuclei, specially for light systems.

In Ref. [16] a simple Woods-Saxon (WS) shell model was employed, with a central
potential of constant depth for several nuclei. This global potential did not include spin-
orbit term and only the radius of the WS well depended on the specific nuclei (∝ A

1

3 ).
The resulting binding energies of the shells were globally shifted, by hand, to reproduce
the ground state masses of the involved nuclei. Besides, the continuum contribution to
the decay was estimated by discretizing the positive nucleon energy levels by means of an
infinite barrier placed at distances of about 20 fm. Despite all these crude approximations,
the model led to predictions for the mesonic decay widths of 12

ΛC which were compatible,
within errors, with the available experimental measurements at that time, for both π0 and
π− decay channels. Furthermore, the model of Ref. [16] provided an overall description
of medium and heavy hypernuclei mesonic decay, which is still nowadays accepted as one
of the most reliable theoretical estimates [23].

Very recently, precise measurements of the π− mesonic decay of 12
ΛC and 28

ΛSi have been
obtained at KEK, and an upper bound for 56

ΛFe has also been given [7]. The purpose of
this paper is to update the model of Ref. [16], improving the nuclear structure description
of the process, by using: i) more realistic potentials for each one of the nuclei by fitting
the parameters of a WS well, with spin-orbit forces, to the ground state and also to some
of the discrete final state energies of the nuclei involved in the decay and ii) a Continuum
Shell Model (CSM) to describe the positive energy tail of the mesonic decay width. In
this way we replace the discrete sum used in Ref. [16] by the appropriate integral over the
continuum states. This correct treatment of the continuum contribution is important,
since, as we shall see, for π−-28ΛSi decay it amounts about 50% of the total measured
mesonic width, in contrast to the case of the hypernuclei studied in Refs. [13] and [16],
for which the continuum contribution was much smaller.

Since, as mentioned above, the use of pion distorted waves turns out to be crucial [16],
[20], the improved treatment of the nuclear structure allows us to use the new and precise
measurements performed at KEK, as a further test of the quality of the pion-nucleus
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dynamics used in Ref. [16] and developed in the works of Refs. [24] and [25]. A deep and
detailed knowledge of the pion dynamics inside of a nuclear medium has become a topic
of renewed interest to explore possible partial chiral restoration in the medium [26]-[28].

The paper is organized as follows: In Sect. 2 the needed formulae to compute the
pionic decay width are given, both for the discrete and continuum contributions. Details
on the nuclear CSM used in this work are discussed in Sect. 3, where the energy reaction
balance is also studied. Finally in Sect. 4 we present the results of this work and our main
conclusions.

2 Theoretical Description of the Pionic Decay.

In this work, we compute the mesonic decay width as the sum of the contributions of the
following processes1

A
ΛZ →

(
AZ
)

d
+ π0, (1)

A
ΛZ →

(
A(Z + 1)

)
d
+ π−, (2)

A
ΛZ →

(
A−1Z

)
gs

+ n + π0, (3)

A
ΛZ →

(
A−1Z

)
gs

+ p + π−, (4)

where d denotes the ground or discrete excited states of the final nucleus. As we shall see,
we evaluate the processes of Eqs.(1), (2) by putting the outgoing nucleon, coming from
the weak Λ decay, in an unoccupied bound shell of the daughter nucleus. On the other
hand, in Eqs. (3) and (4) gs means that the daughter nucleus is left on its ground state.
In the two last reactions the outgoing nucleon, coming from the weak Λ decay, goes to the
continuum (positive energy) and we denote that contribution by Γc, while the first two
reactions give what we call discrete contribution Γd. Thus we split the pionic width into
two contributions, Γ = Γc + Γd. Experimentally, what can be observed are the inclusive
processes

A
ΛZ → X + π0, (5)
A
ΛZ → X + π−. (6)

The main contribution to these processes is given by the exclusive ones shown in Eqs. (1–
4).

The pionic decay is produced by a baryonic one-body operator

δH̃λ
ΛπN = −Gm2

π

{
S − P

mπ
~σ · ~qcm

}
τλ, (7)

where (Gm2
π)2/8π = 1.945 × 10−15, the constants S and P are equal to 1.06 and 0.527

respectively and mπ is the pion mass (139.57 or 134.98 MeV for π− or π0), ~qcm is the

1We use the notation A
ΛZ, to denote a nuclear core A−1Z and one bound Λ particle.
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momentum of the outgoing pion in the Λ rest frame, and the Pauli matrices ~σ and τλ,
where λ is a cartesian isospin index which will be contracted to the pion field, act on the
spin and isospin Hilbert spaces respectively. Taking the Λ isospin wave function as that
of a neutron, the τλ operator in Eq. (7) implements the extreme ∆T = 1/2 rule, which
leads to a rate of Λ → π−p twice as large as that of Λ → π0n.

The free space Λ decay width is readily evaluated and leads for proton or neutron
decay to

Γ
(α)
free = C (α) (Gm2

π)2

4π

M qcm

MΛ

{
S2 +

(
P

mπ

)2

q2
cm

}
, α = p, n (8)

qcm =
λ1/2(M2

Λ, M2, m2
π)

2MΛ
, (9)

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz, (10)

where α indicates neutron or proton or equivalently π0 or π− decay, C (p) = 4 and C (n) = 2
are isospin coefficients, and M (938.27 or 939.57 MeV for p or n) and MΛ (1115.68 MeV)
are the nucleon and Λ masses respectively. The total free space hyperon Λ width, ΓΛ, is
given by the sum of proton (π−) and neutron (π0) contributions,

ΓΛ = Γ
(p)
free + Γ

(n)
free (11)

In the case of a bound hypernucleus, assuming that the hyperon Λ is in the 1s 1

2

shell

and a closed shell structure for the underlying nuclear system, A−1Z, the width for any of
the processes of Eqs. (1–4) is given by2

Γ (α) = C (α)
∑

N=nljm>F

1

2

∑

msΛ

∫
d 3q

(2π)3

1

2ω(q)
2πδ(EΛ − ω(q) − EN )

× (Gm2
π)2

∣∣∣∣
〈
Λ, msΛ

∣∣∣∣
[
S − P

mπ

~σ · ~∇π

]∣∣∣∣nljm; ϕ̃(α)
π (~q)∗

〉∣∣∣∣
2

(12)

where nljm and EN stands for the quantum numbers and relativistic energy of the outgo-
ing nucleon in the nlj shell, |Λ, msΛ

〉 denotes the Λ wave function with angular momentum
third component msΛ

, EΛ the Λ energy, including its mass, ω(q) the pion energy, and the
sum over N runs over the unoccupied nuclear orbitals (n, l, j, m). In Eq. (12) the
sums over N are over proton or neutron orbitals according to α. The pion wave function
(ϕ̃(α)

π (~q, x)∗) as a block corresponds to an incoming solution of the Klein Gordon equation,

[
−~▽2

+ m2
π + 2ω(q)Vopt(~x)

]
ϕ̃(α)

π (~q, ~x)∗ = (ω(q) − VC(~x))2ϕ̃(α)
π (~q, ~x)∗, (13)

with VC(~x) the Coulomb potential created by the nucleus considering finite size and
vacuum polarization effects, for π− and zero for π0, and Vopt(~x) the optical potential which

2The following expressions are valid for the discrete contribution (Eqs. (1) and (2)) to the decay width.
The needed modifications to compute the continuum part (Eqs. (3) and (4)) are discussed after Eq. (24).
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describes the π-nucleus interaction. This potential has been developed microscopically
and it is exposed in detail in Refs. [24, 25]. It contains the ordinary lowest order optical
potential pieces constructed from the s– and p–wave πN amplitudes. In addition second
order terms in both s– and p–waves, responsible for pion absorption, are also considered.
Standard corrections, as second-order Pauli re-scattering term, ATT term, Lorentz–Lorenz
effect and long and short range nuclear correlations, are also taken into account. This
theoretical potential reproduces fairly well the data of pionic atoms (binding energies and
strong absorption widths) [24] and low energy π–nucleus scattering [25].

After a little Racah algebra, one gets for the Λ decay width inside of a nucleus

Γ(α) =
∑

N=nlj>F

Γ
(α)
N (14)

Γ
(α)
N =

C(α)

4π
(Gm2

π)2 qN

1 + ω(qN)/EA

[
S2S

(s)
N (qN) +

(
P

mπ

)2

~q 2
NS

(p)
N (qN)

]
(15)

with
qN = ((EΛ − EN)2 − m2

π)1/2 (16)

Note that EN , qN and the integrals S
(s)
N and S

(p)
N , defined below, depend on the isospin

α. We have implemented the recoil factor (1 + ω/EA)−1, being EA the energy (including
the mass) of the daughter nucleus, because most of the decay corresponds to nucleons in
nuclear bound excited states, and as a consequence the nucleus of mass MA recoils as a
whole. S

(s)
N (qN ) and S

(p)
N (qN ) are the s–wave and p–wave contributions given by

S
(s)
nlj(qN) =

2j + 1

2
|Inlj(qN)|2 (17)

S
(p)
nlj(qN) =

1

~qN
2

{
l |Mnlj(qN)|2 δj,l−1/2 + (l + 1)|Nnlj(qN)|2 δj,l+1/2

}
(18)

with

Inlj(qN) =
∫

∞

0
r2drR

(Λ)
1s (r)R

(π)
l (qN ; r)Rnlj(r) (19)

Mnlj(qN) =
∫

∞

0
r2drR

(Λ)
1s (r)


dR

(π)
l−1(qN ; r)

dr
− (l − 1)

R
(π)
l−1(qN ; r)

r


 Rnlj(r) (20)

Nnlj(qN) =
∫

∞

0
r2drR

(Λ)
1s (r)


dR

(π)
l+1(qN ; r)

dr
+ (l + 2)

R
(π)
l+1(qN ; r)

r


 Rnlj(r). (21)

Here R
(π)
l (qN ; r) are the radial wave functions of the pion for each partial wave, regular

in the origin and with the asymptotic behavior

R
(π)
l (q; r)r→∞ ≃ eiδl

1

qr
sin(qr − l

π

2
+ δl) for π0 (22)
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R
(π)
l (q; r)r→∞ ≃ ei(δl+σl)

1

qr
sin(qr − l

π

2
+ σl + δl − η log 2qr) for π− (23)

with η and σl the Coulomb parameter and phase shift defined as in Ref. [29] and δl the
complex (to take into account inelasticities) phase shifts obtained from the numerical

solution of the Klein Gordon equation. Finally, R
(Λ)
1s and Rnlj(r) are the Λ and nucleon

bound radial wave functions, normalized as usual

∫ +∞

0
drr2|R(r)|2 = 1 (24)

The Λ wave function in the initial hypernucleus, R(Λ), is obtained from a WS potential [33]
to account for the mean Λ–nuclear core interaction, with parameters compiled in Table 1.
The nucleon dynamics will be studied in detail in Sect. 3.

Some of the nuclei which we use are not closed shell nuclei. In this case the nucleons
from the Λ decay can fill up nh empty states in a n, l, j shell. We take that into account
by multiplying S

(s)
N and S

(p)
N by nh/(2j + 1).

Hypernucleus V Λ
0 [MeV] RΛ [fm] aΛ [fm] BΛ [MeV]

12
ΛC 31.1 2.45 0.60 −10.8 [30]

28
ΛSi 30.1 3.30 0.60 −16.6 [31]

56
ΛFe 30.3 4.18 0.60 −21.0 [11]

Table 1: Lambda hyperon WS parameters and ground state (1s 1

2

) binding energies (BΛ). The total Λ
energy, EΛ is given by MΛ + BΛ.

The above equations (12)–(24) can be readily used to compute the discrete contribution
to the pionic decay width, but when the outgoing nucleon coming from the weak Λ decay
goes to the continuum (positive energy), one should replace the sum

∑
N=nlj>F in Eq. (14)

by a sum over multipoles, plus an integral over the nucleon energies, i.e.,

∑

N=nlj>F

→
∑

lj

∫ Emax

M
dE

2Mp

π
(25)

Rnlj(r) → Rlj(p; r) (26)

with E and p =
√

E2 − M2 the nucleon energy and momentum, Emax = EΛ − mπ, the
maximum nucleon energy, neglecting the recoil of the nucleus, and Rlj(p; r) a continuum
solution of the nucleon Schrödinger equation [32], with the same potential as that used
for the bound nucleons to compute the discrete contribution to the decay width. The
nucleon wave function normalization in the continuum is the same as that given above
for the pions (Eqs. (22-23)).

As a test of the multipole expansion in the continuum, we recovered the free space Λ–
decay width of Eq. (8) from the multipolar expansion of Eqs. (14) to (26). For this purpose
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we set A = 1 and replaced the radial pion and nucleon wave functions by spherical Bessel’s

functions, jl, and the radial Λ–wave function by
√

4π/V , being V = 4πL3/3 the volume
of interaction, which will be finally sent to infinity when calculating physical observables.
The test is straightforward, taking into account:

∞∑

l=0

(2l + 1)

∣∣∣∣∣∣

√
4π

V

∫ L

0
drr2jl(pr)jl(qr)

∣∣∣∣∣∣

2

=
4π

V

∫ L

0
drr2

(
∞∑

l=0

(2l + 1)j2
l (pr)

)∫ L

0
drr2jl(pr)jl(qr) + O(1/L)

=
π

2p2
δ(p − q) + O(1/L) (27)

On the other hand, we have also used this free space limit to test our computational code
and the precision of our numerical algorithms to solve differential equations, to perform
integrations and the sum over an infinite number of multipoles. The idea was, taking as
starting point the formulae of Eqs. (14) to (26) with a radial Λ– wave function given by√

4π/V and switching off the pion-nucleus, and the nucleon potentials, to recover numer-
ically, in the limit L going to infinity, the free space Λ decay width. Such a calculation,
from the numerical point of view, is much more demanding that the actual calculation of
the pionic decay width of the hypernuclei, since the Dirac’s delta appearing in Eq. (27) has
to be constructed numerically out of a large sum over multipoles and slowly convergent
integrals.

3 Nuclear Structure and Energy Balance

We model the nuclear structure of the A−1Z system by a Slater determinant built with
single–particle wave functions obtained by diagonalizing a WS potential well

VWS(r) = V0f(r, R0, a0) + VLS

~l · ~σ
r

df(r, RLS, aLS)

dr
+ ṼC(r), (28)

where

f(r, R, a) =
1

1 + exp
(

r−R
a

) (29)

and ṼC(r) is the Coulomb potential created by an homogeneous charge distribution of
radius RC . The parameters, compiled in Table 2 for neutrons and Table 3 for protons,
of this potential are adjusted3 to reproduce some experimental single–particle energies
around the Fermi level [34]-[35]. This will enforce not only a correct energy balance
for the decay process to the first available shell but also to some excited states. The
main contributions to the processes of Eqs. (1) and (2) come from situations where the

3Essentially, we adjust the depths V0 and VLS , and for the radius– and thickness–type parameters
standard values have been used

6



V0 [MeV] R0 [fm] a0 [fm] VLS [MeV] RLS [fm] aLS [fm]

11C −57.0 2.86 0.53 −6.05 2.86 0.53
27Si −66.2 3.50 0.70 −3.30 3.75 0.70
55Fe −54.0 4.70 0.50 −8.30 4.70 0.50

Table 2: Neutron WS parameters used in this work.

V0 [MeV] R0 [fm] a0 [fm] VLS [MeV] RLS [fm] aLS [fm] RC [fm]

11C −38.4 2.86 0.53 −6.05 2.86 0.53 2.86
27Si −47.4 3.75 0.53 −10.0 3.75 0.53 3.75
55Fe −50.8 4.70 0.50 −8.30 4.70 0.50 4.70

Table 3: Proton WS parameters used in this work.

daughter nucleus is left in the ground state or in the first few excited states. Since the
effect of the Pauli blocking depends strongly on the pion energy after the decay, it is
important, as shown in Ref. [16], to perform a correct balance of energies, using when
possible experimental energies.

Thus, the energy of the first non-occupied shell is fixed to the mass difference between
the ground states of the AZ and A−1Z nuclei for the case of neutron (π0) decay and of
the A(Z +1) and A−1Z for the case of the proton (π−) decay channel. In Table 4 we give
the first available shells and their empirical energies obtained in this way. The energies
of this table do not totally determine the parameters of the mean field nucleon potential,
and one has still the possibility to fit some excited state energies. In what follows, we
give some more details of the adjusted shells.

Hypernucleus Neutron Shell Energy [MeV] Proton Shell Energy [MeV]
12
ΛC 1p3/2 −18.72 1p1/2 −0.60

28
ΛSi 1d5/2 −17.18 2s1/2 −2.07

56
ΛFe 2p3/2 −11.20 1f7/2 −5.85

Table 4: Single particle energies for the first available, to the pionic decay of the hypernuclei studied
in this work, nucleon shells and their empirical binding energies. Energies have been obtained from the
neutron and proton separation energies of the nuclear AZ and A(Z +1) spices respectively, and have been
taken from Ref. [36].
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• 12
ΛC: We assume a closed proton and neutron 1p3/2 shell configurations for the

ground state of 12C and a 1p1/2 (proton) 1p−1
3/2 (neutron) configuration for the ground

state of 12N. The rest of neutron and proton shells adjusted by the mean field
potentials, which parameters are given in Tables 2 and 3, are:

Neutrons: We fix the energy of the 1p1/2 neutron shell from the energy of the first
excited state of 12C [2+ 12C∗(4.43) MeV]. We assume a particle-hole configuration
1p1/2, 1p

−1
3/2 which leads to a binding energy for the 1p1/2 shell of −14.29 MeV.

We are aware that this excited state of 12C might also have some contributions
from proton degrees of freedom, configuration mixing, 2p2h or higher excitations,
collective degrees of freedom, etc, not considered in this simple model. However, as
long as this state had a sizeable component |1p1/2, 1p

−1
3/2〉, it would be reachable in the

weak decay of the hypernucleus and the procedure described above would guarantee
that the energy balance is correct, not only when the 12C is left on its ground state,
but also when it is left on its first excited state, leading then in both cases to good
pion wave–functions. The nuclear matrix elements appearing in the evaluation of
the decay width, though depending strongly on the pion wave–function, are less
sensitive to the specific details of the nuclear wave function.

Protons: There are no 12N excited states amenable to be explained within a shell
model, since all levels compiled in Ref. [36] are broad resonant states populated in
nuclear reactions. Therefore, we choose to use the same spin-orbit force as in the
neutron case, and fix the depth of the central part of the potential to reproduce the
1p1/2 shell as given in Table 4. The mean field potential adjusted in this way, does
not provide excited states for 12N.

• 28
ΛSi: We assume closed proton and neutron 1d5/2 shell configurations for the ground

state of 28Si and a 2s1/2 (proton) 1d−1
5/2 (neutron) configuration for the ground state

of 28P. The rest of neutron and proton shells adjusted by the mean field potentials
are:

Neutrons: We fix the energy of the 2s1/2 neutron shell from the energy of the
first excited state of 28Si [2+ 28Si∗(1.78) MeV]. We assume a neutron particle-hole
configuration of the type |2s1/2, 1d

−1
5/2〉 which leads to a binding energy for the 2s1/2

shell of 15.40 MeV. Limitations and virtues of describing the mesonic decay with
this simple picture for the underlying nuclear core, are similar to those commented
above for the 12

ΛC case. We should mention that to adjust the WS neutron potential
to simultaneously give the empirical 1d5/2 and 2s1/2 energy shells, keeping the 1d3/2

energy shell above the 2s1/2, is delicate and that we had to use a value a bit high
(0.70 fm) for the thickness parameters a0 and aLS. We have also tried smaller values
for the thickness. For instance for values of a0 = aLS = 0.58 fm, in order to adjust
the empirical energies of both the 1d5/2 and 2s1/2 shells, a spin orbit force very small
(VLS = −0.1 MeV with V0 = −65.75 MeV) is required. Despite that both the 1d5/2

and 1d3/2 shells turn out to be almost degenerate, and that the latter one is now

8



deeper than the 2s1/2 shell, the decay width is rather stable, and it gets increased
only by about 10%, with respect to the results of the next section. This increase
is due to an enhancement of the 1d3/2 shell contribution, but the corresponding
configuration |1d3/2, 1d

−1
5/2〉 has an excitation energy too small to correspond to any

experimental excited state of 28Si.

Protons: For the 28P nucleus, as for the case of 12N, there are no excited states
amenable to be explained within a shell model, since all levels compiled in Ref. [36]
are again broad resonant states populated in nuclear reactions. We fix the depth
of the central part of the potential to reproduce the 2s1/2 shell as given in Table 4
and we choose the depth of the spin-orbit such that the next shell (1d3/2) appears
in the continuum. We will discuss in the next section, the dependence of our results
on the precise value of the spin-orbit force. If we use instead the same spin-orbit
force as in the neutron case, there will appear excited 28P states, which cannot be
identified in the experiment.

• 56
ΛFe: The nuclear core structure of this hypernucleus is more difficult to describe,

within our simple shell model, than those of 28
ΛSi and 12

ΛC hypernuclei. Thus, our re-
sults for the decay of this hypernucleus are subject to more theoretical uncertainties.
In what the ground states respect, for 56Fe, we assume a configuration composed of
two paired 1f7/2 proton holes and two paired 2p3/2 neutron particles, while for 56Co,
we assume a proton hole in the 1f7/2 shell and a neutron in the 2p3/2 shell.

The rest of neutron and proton shells adjusted by the mean field potentials are:

Neutrons: We fix the energy of the 1f5/2 neutron shell from the energy of the first
excited state of 56Fe [2+ 56Fe∗(0.847) MeV]. We assume for neutrons a two particle
configuration |2p3/2, 1f5/2〉 which leads to a binding energy for the 1f5/2 shell of
10.35 MeV.

Protons: The first excited state of 56Co has spin-parity 3+ and an excitation energy
of 0.16 MeV. In principle, one might use it to determine properties of the WS proton
mean field potential. However, a word of caution must be said here. One might try
to describe this state as a proton configuration with two paired holes in the 1f7/2

shell and a particle in the 2p3/2 shell, in such a way that the above configuration
would determine the energy of the 2p3/2 shell. The 1f7/2 shell completes 28 protons
which is a magic number, and thus one expects an energy gap between this shell
and the following in energy, 2p3/2, appreciable and of the order of the MeV, and not
as small as 0.16 MeV. Then, likely, the 3+ excited state should have an important
neutron component (one neutron in the 2p3/2 shell and the other in the 1f5/2 one) or
more complex components not considered in our simple shell model. Then, it seems
safe to guarantee that this state will not have a sizeable component |2p3/2, 1f

−2
7/2〉.

Therefore, we choose to use the same spin-orbit force as in the neutron case and fix
the depth of the central part of the potential to reproduce the 1f7/2 shell as given

9



π0 Decay π− Decay
A
ΛZ Vopt Γd Γc Γ Γexp [3] Γd Γc Γ Γexp [7]

FP 0.136 0.008 0.144 0.079 0.027 0.106
12
ΛC 0.217 ± 0.084 0.113 ± 0.013 ± 0.005

NQ 0.150 0.008 0.158 0.082 0.028 0.110

FP 0.061 0.001 0.062 0.018 0.019 0.037
28
ΛSi 0.047 ± 0.008 ± 0.002

NQ 0.074 0.001 0.075 0.020 0.019 0.039

FP 0.010 0.003 0.013 0.005 0.009 0.014
56
ΛFe < 0.015 (90%C.L.)

NQ 0.010 0.003 0.013 0.004 0.010 0.014

Table 5: Pionic decay widths, units of ΓΛ, calculated with two different pion nucleus optical potentials:
FP stands for the full optical potential of Ref. [25], NQ stands for the pion-nucleus interaction obtained
by switching off the imaginary part of the FP optical potential coming from quasielastic pion scattering.

in Table 4. The mean field potential adjusted in this way, leads to an excited state
of about 5 MeV above the ground state.

4 Results and Concluding Remarks

Results for the pionic decay widths of 12
ΛC, 28

ΛSi and 56
ΛFe, calculated with two different

pion nucleus optical potentials are presented in Table 5. The effect of the imaginary
part of the potential is to remove from the emerging pion flux those pions which undergo
quasielastic scattering or pion absorption. However, while the pions absorbed should be
definitely removed, this is not the case with those which undergo quasielastic scattering,
since even if they collide, they are still there and will be observed. This means that one
should not remove these pions from the pion flux and we take this into account here. The
effect is moderately small, as it was already noted in Ref. [16].

The agreement with the recent KEK measurements is remarkably good and it is also
good when our results are compared to the older measurement of the π0 decay width
of 12

ΛC. This is a clear success of the model of Refs. [24, 25] to account for the pion-
nucleus dynamics at low energies. In Ref. [16], it was obtained a value of 0.086 ΓΛ for
the π−-12ΛC decay width. In this work we find a value about 25% higher and in a closer
agreement with the experiment. Differences are even bigger if one looks at the continuum
contribution and also appear for the π0 decay case. In both works, here and in that of
Ref. [16], the same π−-wave function has been used, being then the difference due to an
improved treatment of the underlying nuclear core dynamics. As we will see below, the
barrier method employed in Ref. [16] to estimate the continuum contribution compare
reasonably well to the more correct treatment followed here, when the same nuclear
potential is used. The discrepancies have to be attributed not only to the different WS
potentials used in both works, but also to the somewhat artificial procedure followed in
Ref. [16] to enforce the correct energy balance in the decay.
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Figure 1: Continuum proton energy distributions from the π−- decay width of 28
ΛSi. Results have been

obtained with the NQ π−-nucleus optical potential, as defined in the caption of Table 5, and only the
most relevant multipoles are shown.

Note that in Table 5 the computed widths are always slightly below the data. The
contribution of other reaction channels, not included in Eqs. (1–4), though we expect it
to be small, would improve the present calculation.

In contrast to most of the hypernuclei studied previously by using the WFM [13]–[17],
for the three hypernuclei considered here, the continuum contribution in some cases plays
a crucial role. As a matter of example, for π− decay of 28

ΛSi, it turns out that Γc is of
the same size as Γd (0.020 vs 0.019) and essential to understand the experimental datum.
This reinforces the need of updating the calculation of Ref. [16], where the evaluation of
the continuum contribution was a bit rough, since there was assumed that it was only a
small fraction of the total. Indeed, in Ref. [16], the continuum contribution was estimated
by discretizing the positive nucleon energy levels, by means of an infinite barrier placed
at distances of about 20 fm. In Table 6 we compare the CSM of this work with the model
of Ref. [16]. In both cases we use the same nucleon WS mean potential. Both methods
agree remarkably well and much better of what one might expect a priory. Within the
model of Ref. [16], the sizeable contribution of the continuum is due to the presence of
a quasi-bound (1.27 MeV) state, 1d3/2 and it has its counterpart in the size of the d3/2

multipole in the CSM. Even more, the differential partial width dΓ
(p)
d3/2

/dE presents a

narrow peak (resonance), which gives most of the contribution to the integrated partial
width, located around 1.27 MeV, as can be seen in Fig 1. Small changes in the WS
proton mean potential can bind this shell, going then its important contribution to the
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Figure 2: Neutron energy distributions for 28
ΛSi-decay. Solid (dashed) line corresponds to the j = l+1/2

(j = l − 1/2) multipole. The integrated decay widths are 1.2× 10−4 , 1.1× 10−4 , 1.0× 10−4 , 9× 10−5,
and 6 × 10−5 , in units of ΓΛ, for the 1s1/2, 1p1/2, 1p3/2, 1d3/2 and 1d5/2 multipoles respectively.

discrete part, Γd, but remaining the total width Γd + Γc almost unchanged. For example,
if one uses a spin-orbit force depth of −7 MeV instead of −10 MeV, the 1d3/2 proton
shell becomes bound (−0.1 MeV) and the total width is 0.042 ΓΛ instead of the value of
0.039 ΓΛ quoted in Table 5. In the model of Ref. [16], the exact position of the barrier
might influence energies, the number of shells, and contributions of each shell, but again
the total contribution to Γc remains rather constant, as long as the barrier is placed far
enough.

We have tested for the sensitivity of our results to the mean field nucleon WS pa-
rameters. Thus, we have increased and decreased the spin-orbit depth VLS by 10% and
re-adjusted the depth of the central part of the nucleon potential, V0, to get the experi-
mental ground states masses of the involved nuclei, it is to say V0 is modified to reproduce
again the energies given in Table 4, with the new values of the spin-orbit force. Results
turn out to be quite stable, changing at most by a 2%, except for the π−- decay of 56

ΛFe,
where the uncertainty can be as large as one part in fifteen.

To finish, we show the continuum nucleon energy distributions for the first nucleon
multipoles, which give the bulk of the total, (Figs. 1 to 4) and the contribution to
Γd of each of the unoccupied shells (Table 7) for the π− and π0 decay widths of 12

ΛC,
of 28

ΛSi and of 56
ΛFe. All results have been obtained using the NQ π-nucleus optical

potential. Resonances appear as distinctive features in the continuum contribution of
some multipoles.
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Figure 3: Neutron (left) and proton (right) energy distribution for 12
ΛC-decay. Solid (dashed) line

corresponds to the j = l + 1/2 (j = l − 1/2) multipole. The neutron integrated decay widths are
1.4 × 10−4 , 3.0 × 10−4 , 7.1 × 10−4 , 6.62 × 10−3, and 4 × 10−5, in units of ΓΛ, for the 1s1/2, 1p1/2,
1p3/2, 1d3/2 and 1d5/2 multipoles respectively. While for protons, the contribution of the multipoles are
4.33 × 10−3 , 5.79 × 10−3 , 2.16 × 10−3 , 4.30 × 10−3, and 1.124× 10−2.
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Figure 4: The same as Fig. 3 for 56
ΛFe-decay. The neutron integrated decay widths are 8.2 × 10−4 ,

2.3 × 10−4 , 3.2 × 10−4 , 1.56 × 10−3, and 1 × 10−5 , in units of ΓΛ, for the 1s1/2, 1p1/2, 1p3/2, 1d3/2

and 1d5/2 multipoles respectively. While for protons, the contribution of the multipoles are 2.47× 10−3,
5.21 × 10−3 , 4.8 × 10−4 , 1.49 × 10−3, and 5 × 10−5.
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This work Barrier at 20 fm [16]

Multipole
[
Γ

(p)
lj

]
c

Shell Energy [MeV]
[
Γ

(p)
nlj

]
c

3s1/2 2.45 0.0002
4s1/2 5.19 0.0003
5s1/2 9.21 0.0002

s1/2 0.0007 Total s1/2 0.0007

3p3/2 4.59 0.0005
4p3/2 7.25 0.0004

p3/2 0.0011 Total p3/2 0.0009

3p1/2 5.02 0.0002
4p1/2 8.14 0.0002

p1/2 0.0007 Total p1/2 0.0004

1d3/2 1.27 0.0160
2d3/2 3.22 0.0001
3d3/2 6.31 0.0001

d3/2 0.0165 Total p1/2 0.0162

Γc = 0.019 Γc = 0.018

Table 6: Continuum contributions to the pionic decay width, units of ΓΛ, calculated with the NQ
π−-nucleus optical potential, as defined in the caption of Table 5, and two different methods: the sum

of multipoles of the type Γ
(p)
lj defined in Eqs. (14) and (25) and the sum over positive energy discrete

bound (by the effect of an infinite barrier placed at 20 fm) states [16]. Only contributions to Γc larger
than 5 × 10−4 ΓΛ are shown. Results are for the π−-decay of the 28

ΛSi hypernucleus.
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π0 Decay π− Decay
A
ΛZ Shell Energy [MeV]

[
Γ

(n)
nlj

]
d

Shell Energy [MeV]
[
Γ

(p)
nlj

]
d

1p3/2 −18.72 0.0473
1p1/2 −14.29 0.0865 1p1/2 −0.60 0.0817
1d5/2 −3.51 0.0156
2s1/2 −2.07 0.0008

12
ΛC Total 0.150 Total 0.082

1d5/2 −17.18 0.0086
2s1/2 −15.40 0.0285 2s1/2 −2.07 0.0204
1d3/2 −14.76 0.0342
2p3/2 −3.29 0.0009
1f7/2 −2.95 0.0010
2p1/2 −2.35 0.0009

28
ΛSi Total 0.074 Total 0.020

1f7/2 −5.85 0.0013
2p3/2 −11.20 0.0029 2p3/2 −0.37 0.0031
1f5/2 −10.35 0.0027
2p1/2 −8.84 0.0035
1g9/2 −6.33 0.0001
2d5/2 −1.08 0.0002
3s1/2 −0.33 0.0008

56
ΛFe Total 0.010 Total 0.004

Table 7: Discrete contributions to the pionic decay width (units of ΓΛ) for each of the unoccupied shells,
calculated with the NQ π−nucleus optical potential, as defined in the caption of Table 5.

16



The study of the mesonic decay of ΛΛ hypernuclei constitutes an obvious extension of
this work. To improve the existing calculations [33, 37] would require a correct treatment
of the ΛΛ pair inside of the nuclear medium. Thus, the recent work of Ref. [38], where
short and long range correlations are taken into account, will be a good starting point for
this end.
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