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Resumen  

INTRODUCCION 

La implantación embrionaria y el embarazo requieren una comunicación entre el 

endometrio y el embrión pre-implantatorio.  

El endometrio humano posee dos funciones principales: la adquisición temporal de un 

fenotipo adhesivo que favorezca la implantación embrionaria, también denominada 

“receptividad endometrial”, y una vez se produce implantación, ejerce un segundo papel en la 

invasión, placentación, desarrollo fetal y finalmente el parto. Para ello, el endometrio dialoga 

de forma activa con el embrión mediante mecanismos de señalización que pueden ser 

secretados de forma paracrina hacia el fluido endometrial que nutren y regulan el correcto 

desarrollo embrionario. 

Actualmente, no existe consenso en los marcadores diagnósticos para determinar el 

estadio de receptividad endometrial a nivel clínico,  únicamente los criterios de “Noyes” 

surgidos en 1975 han sido ampliamente empleados. Sin embargo, dado que consisten en 

criterios histológicos, ha sido ampliamente discutida la elevada variabilidad inter-observador. 

Desde entonces, se han hecho grandes esfuerzos en la búsqueda de alternativas moleculares 

cuantitativas, como por ejemplo los estudios transcriptómicos, proteómicos, lipidómicos y 

metabolómicos, e incluso se ha conseguido desarrollar una herramienta predictora que está 

siendo actualmente usada a nivel clínico, denominada “array de receptividad endometrial”, 

basada en los perfiles transcriptómicos analizados a partir de biopsias tomadas del endometrio 

en día 19-21 de ciclo menstrual natural, coincidente con el estadio de receptividad endometrial. 
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Otra de las limitaciones se debe al uso de biopsias endometriales, consideradas un método 

disruptivo que implica realizar transferencia embrionaria en un ciclo posterior. 

En los últimos años, un nuevo concepto denominado “secretómica”, basada en el estudio 

de las moléculas presentes en las secreciones, ha introducido nuevas posibilidades en el ámbito 

del estudio endometrial. Diferentes tipos de moléculas tales como proteínas, lípidos y 

metabolitos han sido hallados en secreciones obtenidas de la cavidad endometrial. Además, no 

se han observado defectos en las tasas de implantación tras aspiración de pequeñas muestras de 

secreciones previa a la transferencia embrionaria en el mismo ciclo. 

Por otro lado, hace dos décadas se descubrieron un nuevo tipo de ácido nucleico, los 

miRNAs. Dichas moléculas poseen alrededor de 19-22 nucleótidos y funcionan como 

reguladores negativos de la expresión génica, para ello bloquean la traducción de RNA 

mensajeros mediante la hibridación por complementariedad de secuencia y secuestro por el 

complejo RISC. Se han descrito miles de miRNAs en el genoma humano, cada uno capaz de 

reconocer cientos de genes diana, lo que supone una gran variedad funcional dependiendo del 

contexto biológico. Además, estas moléculas han demostrado ser capaces de acomplejarse con 

lípidos/proteínas, ser secretadas en exosomas u otro tipo de vesícula y sobrevivir largos 

periodos de tiempo sin degradarse. Por estos motivos, se han propuesto como un potencial 

biomarcador en diferentes patologías humanas.  

Diferentes trabajos han recogido la expresión de miRNAs en el tejido endometrial 

durante la fase de receptividad, pero ninguno de ellos ha explorado las secreciones 

endometriales a lo largo del ciclo menstrual, ni su función más allá de la predicción 

bioinformática. Recientemente se ha demostrado la capacidad de diversos tipos celulares de 

internalizar miRNAs a través de diferentes mecanismos que aún no han sido completamente 

descritos, como endocitosis y/o receptores específicos de membrana.  
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La hipótesis de la presente tesis afirma que los miRNAs están presentes en las 

secreciones endometriales, que se expresan con un patrón determinado a lo largo del ciclo 

menstrual, y que poseen la capacidad de alcanzar al embrión-preimplantatorio y regular la 

implantación embrionaria a un nivel no descrito hasta ahora. 

OBJETIVOS 

• Objetivos generales: 

Determinar la presencia y patrones de miRNAs en las secreciones endometriales humanas a lo 

largo del ciclo menstrual, enfocándonos en la ventana de implantación para hallar potenciales 

biomarcadores de receptividad endometrial. 

Determinar si las secreciones endometriales, así como el cultivo in vitro de células epiteliales 

endometriales primarias están secretando activamente exosomas con presencia de miRNAs. 

Determinar la capacidad embrionaria para incorporar miRNAs vehiculazados o libres. 

Determinar la regulación génica y efectos fenotípicos de los miRNAs incorporados por el 

embrión. 

• Objetivos específicos: 

Estudiar los efectos transcriptómicos y proteómicos de hsa-miR-30d en las células epiteliales 

endometrial. 

Determinar cambios en los patrones de metilación derivados de altos niveles de hsa-miR-30d 

en las células epiteliales endometriales. 

Demostrar la producción de exosomas in vitro en el medio de cultivo de células epiteliales 

endometriales primarias.  

Demostrar la presencia de miRNAs en formas libres o vehiculizadas 
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METODOLOGÍA 

Tomamos muestras de secreciones endometriales a lo largo del ciclo menstrual dividido 

en 5 grupos (fase proliferativa temprana, proliferativa tardía, fase secretora temprana, secretora 

media (o ventana de implantación) y secretora tardía), realizamos extracción de RNA total, 

microarrays de miRNAs, PCR cuantitativa, analisis bioinformático, aislamiento de exosomas, 

microscopía electrónica, co-cultivo de embriones murinos junto con exosomas o miRNAs, 

microscopía confocal y microscopía electrónica de barrido.  

Por otro lado, tomamos muestras de biopsias endometriales y realizamos aislamiento y 

cultivo primario de células epiteliales endometriales, transfecciones transitorias con hsa-miR-

30d, extracción de RNA total, de proteína total y de DNA total. Análisis transcriptómico 

mediante microarrrays de expresión génica, análisis proteómico mediante iTRAQ, analisis 

epigenético mediante MeDIP, PCR cuantitativa, western-blot e inmunohistoquímica, 

aislamiento de exosomas producidos por el cultivo in vitro y análisis bioinformático. 

RESULTADOS 

Mediante microarrays hallamos 19 miRNAs diferencialmente expresados en las 

secreciones endometriales a lo largo del ciclo menstrual con respecto a la ventana de 

implantación, momento durante el cual entran en contacto con el embrión pre-implantatorio. En 

concreto, hallamos altamente up-regulado hsa-miR-30d, que correlaciona con estudios previos 

sobre tejido endometrial. Además,  exploramos los efectos transcriptómicos (176 genes 

diferenciales), proteómicos (108 proteinas diferenciales) y epigenéticos de la transfección de 

hsa-miR-30d en las células epiteliales endometriales “in vitro”. De forma relevante hallamos 

infra expresado el gen asociado a impronta H19, lo que puede deberse a una sobre-expresión de 

la proteína para el gen DNMT1, que está implicado en metilación del DNA, que resultó 

confirmado al hallar hipermetilada la región promotora para el gen H19. Por otro lado, el 
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conjunto de miRNAs endometriales son secretados de forma libre o asociados a vesículas tipo 

exosomas e incorporados por las células del trofectodermo embrionario, induciendo 

modificaciones transcripcionales y funcionales asociadas con el fenotipo adhesivo “in vitro” del 

embrión murino en el caso de hsa-mir-30d.  

CONCLUSIONES 

1. Los miRNAs están presentes en las secreciones endometriales a lo largo del ciclo menstrual. 

2. El perfil de miRNAs durante la ventana de implantación muestra importantes diferencias en 

comparación al resto de fases del ciclo menstrual, lo que apoyaría su uso como nuevo biomarcardor 

de receptividad endometrial. 

3. La expresión ectópica de hsa-miR-30d en células epiteliales endometriales humanas induce 

modificaciones transcriptómicas relacionadas con ciclo celular, proliferación y desórdenes 

endocrinos que podrían influenciar la receptividad endometrial. 

4. El receptor  de estrógenos es un regulador de los efectos asociados con hsa-miR-30d. 

5. La expresión ectópica de hsa-miR-30d en las células epiteliales endometriales primarias humanas 

induce modificaciones proteómicas relevantes para la fisiología endometrial y el estatus epigenético. 

6. Existe un incremento en el estatus de la metilación de la región diferencialmente metilada del gen 

H19 en las células epiteliales endometriales primarias tras el tratamiento con hsa-miR-30d 

7. Las células epiteliales endometriales secretan exosomas tanto en el fluido endometrial como en los 

medios de cultivo “in vitro”. 

8. Los exosomas y los miRNAs libres pueden ser internalizados por el trofectodermo de los 

blastocistos murinos eclosionados. 

9. Hsa-miR-30d está presente en las secreciones durante el periodo de receptividad endometrial y 

puede modular la expresión génica y el fenotipo de adhesividad “in vitro” de los embriones murinos 

eclosionados y listos para implantar. 
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Abstract  

Embryonic implantation and pregnancy require communication between the maternal 

endometrium and the preimplantation embryo. During this process, the blastocyst actively 

regulates the endometrium, whereas the endometrial fluid, secreted by the endometrial 

epithelium, nurtures and regulates the development of the embryo. In the present dissertation, 

we show that maternal miRNAs secreted by the endometrial epithelium into the endometrial 

fluid act as transcriptomic regulators of the preimplantation embryo. Assessment by 

microarrays revealed the presence of specific maternal miRNAs in the endometrial fluid that 

are associated with the window of implantation and are in direct contact with the 

preimplantation embryo; specifically, we explored endogenous effects of hsa-miR-30d, the 

most prominent miRNA during endometrial receptivity in the epithelial endometrial cells. 

These endometrial miRNAs are secreted either freely or as exosome-associated molecules and 

are then taken up into the embryo via the trophectoderm, where they induce embryonic 

transcriptional and functional modifications. Our results offer the possibility for development 

of a novel non-invasive tool to predict the receptivity status of endometrium based on miRNAs 

profiles secreted in endometrial fluid. Furthermore, we demonstrates a model in which 

endometrial maternal miRNAs function as transcriptomic regulators during early embryo 

development, thus offering a new perspective on the cross-talk during implantation and 

pregnancy, and potentially on the developmental origins of certain adult diseases.  
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1  

Reproduction is a key function for our existence; the European IVF-monitoring 

program determined that one in six couples has fertility problems, and half of these couples 

remain subfertile or need assisted reproductive treatments (ART), such as In-Vitro Fertilization 

(IVF). Indeed, in Europe in 2008, an estimated 1.6 % of births have been derived from this type 

of ART and this number keeps increasing due to the tendency of women to postpone their 

motherhood beyond their best fertile age (Ferraretti et al. 2012, Wright et al. 2008).   

Since its beginning in 1978 (Steptoe and Edwards 1978) much effort has been done to 

improve ART, although pregnancy rates remain around 30% per embryo transfer, suggesting 

that correct embryo implantation is the limiting step for success (Figure 1) (Koot et al. 2012). 

Multiple embryo transfer has been extended to achieve higher pregnancy rates but at the 

expense of multiple gestations, which has generated an epidemic of multiple births (21% of 

deliveries in ART) (Ferraretti et al. 2012), with serious adverse obstetrical outcomes (Verberg 

et al. 2007). 

 

 

Figure 1. Treatment outcome after embryo transfer. Reproductive outcome (left bar) and 
pregnancy (right bar) in women who collected urine samples 9–19 days after oocyte retrieval (n = 
179). Adapted from (Koot et al. 2012). 

 



I. INTRODUCTION 
 

 
 

2 

1.  THE ENDOMETRIUM 

1.1. Definition 

The human endometrium is the mucous membrane that coats the inner part of the uterus 

in mammals (Figure 2). In humans and higher primates, it is hormonally regulated and it 

changes dynamically during the menstrual cycle. These changes are necessary in preparation 

for the receptive stage that is essential for embryo adhesion, implantation and gestational 

development to keep nurturing and protecting the allografic fetus.  

1.2. Anatomy 

The uterus consists of two anatomically different sections: the uterine body (corpus 

uteri with the uterine cavity), which contains a smooth muscle layer, also called the 

myometrium, coated by a tunica mucosa named endometrium, and the cervix, which is also 

coated with the endocervix (Figure 2).  

Uterine body 
(Corpus uteri)

Uterine cavity 
(Cavitas uteri)

Cervical canal 
(Canalis cervicis) Cervix 

Isthmus of the tubeInterstitial 
segment

Fallopian tube

Single-layered  
prismatic epithelium 
of the uterine body

Endometrium

Myometrium

Single-layered  
cylindric epithelium 
of the cervical canal

Isthmus of the tube
 

Figure 2. Schematic representation of the uterus.  
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The human endometrium consists in epithelial, stromal and vascular compartments, and 

also immune resident cells. All these four compartments are located in two regions named 

“functionalis”, which is regenerated each month and “basalis”, which is not released and is the 

resource for the cyclic regeneration of the endometrium (Figure 3). 

The epithelial compartment is a monolayer of polarized cuboid cells oriented towards 

the lumen of the uterus formed by two components, the luminal and the glandular epithelia. 

The luminal compartment modifies its morphology across the menstrual cycle (Murphy and 

Shaw 1994). These changes are induced in response to estrogens and affect the plasma 

membrane, cytoskeleton, tight junctions and microvilli, which are reduced during secretory 

stage, while the apical protuberances originated by endometrial fluid endocytosis (Kabir-

Salmani et al. 2005), also called “pinopodes”, increases. The glandular compartment contains 

epithelial cells that proliferate during secretory phase forming large glands producing and 

secreting molecules to nurture the implanting blastocyst, other features are glycogen 

accumulation in the subnuclear cytoplasm and giant mitochondria (Dockery et al. 1988). 

 
Figure 3. Schematic representation of the endometrium. 

 



I. INTRODUCTION 
 

 
 

4 

 The endometrial stroma is a connective tissue formed by cells and extracellular matrix. 

The principal cell type is the fibroblast, which is involved in matrix remodeling across the 

menstrual cycle, principally during the decidualization process in the luteal phase. Several 

morphological and biochemical changes characterize this process in response to estrogen and 

progesterone exposure. Morphologically, it is characterized by elongated fibroblast-like 

Endometrial Stromal Cells (ESCs) transformed into enlarged round cells with specific 

ultrastructural modifications, accompanied by the secretion of specific markers such as 

prolactin (PRL) and the insulin-like growth factor binding protein-1 (IGFBP-1) (Wahlstrom 

and Seppala 1984), in addition to extracellular matrices such as laminin, type IV collagen, 

fibronectin and heparin sulphate proteoglycan as part of their differentiation program (Garrido-

Gomez et al. 2011). The onset of this process in the ESCs surrounding the terminal spiral 

arteries marks the end of the window of implantation. 

The vascular compartment is a complex network starting at myometrium. The uterine 

arteries form the arcuatus arteries that originate the radial arteries, which cross the myometrium 

and reach the endometrial-myometrial junction where they differentiate into basal arteries that 

give rise to the spiral arteries, which are the support for the basalis region. Basalis arteries 

ramify in the functional layer and each one can support a 4-8 mm2 of endometrial surface (D. 

Neill et al. 2006). In the human endometrium there are three main angiogenesis events: during 

menstruation to repair the vascular compartment, during the fast grow in proliferative phase 

and during the secretory phase when the number of spiral arteries increases (Gargett and 

Rogers 2001). 

The immune resident cells consist in uterine natural killer cells (uNKs), macrophages 

and T cells which main function is to protect the genital tract from infections and avoid the 

immune rejection during embryo implantation. The leucocyte population found in normal 

endometrium accounts for 10-15% of the total stromal cell population, and it is the highest 

during the late secretory and premenstrual stages (Bulmer and Johnson 1985).     
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1.3. Menstrual cycle 

The menstrual cycle is exclusive from primates and humans, as the rest of mammals 

posseses an estrous cycle characterized by the endometrial reabsorption. In the menstrual cycle 

the endometrium is expelled and renewed it in each menstruation (Jabbour et al. 2006). The 

cyclic regulation of human endometrium is due to the effects of the ovarian steroids, estrogen 

and progesterone (E2 and P4 respectively), implying the coordination between menstrual and 

ovarian cycles (Critchley et al. 2006).  There are three main phases during menstrual cycle: 

menstrual, proliferative, and secretory (Noyes et al. 1975) (Figure 4). 

Menstruation phase:  it starts with initiation of menses (day 0) and takes 3-5 days. The 

reducing levels of E2 and P4 induce the detachment of the functionalis layer and the 

endometrial shedding. After this phase, the endometrium is thin and only the basalis layer is not 

released. 

Proliferative phase: it goes from the end of menstruation untill the day of ovulation (day 

14). The stromal and epithelial cells from the functionalis layer proliferate and regenerate it in 

response to increasing levels of estrogens, secreted from the ovary. The glandular epithelium 

acquires linear shapes and vascularization. The endometrial thickness increases from 4 to 7 mm 

approximately.  

Secretory phase: it takes from the ovulation (day 15) till menstruation (day 28). After 

the ovulation, the corpus luteum starts to secrete high amounts of E2 and P4. The estrogens 

induce a slight proliferation, and progesterone promotes decidualization. Between days 19-21, 

the endometrial epithelium becomes receptive (Aplin 2000). When there is no implantation, the 

corpus luteum degenerates, E2 and P4 descends, the endometrium becomes ischemic, and 

glandular secretion stops. The final result is the elimination of the functionalis layer and the 

start of a new cycle (Hawkins and Matzuk 2008). 
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2. ENDOMETRIAL RECEPTIVITY 

2.1. Definition 

The human endometrium has two main functions: temporal acquisition of an adhesive 

phenotype to allow for the embryo to implant, also called “endometrial receptivity”, and its 

active participation in the initial dialogue with the embryo will direct the invasion, placentation, 

fetal development and finally parturition (Finn and Martin 1974).  
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The term “window of implantation” (WOI) corresponds to the period of time in which 

the endometrium remains receptive for an embryo and occurs in response to the presence of 

endogenous or exogenous progesterone and after appropriated stimulation with 17β-estradiol. 

When the luminal endometrial epithelium acquires a receptive status it experiments several 

changes such as “plasma membrane transformations”, pinopode formation, and tight lateral 

junctions (Murphy and Shaw 1994).  

 

Figure 4. Schematic view of the human menstrual and ovarian cycles. 
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2.2. Morphological evaluation 

Morphological evaluation is based in the cyclic histological changes reported by Noyes 

(Noyes et al. 1975) from 8,000 endometrial biopsies across menstrual cycle that were sectioned 

and stained with hematoxilin-eosine. It has been considered as the gold standard in endometrial 

evaluation and is based in eight basic histological features: glandular mitosis, nucleus 

pseudostratification, basal vacuoles, secretion, edema from stroma, pseudodecidual reaction, 

stromal mitosis and leucocyte infiltration (Figure 5). The accuracy in the endometrial dating 

depends on several factors such as the ovulation day, time of biopsy, quality of biopsy, absence 

of endometrial lesions, fixation technics and the pathologist interpretation. Therefore, ovarian 

stimulation alters the endometrial maturation process. As a consequence, nowadays the 

endometrial status is not routinely assesed in infertility clinics worldwide due to the absence of 

objective and reliable diagnostic tests that can inform clinicians about the status of endometrial 

receptivity.  

Other morphological biomarkers that have been proposed for determine receptivity is the 

pinopodes formation (Nikas 1999); however, the pinopodes are present in the post-receptive 

endometrium (Quinn and Casper 2009), and the technique requires visualization by scanning 

electron microscopy (SEM) that is too complex technic to be routinely used in clinical practice. 

A third non-invasive morphological evaluation of the receptivity is the transvaginal 

ultrasound. Several parameters have been related with the size, thickness and vascular 

perfusion of the endometrium. However, they do not correlate well with endometrial receptivity 

nor gestation prediction after ART (Dickey et al. 1992, Garcia-Velasco et al. 2003, Remohi et 

al. 1997). 
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Figure 5. Noyes hystological criteria. 
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2.3.  Single molecule approach 

Several groups have studied the expression of specific molecules in human endometrium, 

at the different cell compartments during the different stages of menstrual cycle (Aghajanova et 

al. 2008), for example, Integrins are a family of cell adhesion receptors that ligates with 

extracellular matrix components to trigger specific cell signaling. Some authors have 

determined that Integrins β3, α4 and α1 were indicators of endometrial receptivity (Lessey 

2004). Mucins are other type of molecules studied; such as Mucin 1, which acts as a barrier for 

adhesion but is cleaved specifically by the embryo (Meseguer et al. 1998, Meseguer et al. 

2001). The osteopontin is a receptor for integrins that has been found increased in endometrial 

glands and secretions during receptivity (Borthwick et al. 2003, Carson et al. 2002, Riesewijk 

et al. 2003). Nevertheless, none of them has been show to be clinical predictors of human 

endometrial receptivity. 

2.4. Novel molecular characterization: “Omics” 

The new technologies that allowed the consecution of the human genome project (Lander 

et al. 2001) and recently of the ENCODE (Encyclopedia of DNA Elements) project have 

changed significantly the possibilities of research in the field, from single molecules to the 

whole genome of a cell in a single experiment (ENCODE Project Consortium et al. 2012). 

The term “Genomic” consists in the study of DNA and chromosomes, while 

“Transcriptomics” (or “Functional genomics”) studies the global mRNA gene expression. The 

basis of functional genomics resides in the fact that all the cells contain the same genetic 

information but depending on tissue, cell type or biological process in play, the cells selectively 

express the genetic material. For transcriptomics, the most common evaluation techniques are 

the gene expression microarrays and RNA sequencing (RNA-seq). Several works that have 

explored the functional genomics during the window of implantation in humans, and they have 

determined the most important molecules at the normal receptive status of endometrium 

(Borthwick et al. 2003, Carson et al. 2002, Diaz-Gimeno et al. 2011, Diaz-Gimeno et al. 2012, 

Horcajadas et al. 2004, Horcajadas et al. 2005, Horcajadas et al. 2008, Kao et al. 2002, 

Riesewijk et al. 2003). Researchers at IVI Foundation, has developed a predictive tool for the 
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assessment of the endometrial receptivity based on a subset of these differentially expressed 

genes, creating a customized microarray named “Endometrial Receptivity Array (ERA)” (Diaz-

Gimeno et al. 2011, Diaz-Gimeno et al. 2012, Ruiz-Alonso et al. 2012). This tool has shown a 

significant improvement in helping patients with repeated implantation failure, in those cases 

that ERA predicted endometrium as “pre-receptive”, their embryos were transferred two days 

later than the usual day of embryo transfer in the next cycle, resulting in higher percentages of 

pregnancies and babies at home (Ruiz-Alonso et al. 2014). However, since ERA requires a 

biopsy to obtain the endometrial sample, same-cycle embryo transfer is not possible.  

Proteomic explores the existence of translated proteins and their relative quantity; the 

most used technics are the “bi-dimensional differential gel electrophoresis” (2D-DIGE), the 

“Isotope-coded affinity tag” (ICAT), and the “Isobaric tag for relative and absolute 

quantitation” (iTRAQ) that are based in liquid chromatography. The principal disadvantage of 

the proteomics in general is that requires very high protein concentrations and a mass 

spectrometry system to identify each peptide (Wu et al. 2006). The proteome of receptive 

versus non-receptive endometrium of healthy donor patients by 2D-DIGE was studied and 

several molecules, such as Annexin-A2 and Stathmin-1 were found up-regulated (Dominguez 

et al. 2009). A different group performed ICAT between proliferative and secretory endometria 

and found five proteins with a consistent differential expression (DeSouza et al. 2005), such as 

NMDA receptor subunit zeta 1 precursor and FRAT1. The proteomic of “in vitro” 

decidualization process  was also described (Garrido-Gomez et al. 2011).  

 
Transcriptomic studies Proteomic studies 

Name 
Carson 
(2002) 

Riesewijk 
(2003) 

Mirkin 
(2005) 

Talbi 
(2006) 

Haouzi 
(2009a) 

Díaz-
Gimeno 
(2011) 

Li et 
(2006) 

Domínguez 
(2009) 

ANXA4 - 4 6.5 4.9 2.6 4.7 2.1 1.9 
ANXA2 - 4 5.6 2 - - - 2.1 
MAOA - 15 - - 9.9 8.4 - 3.4 
TAGLN - 6 - - 5.9 - - 1.7 

LCP1 - - 2.6 1.6 - - - 1.6 
PGRMC1 - - - -1.8 - - - -2.4 
STMN1 - - -3.2 - - - - -2.2 
APOL2 - - - - 2.4 - - 3.7 

ALDH1A3 - - - - 16.5 - - 1.8 
S100A10 - - - - 3.5 - - 4.8 

Table 1. Relation between transcriptomic and proteomic results for endometrial receptivity. 

 



I. INTRODUCTION 
 

 
 

12 

In Table 1 (Haouzi et al. 2012), summarizes the most common molecules identified 

during the receptivity phase in the different studies at transcriptomic and proteomics levels. 

This scheme exemplifies how biologically mRNA transcription and the protein translation 

levels are not always correlated. Figure 6 shows that the results differ among the six mentioned 

transcriptomic studies. Alternatively, this observation could also be explained by the patients’ 

characteristics and the day of biopsies. 

 

Lipidomics is a novel term assigned to the study of global lipid profile in different type of 

samples. Some recent reports have applied lipidomics to the study of reproductive function by 

assessing the lipid content of endometrial biopsies during pregnancy (Durn et al. 2010). The 

technique used for this kind of metabolite evaluation is the high-performance liquid 

chromatography (HPLC) to fractionate, separate, and identify the composition and expression 

levels of lipids at single level (Vilella et al. 2013). 

The miRomics is a novel concept for the –omics that has been assigned to the study of 

global profiles of miRNAs (miRNAs). MiRNAs are short non-coding RNAs that we will 

further describe in the next section. Thousands of them have been identified, and they can be 

quantified using the same strategies as for mRNA, that is RNA-seq and microarrays. They have 

been proposed as novel biomarkers in the endometrium to study receptivity: Kuokkannen et al. 

using microarrays technology explored the miRNA’s profile in the endometrial epithelial cells 

 
Figure 6. Number of genes involved in endometrial receptivity common to the microarrays studies. 
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isolated from endometrial biopsies of women at late proliferative and mid secretory stages of 

the menstrual cycle. This study obtained 12 up-regulated miRNAs during the mid-secretory 

stage that would target genes related to cell cycle at this stage, what would confirm the role of 

these miRNAs in the control of cell proliferation (Kuokkanen et al. 2010). In other study, a 

Genome-wide identification of miRNAs by deep sequencing technology revealed the 

differential miRNA expression between endometrial biopsies in pre-receptive (LH+2) and 

receptive stages (LH+7) of natural cycles and from hCG+4 (equivalent to pre-receptive) and 

hCG+7 (equivalent to receptive) in stimulated cycles (Sha et al. 2011). From this study, 22 

miRNAs were significantly deregulated comparing natural vs. stimulated cycles at receptive 

stages, and 20 in receptive vs. pre-receptive in natural cycles. Moreover novel miRNAs not 

previously described were sequenced for the first time. A similar study explored miRNAs 

between pre-receptive and receptive stages in proven fertility women by microarrays and four 

differentially expressed miRNAs were reported (Altmae et al. 2013). The Venn’s diagram in 

Figure 7 shows how miRNAs were correlated among the different studies mentioned. 

 

 

hsa-miR-30d 
hsa-miR-30b 

 
Figure 7. Venn's diagram showing the number shared miRNAs in the three studies of endometrial 

receptivity. 
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2.5. Non-invasive “Omics” 

There is also a trend towards the non-invasive omics in the study of the endometrial 

receptivity, looking forward not to damage the uterine context or interfere with conception in 

the same menstrual cycle. For example, the “secretomics”, or study of uterine secretions would 

potentially replace biopsies as a non-disruptive technic. This concept uses the same technology 

as transcriptomics, proteomics, miRomics, and lipidomics. It has been shown that aspiration or 

flushing of fluid may be performed using an embryo transfer catheter immediately before 

embryo transfer in IVF cycles without negatively affecting implantation rates (van der Gaast et 

al. 2003). 

The endometrial secretome is constituted by secreted mediators that can modulate 

endometrial receptivity, the maintenance and nurturing of ascending spermatozoa, and the early 

development of preimplantation embryo. The components of uterine fluid are derived from the 

luminal epithelium and glands, proteins selectively transudated from blood, and contributions 

from the tubal fluid. The uterine cavity is very tight and for that reason the volume of uterine 

fluid is low: It is difficult to retrieve more than 10 μL from a woman (Salamonsen et al. 2013). 

The primary components are proteins, aminoacids, electrolytes, glucose, urea, cytokines, 

growth factors, metalloproteinases and their inhibitors, immunoglobulins, α-1 antitrypsin 

precursor, haptoglobin, and transferrin (Boomsma et al. 2009).  

The lipidomics of endometrial secretions are characterized by presence of triglycerides, 

eicosanoids (prostaglandins (PGs), thromboxane and leukotriene), endocannabinoids and 

sphingolipids, which play a central role in the biology of reproduction (Berlanga et al. 2011). A  

significant increase in the concentration of two specific lipids, PGE2 and PGF2α was found 

between days 19–21 of the menstrual cycle, coincident with the window of implantation 

(Vilella et al. 2013). 

The miRomic of endometrial fluid across menstrual cycle will be described for the first 

time in the present doctoral thesis; the only similar approach in the literature was carried out 

recently by Salamonsen and collaborators, who observed “in vitro” the existence of small 
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secreted vesicles which contained miRNAs in the conditioned media of endometrial epithelial 

cell lines (Ng et al. 2013). 

3. MIRNAS 

3.1. Introduction 

MicroRNAs, also called miRNAs, were first described two decades ago when Ambros and 

colleagues identified a specific twenty-two nucleotides-long RNA derived from the lin-4 gene 

in C. elegans. This molecule was able to repress lin-14 gene translation, but not its 

transcription, by binding to its complementary 3’-UTR region (Lee et al. 1993, Wightman et al. 

1993). At first this small RNA seemed to be restricted to nematodes, but seven years later 

homologs of the LET7 gene, which is associated with developmental timing, were found in 

humans and other vertebrates (Pasquinelli et al. 2000). Since then, the numbers of miRNAs 

known and the interest in their mechanisms of action and functions have exponentially 

increased (Ambros 2004, Bartel 2004). 

3.2. Types of RNA and miRNA biogenesis 

Ribonucleic acid (RNA) is a cell-synthesized molecule that is principally known for its 

role in exporting genetic information from the nucleus into the cytoplasm, where it is translated 

into proteins. However, new types of RNAs with novel roles, termed ‘non-coding RNAs’, have 

recently been uncovered, which are summarized in Table 2 (Moreno-Moya et al. 2013). 

MiRNAs are transcribed by RNA polymerase II and/or RNA polymerase III as long 100-

1000 nts primary, or pri-miRNAs, which are usually capped at the 5’-end and are poly-

adenylated at the 3’-end. Pri-miRNAs are sequentially processed by the ribonucleases Drosha 

and Pasha (DGCR8) to produce 60-70 nt pre-miRNAs, which have a 5’- phosphate and a 2 nts 

overhang at the 3’-end. These products are then exported to the cytoplasm by Exportin-5, 

where they bind to the ribonuclease Dicer and are processed to yield a double strand 

‘miRNA:miRNA’. Finally, a helicase unwinds the duplex into mature miRNAs (Zhang et al. 

2007).  
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RNA function RNA name Detailed role in the cell 

Protein translation 

Messenger RNA                 
(mRNA) 

Codifies the information to translate DNA into protein. Pre-mRNA is transcribed 
from DNA by RNA Pol II, and maturation process involves removal of introns, 
addition of a 5' methylguanisine cap, and polyadenylation of the 3' end of the 
RNA molecule. The mRNA is exported to the cytoplasm and translated into 
proteins at ribosomes. The genetic code is based in codons, that corresponds to 
three consecutive nucleotides that identify the amino acid sequence of the protein. 

Transfer RNA                        
(tRNA) 

It is the responsible to bring the amino acid corresponding to a specific mRNA 
codon. tRNA are composed of: an anticodon (a 3nt complementary to the mRNA 
codon), an amino acid binding-site, and a binding-site for the aminoacyl-t-RNA 
synthetase, an enzyme which links an amino acid to a tRNA. 

Ribosomal RNA                
(rRNA) 

The RNA component of the ribosome. For translation into protein, the ribosomes 
align the anticodon of tRNA with mRNA codon and a peptidyl transferase activity 
links amino acids together. Eukaryotes have 4 types of rRNA: 18s rRNA in the 
small  ribosomal subunit, and 28s, 5.8s, and 5s rRNA in the large ribosomal 
subunit. 

Protein function 
Signal recognition particle 

RNA                        
 (7SL RNA or SRP RNA) 

This type of RNA is part of the SRP that links to the ribosomes and delays protein 
translation until is associated with the SRP receptor located in the membrane. 
Once associated, the SRP is released and the ribosome continues the protein 
translation  crossing the plasma membrane. 

RNA function and 
maturation 

Small nuclear RNA (snRNA) It is part of the spliceosome, a complex that removes introns from pre-mRNA. It 
has been described 5 types of small nuclear RNAs (snRNAs).  

Small nucleolar RNA 
(snoRNA) 

Involved in modifications of other RNAs. There are two main clases: H/ACA box 
snorRNAs (direct conversion of uridine to pseudouridine), and C/D box 
snoRNAs, (fir addition of methyl groups to RNAs). 

Ribonuclease P                 
(RNAseP) 

The RNA component of a ribozyme which cleaves and generates the mature 
tRNA but also is required for RNA Polymerase III transcription of various 
noncoding RNA genes (tRNA, 5s rRNA, SRP RNA, and U6 snRNA genes). 

Y RNA 
Part of the RoRNP ribonucleoprotein complex. Y RNA may be important in 
resistance to UV irradiation and in DNA replication. It is required for increased 
proliferation of cancer cell lines. 

Ribonuclease MRP      
(Rnase MRP) 

The RNA component of Rnase MRP, a ribozyme that is essential for 
mitochondrial DNA replication. In the nucleus, Rnase MRP participates in 
precursor rRNA processing. 

Circular RNA 
(circRNAs)  Act as molecular ‘sponges’, binding to and blocking miRNAs. 

Regulatory RNAs 

Long non-coding RNA 
(lncRNA; includes lincRNA 
and long RNA pseudogenes) 

Non-protein coding transcripts from 200 nt to 100 kb in length. They appear to 
function in diverse areas including epigenetics, alternative splicing, and nuclear 
import. For example, lncRNA XIST is responsible for the X-chromosome 
inactivation. 

Enhancer RNAs 
(eRNA) 

A type of RNA that regulates epigenetically affecting enhancers functions in the 
promotor region of genes altering its transcription 

Telomere synthesis Telomerase RNA 

The RNA component of telomerase, which extends the ends of DNA preventing 
its loss during replication. The protein component of the telomerase has reverse 
transcriptase activity and the RNA component serves as a template for the 
telomere repeat.  

 
 

MicroRNA                
(miRNA) 

Short RNAs (19-25 nucleotides) typically involved in the downregulation of gene 
expression. Biogenesis and mechanism will be further described in the next 
epigraph. 

 
RNA intereference                 
(RNAi) 

Small (short) interfering RNA                                    
(siRNA) 

Exogenous double-stranded, short RNA molecules (21-23 nt) that silence the 
expression of specific genes. Following transfection of siRNAs an RNA-induced 
silencing complex (RISC) is assembled. The siRNAs unwind and a single strand 
of the siRNA remains bound to RISC. Then the complex targets and cleaves 
mRNA transcripts that have complementary sequences to the bound siRNA. 
Physiologically siRNAs are also generated after RNA virus infections. 
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Piwi-interacting RNA 

(piRNA) 

Short (23-32 nt) RNA that are part of riboprotein complexes active to ensure 
germ-line stability by silencing transposoons within germ cells. piRNA are found 
in clusters encoding 10 to thousands of different piRNAs throughout the 
mammalian genome. 

Table 2. The RNA Universe (Moreno-Moya et al. 2013). 

Mature miRNAs are incorporated to the RNA-Induced Silencing Complex (RISC) and 

bind to the complementary 3’-UTR of its specific target mRNA. This either results in inhibition 

of mRNA translation or promotes its degradation and leads to post-transcriptional gene 

silencing (PTGS). Additionally, the RNA-induced transcriptional silencing (RITS) complex, 

which uses AgoI instead of AgoII in its effector complex, was described almost a decade ago. 

This complex exerts DNA/histone modifications (e.g. methylation) on the genome, and 

therefore triggers transcriptional gene silencing. Although RITS has been identified in many 

species so far, it is yet to be confirmed in humans (Castanotto et al. 2005, Jackson and Standart 

2007, Nilsen 2007).  

In most cases, the ‘seed region’ (the 7-8 bases after the first or second base of the 5’ end 

of the miRNA) matches exactly the corresponding target-mRNA sequence. Nucleotide base 

pairing also occurs at the 3’ region of the miRNA, although this is thought to be less important 

than 5’ pairing. Duplex mismatches between miRNA:mRNAs cause the formation of bulge 

structures in the central region which may be useful for mRNA regulation (Figure 8). Because 

of the short recognition elements, the same miRNA can recognize hundreds of gene targets and, 

at the same time, each gene can be targeted by several miRNAs. Unfortunately, the combined 

complexity of these interacting elements makes the understanding of miRNA biology relatively 

difficult. 

3.3. Nomenclature 

As previously mentioned, the miRNAs are sequentially processed from a long primary 

miRNA transcript (pri-miRNA), to a hairpin (pre-miRNA), and finally, once exported into the 

cytoplasm, to the single stranded mature miRNA. Experimentally confirmed miRNAs follow a 

standard-nomenclature system (Griffiths-Jones et al. 2006). The prefix ‘mir’ is followed by a 

dash and a number, the latter often indicating the order of naming: capitalized ‘miR-’ refers to 

the mature form of the miRNA and ‘mir’ refers to the pre-miRNA. MiRNAs with almost 

identical sequences are annotated with an additional lower case letter; for example, miR-30b is 
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almost identical to miR-30d. Pre-miRNAs that generate two nearly identical mature miRNAs 

but which have different genomic origins are indicated with an additional dash-number suffix, 

for example, the pre-miRNAs mir-194-1 and mir-194-2 are located in different regions of the 

genome but they both generate miR-194. Species are designated with a three-letter prefix, e.g., 

hsa-miR-30d is a human (Homo sapiens) miRNA whereas mmu-miR-30d is a mouse (Mus 

musculus) miRNA. When two mature miRNAs originate from opposite arms of the same pre-

miRNA, they are denoted with a -3p or -5p suffix. When the relative expression levels are 

known, an asterisk following the name indicates a miRNA that is found at low levels relative to 

the miRNA in the opposite arm of the pre-miRNA hairpin. For example, hsa-miR-30d and hsa-
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miR-30d* share a pre-miRNA hairpin, but hsa-miR-30d is the predominant form found in the 

cell. 

3.4. The role of miRNAs in cell biology 

MiRNAs are expressed in all tissues, and regulate a wide spectrum of processes such as 

cellular differentiation, proliferation, and apoptosis (He and Hannon 2004), and the roles 

exerted by miRNAs can be very different from each other. In cancer, for example, several 

miRNAs have been thoroughly characterized and classified as oncogene regulators 

 

 

Figure 8. The miRNA biogenesis and mechanisms of action. 
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(oncomiRs), while, on the contrary, others have been described as tumor suppressors (e.g., the 

let-7 family), which is able to target oncogenes such as RAS, MYC, HMGA2, and cell cycle 

check points (Zhang et al. 2007). 

There is a growing trend towards screening miRNAs for diagnostic purposes in 

reproductive biology, although most studies do not investigate their functional roles but rather 

consider only in silico predictions. The main conditions studied that are relevant to 

reproductive biology are endometriosis (Wang et al. 2013), endometrial cancer (Gilabert-

Estelles et al. 2012), endometrial receptivity (Altmae et al. 2013), decidualization (Estella et al. 

2012), pre-eclampsia (Yang et al. 2011), and ectopic pregnancies (Zhao et al. 2012). MiRNAs 

may eventually be found at the origins of idiopathic pathologies in reproductive biology, but for 

that intense and focused basic research to elucidate the specific effects that different miRNAs 

have on the different cell types comprising the endometrium is required. 

These molecules are present not only in tissues but also in a variety of biological samples 

(e.g., whole blood, serum, plasma, urine, saliva, etc.). Given the small size of miRNAs, specific 

RNA extraction methods ensuring their recovery must be used, what led to the development of 

column-based kits by some companies to achieve an optimal recovery yield. Correct 

purification of the small RNA fraction should be confirmed by gel electrophoresis.  

3.5. MiRNA detection methods 

Traditional in situ hybridization (ISH) has been adapted to visualize miRNAs inside cells 

by using specific miRNA probes and hybridizing them directly on the samples. This 

technology has been developed to work with formalin-fixed paraffin-embedded (FFPE) tissues, 

cryosections (using Exiqon technologies), and/or cell cultures (using Panomics technologies); 

the latter also uses fluorescent in situ hybridized probes (FISH). 

Microarray is currently the most popular miRNA detection method. It consists in 

hybridizing fluorescent-labeled miRNA samples onto glass-printed probes, scanning them, and 

processing the data. This technique requires between 30 ng to 5 µg of total RNA depending on 

which platform is chosen, e.g. Agilent (the most economical), Affymetrix (which has the 
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widest range of probes/miRNAs), and Exiqon (the most sensitive to low amounts of input RNA 

(Guerau-de-Arellano et al. 2012). Since they consist of short length recognition sequences, 

each melting temperature (Tm) is different, which negatively affects the recognition specificity 

and/or sensitivity. However, this issue has recently been overcome by using new ‘locked 

nucleic acid’ (LNA) probes that allow Tm standardization (Castoldi et al. 2006). This method 

enables the simultaneous detection of a large number of miRNAs, and it also allows for 

microarray customization.  

TaqMan-based arrays or PCR arrays entail real-time qPCR amplification, which first 

requires a reverse transcription step using stem-loop primers; this reduces the risk of detecting 

genomic DNA and improves the detection efficiency and sensitivity. Although nanograms of 

input material can be amplified, several array cards are required to cover the human miRome 

(Mestdagh et al. 2008), and therefore this must be taken into consideration when designing 

experiments.  

Next generation sequencing is also becoming a viable option for assessing the miRome 

because its cost is gradually declining (Rothberg and Leamon 2008). This technique requires 

the generation of a small RNA library in which 5’ and 3’ RNA adaptors are ligated to either 

end of the miRNAs. The 3’ adaptors bind to the mature miRNAs or other small RNAs that 

carry the 3’ hydroxyl group (which is usually generated by the enzymatic cleavage catalyzed by 

Dicer). Reverse transcription is then followed by PCR amplification. There are two principal 

sequencing methods: pyrosequencing and sequencing by ligation. These types of 

methodologies are useful for discovering novel miRNAs but their main disadvantage is that 

between 1 and 5µg of RNA is required to perform the assay. 
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A different technology, the Nanostring nCounter uses synthetic RNA segments labeled 

with different fluorochromes to create specific molecular barcodes (Geiss et al. 2008). Each 

probe, called a miRTag, is specific for each miRNA and ligates to the 3’ end of the miRNA. A 

bridge sequence complimentary to the miRNA and miRTag is used during the ligation step and 

is subsequently removed. The miRNA-miRTag then binds to an identifying barcode, and later 

to a biotinylated capture probe; after the ligation to a streptavidin-coated slide the scanner 

counts digitally the barcodes. The advantage of this technology is that it does not require 

amplification or reverse transcription, and because the counts are measured digitally it is 

possible to measure one RNA copy per cell or at the single cell level. A summary of all miRNA 

methods can be seen in Table 3. 

3.6. The functional characterization of miRNAs 

Functionally characterizing miRNAs relies on identifying the biologically relevant target 

mRNAs that they regulate. Therefore, several bioinformatic and experimental approaches have 

been developed to identify miRNA target genes. Many computer programs, including 

Targetscan (http://www.targetscan.org/), Pictar (http://pictar.mdc-berlin.de/), Mirò 

(http://ferrolab.dmi.unict.it/miro/), Miranda (http://www.microrna.org/microrna/home.do), 

Mirmap (http://mirmap.ezlab.org/), Microcosm (http://www.ebi.ac.uk/enright-

srv/microcosm/htdocs/targets/v5/), and Diana Lab (http://diana.cslab.ece.ntua.gr/) predict target 

genes based on 3’-UTR complementarity sequences. 

However, in silico predictions also require “in vitro/vivo” confirmation, and various 

strategies have been developed in this direction: e.g., artificially synthetized oligonucleotides; 

miRNA ‘mimics’, oligonucleotide-miRNA duplexes with passenger strands designed to target 

specific mRNAs; ‘antimiRs or antagomiRs’, oligonucleotides complementary to endogenous 

miRNAs which are designed to bind and inhibit their function; ‘target protectors’, 

oligonucleotides complementary to a specific section of an mRNA target gene which are used 

to protect it from a given miRNA; and finally, miRNA ‘sponges’, an open reading frame 

(ORF), linked to a 3ʹUTR with multiple miRNA-specific binding sites, which acts as a 

competitive miRNA binding inhibitor. Importantly, all of these types of molecules can be 

transfected into cells and can therefore be investigated by western-blot or qPCR (Small and 
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Olson 2011) (Figure 9). ‘Scramble’ miRNA is commonly used as a transfection negative 

control. 

Direct miRNA gene targeting can be explored with luciferase assays by combining 

systems using the ‘firefly’ and ‘renilla’ luciferase genes. Most 3’-UTR regions of target genes 

can be cloned in the multicloning site (MCS) within the firefly luciferase. When synthetic 

oligonucleotides (scramble, mimic, or antimiRs) and the vector(s) are co-transfected into a 

mammalian cell line, the vector constitutively expresses both the renilla and firefly luciferases, 

however if translation repression is triggered by a specific miRNA in the 3’-UTR of the firefly 

luciferase mRNA its luminescence signal (but not that of renilla luciferase) decreases (Figure 

10) (Guo et al. 2013). 

Once miRNA target genes are predicted and confirmed, functional characterization 

requires a deeper understanding of the biological functions underlying those genes. Therefore, 

further experiments must still be designed to determine parameters such as proliferation, 

cytoskeleton modifications, cell invasion and migration properties, and their differentiation and 

dedifferentiation processes.  

 

Figure 9. Artificial oligonucleotide manipulation at the miRNA function. 
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3.7. miRNAs as biomarkers 

Many miRNAs present in serum predict or correlate with disease status and prognosis in 

several types of malignancies. Furthermore, compared to the proteomic or the transcriptomic 

approaches, it is easier to adapt their use for the clinic because there are only approximately 

1500 detectable human miRNAs (Cortez et al. 2011). However, an important barrier to the use 

of miRNAs as non-invasive biomarkers is the conflicting data published in relation to the same 

pathologies or conditions. This might be explained by the lack of common methodological 

standardization in the field, e.g., in sample collection or qPCR normalization techniques. 

Regarding the former, it is important to control or avoid hemolysis as well as the use of EDTA 

because it blocks the polymerase reaction during PCR. Regarding the latter, the consistency of 

results could be improved by adding synthetic miRNA 'spikes' (derived from different 

organisms) to the qPCR mix, e.g., ‘cel-miR-39’ from C. elegans (Mitchell et al. 2008). 

 

Figure 10. Scheme of the pmiRGLO Luciferase vector assay 
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3.8. miRNAs as pharmacological agents 

There are currently two major barriers to the use of miRNAs as pharmacological 

treatments: firstly, one miRNA can target several genes at once. Fortunately, active research is 

focused on improving the stability of miRNAs “in vivo” and on directing their action to target 

specific cells or organs, e.g., by conjugating miRNAs to carrier molecules such as lipids (de 

Antonellis et al. 2013), polymers (Klimenko and Shtilman 2013) or peptides (Jarver et al. 

2012). Secondly, unmodified miRNAs can trigger unspecific interferon responses in tissue 

culture and “in vivo”. In response to the presence of siRNAs, the dsRNA-dependent protein 

kinase R (PKR) induces interferon beta upregulation, activating the Jak-Stat pathway and 

leading to the expression of IFN-stimulated genes (Sledz et al. 2003).  

Many pharmaceutical companies have recently started investing in developing miRNAs 

for the treatment of human diseases. Most of them, including Santaris Pharmaceuticals, 

Rosetta Genomics, and Regulus Therapeutics have focused on developing treatments for liver 

cancers; Mirna Therapeutics has focused on lung, prostate and blood cancers, whereas 

miRagen Therapeutics has focused on cardiovascular and muscle diseases. 

3.9. Intercellular communication 

Little is known about the potential “hormonal” role of miRNAs present in plasma/serum 

and the effects of these molecules in distant sites of the body (Cortez et al. 2011). Recipient 

cells can internalize miRNAs transported by HDL using a pathway involving nSMase2 

(Vickers et al. 2011).  Recently it has been described small sized vesicles ranging from 20-100 

nm, also called exosomes, that are released from cells through ceramide dependent secretory 

machinery (Kosaka et al. 2010). These exosomes containing miRNAs can be uptaken by the 

recipient cells by endocytosis. Recent studies demonstrated that 90% of plasma and serum 

miRNAs are not encapsulated by vesicles, but co-fractionated with protein complexes, mainly 

Ago2-miRNA complexes (Arroyo et al. 2011, Zhu and Fan 2011)(Figure 11). 
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4. EMBRYO DEVELOPMENT 

The human zygote has to experience huge transformations to become a healthy implanted 

embryo. Each step is crucial for the success and the correct development. For this goal the 

embryo is not alone and the mother’s womb has to control the new life growing inside. 

4.1. Early embryo development 

The first description of pre-implantation embryos comes from mid-50s in voluntary 

patients that had their uteri dissected after hysterectomies, and a two-cell stage embryo and 

another embryo in gastrulating stage were observed.  Since then, our understanding of human 

early embryo development relies on “In Vitro Fertilization” (IVF) techniques. 

 

Figure 11. MiRNA-mediated intercellular communication. 
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The human embryo development changes from a transcriptional silenced state that 

includes the fusion of egg and sperm, migration, pronuclear fusion, genetic and epigenetic 

reprogramming, and a series of cell divisions. When an embryo cleavages from 4- to 8- cell 

stage at day 3, it begins a major wave of embryonic genome activation (EGA) that was reported 

for the first time in 1988, when the inhibition of transcription by α-amanitin had no effect in 

embryos prior 4-cell stage (Braude et al. 1988). More recently, EGA has been determined to 

occur at day 3 independently of cell number (Galan et al. 2010). These findings differ from 

those observed in mouse, in which zygotic gene activation (ZGA) is initiated after 26-29 hours 

post-fertilization (Potireddy et al. 2006). After EGA, the embryo undergoes compaction and 

forms the morula. Subsequent cell divisions lead to compaction and cavitation to form a 

blastocyst that comprises the trophectoderm (TE) delimiting a cavity fluid-filled and an inner 

cell mass (ICM). After that, the blastocyst hatches from its zona pellucida and begins the 

implantation process at day 5-6, but just before implanting, the ICM diverges into early epiblast 

and primitive endoderm cells. Since a successful pre-implantation development can be 

predicted by using time-lapse prior to EGA, it is likely that human embryo is in large part 

influenced by the inherited maternal and paternal factors involved in the RNA 

metabolism/translation and cytokinesis (Cruz et al. 2011, Wong et al. 2010).   

4.2. The effects of growth factors on human embryo development 

It has been observed that the consumption of growth factors by the embryos lead to the 

“quiet embryo hypothesis” in which the quiet embryos are more viable than those active 

(Baumann et al. 2007). This means that a hyperactive metabolism, result of culture stresses, 

would increase the expression of genes involved in glycolysis, glucose transport and lactate 

metabolism. However, this hypothesis has only been demonstrated in bovine and it remains 

unclear whether there are cell-specific or general survival mechanisms that correlate with 

unique growth factor receptor expression in human ICM or TE cells. 
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4.3. Main differences with mouse embryo pre-implantation development 

While human and mouse embryos are similar at the pre-implantation stage, there are 

several molecular differences that would generate significant differences later in the 

developmental timing. These differences include gene expression patterns, programs of 

epigenetic modification, genetic instability, and a longer transcriptional silence period in human 

embryo relative to mouse. Therefore, human embryos undergo one additional round of cell 

division prior to implantation (256-cell stage in human compared to 164- cells in murine 

blastocysts) (Niakan et al. 2012). 

4.4. Human embryo implantation stages 

a) Apposition 

Prior to implantation, the blastocyst migrates towards the upper third part of the uterus 

and the ICM rotates to face the luminal epithelium. This stage takes place at 5-6 days after 

ovulation.  

b) Adhesion 

During adhesion, the trophoblast and endometrium surfaces experiment molecular 

changes to allow cell-to-cell interaction between the two cell systems. These changes are led by 

steroids (Aplin 2000, Bazer et al. 2009) and/or by the embryo (Simon et al. 1998), leading to 

the expression of adhesive molecules in the luminal epithelial cell surface during the Window 

of Implantation (WOI). 

Integrins and cadherins are transmembrane proteins able to interact with cell receptors or 

with extracellular matrix proteins (ECM), mediating adhesion and migration processes. For 

example, L-selectin is expressed in the trophectoderm surface and binds to receptive epithelial 

endometrial cells (EECs). Other proteins described in the trophectoderm such as ICAM-1, N-

CAM and V-CAM-I or E-cadherin also have also been associated with the adhesion process 

(Zygmunt et al. 1998). 

In this stage, the importance of a series of molecules with autocrine-paracrine actions 

such as cytokines, LIF, CSF-α and interleukins (Simon et al. 1996) has also been described. 

The blastocyst controls its adhesion through receptor-ligand interactions with the EEC surface 

and by the removal of molecular barriers such as MUC1 in the implantation sites (Meseguer et 
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al. 2001). Another mechanism involved in the embryo adhesion is the apoptosis induction in 

EECs, mediated by the Fas ligand exposure by the embryo, and recognition by Fas receptor in 

the EECs that triggers the apoptotic pathway (Galan et al. 2000). This process is activated 

together with the secretion of TGFβ by the embryo (Kamijo et al. 1998), allowing the 

blastocyst to initiate the invasion process. 

c) Invasion 

Once the blastocyst has attached to the luminal epithelia, it starts an invasive process in 

which it will reach gradually the uterine stroma. On day 10 post-fertilization, approximately, 

the blastocyst is completely embedded in the stromal tissue, the epithelium has grown over the 

implantation site and the trophoblast is still growing. At this time there is also an important 

process that gets the trophoblast in direct contact with the uterine circulation, establishing an 

utero-placental circulation to support the growing fetus.  

Progesterone is the principal hormone responsible for the invasive process. Also, the 

control of the invasion is mediated by several components such as, integrins, serine-proteases, 

collagenases, plasminogen, and metalloproteases (MMPs) of the ECM (Strickland et al. 1976). 

In particular, MMP-2 and MMP-9 are secreted by the human trophoblast (Cohen et al. 2006), 

and their action is counter-balanced by the tissue inhibitor metalloproteases (TIMPs) secreted 

by stromal cells (Irwin et al. 2001).  

Embryo invasion has been compared to the invasive process of tumoral cells (although 

the former is controlled spatial and temporarily) and two different mechanisms have been 

proposed to explain how it is controlled. The first one asserts that the human chorionic 

gonadotropin (hCG) secreted by the embryo negatively regulates “in vitro” the protease 

activity of the urokinase uPA, which would reduce the embryo invasiveness (Chou et al. 2003). 

The second mechanism is attributed to the stromal barrier. The stromal differentiation triggered 

by the endometrium to generate a highly dense ECM, also known as “decidua” (Lala et al. 

1983), generates a local context that promotes the anchorage rather than an invasion by the 

trophoblast (Figure 12).  
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Figure 12. The stages of development during the first week and the approximate location of 

each stage in the uterine tube or uterus (Gasser ). 
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Functions of secreted miRNAs during human endometrial receptivity      

 

 

 

 

 

II. HYPOTHESIS 
 

The human endometrium actively secretes in the lumen several types of molecules with 

paracrine/endocrine effects to the endometrium and the upcoming embryo. We hypothesize that 

miRNAs are present among these molecules, that they show a specific pattern across the 

menstrual cycle, and that they have the capacity to reach the pre-implantation embryo in a new 

form of intercellular communication.  
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III. OBJECTIVES 

1. General objectives 

To determine the presence and pattern of miRNAs in human endometrial fluid across the 

menstrual cycle focusing on the window of implantation phase. 

To find whether the endometrial fluid and the“in vitro” cultured endometrial epithelial cells are 

actively secreting exosomes containing miRNAs. 

To determine the uptaking ability of the embryos for free and/or exosome-vehicled forms of 

miRNAs. 

To determine gene regulation and phenotypic effects of miRNAs uptaken by the embryo. 

2. Specific objectives 

To study the transcriptomic and proteomic effects of hsa-miR-30d in endometrial epithelial 

cells. 

To determine changes in methylation patterns derived from high levels of hsa-miR-30d in 

endometrial epithelial cells. 

To demonstrate the “in vitro” production of exosomes in the medium of cultured primary 

endometrial epithelial cells. 

To demonstrate the presence of miRNAs in free or exosomes vehicled forms. 
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1. SAMPLE COLLECTION AND PROCESSING 

1.1. Ethics statement 

This study was approved by the Institutional Review Board and Ethics Committee of 

the Instituto Universitario-Instituto Valenciano de Infertilidad (Universidad de Valencia, Spain) 

[1204-C-102-FV-F]. Informed written consent was obtained from each patient prior to tissue 

and endometrial fluid collection. 

1.2. Endometrial samples   

Endometrial biopsies were obtained at day LH+0 from 18 to 35-year-old women with 

regular menstrual cycles (n = 15)  (n = 4 for microarrays; n = 4 for iTRAQs; n = 4 for qPCRs; n 

= 3 for western-blots). Patients have normal karyotypes, good general health, a BMI of 19-29 

Kg/m2 undergoing controlled ovarian stimulation (COS) for oocyte donation. Three additional 

biopsies were obtained at LH+7 from women under natural cycle. Patients diagnosed with 

endometriosis and/or endometritis were excluded. All patients signed informed consent prior to 

entering the study. 

The COS protocol was carried out by following a GnRH-agonist long protocol with 200 

IU recombinant follicle stimulating hormone (FSH; Gonal F; Merck-Serono). When six or 

more follicles were more than 17 mm in diameter, recombinant chorionic gonadotrophin (rCG; 

Ovitrelle; Merck-Serono) was administered to trigger ovulation. Doses were adjusted according 

to the ovarian response as judged by serum estradiol concentrations and ultrasound scans every 

three days. 

1.3. Epithelial and stromal separation and primary culture 

The endometrial samples were processed to separate the epithelial and stromal fractions 

by collagenase digestion and gravity sedimentation, as previously reported by our group 

(Simon et al. 1997). The purified hEECs were plated at 10-20% confluence and maintained in 

culture until the experiments were performed.  
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1.4. Endometrial secretion aspirations  

Endometrial fluid (EF) samples (n=20) were divided into five groups (n=4 per group) 

according to the stage of the cycle obtained. EF was obtained from healthy subjects with no 

underlying endometrial pathologies and who had regular menstrual cycles of 25 to 33 days. 

None of these women received hormonal treatment in the 3 months preceding biopsy and 

collection of EF. Briefly, the subject lay in the lithotomy position, a speculum was inserted, the 

cervix was cleansed, a flexible catheter (Wallace; Smiths Medical) was gently introduced, and 

approximately 20-50 µL of endometrial secretion was aspirated. Endometrial fluids were 

classified in five different groups: Early Proliferative (EP,  day 0-8, n=4); Late Proliferative 

(LP, day 9-14, n=4); Early Secretory (ES, day 15-18, n=4), Mid-Secretory  or Window of 

Implantation (MS or WOI, day 19-23, n=4) and Late Secretory (LS, day 24-28, n=4). 
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Figure 13.  Experimental design for assessment of miRNA’s profile across menstrual cycle 
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1.5. Exosome isolation and labeling 

Isolation of exosomes from EF. EF samples were diluted in PBS (Life Technologies S.A., 

Madrid, Spain), vortexed vigorously, and filtered using a 0.22µm-syringe filter (Pall 

Corporation, UK). The filtrates were then centrifuged at 300 × g for 10 min to remove whole 

cells. The supernatant was subjected to a second centrifugation at 2,000 × g for 10 min to 

remove dead cells, and the supernatant was centrifuged again at 10,000 × g for 30 min to 

remove cell debris. The supernatants were refiltered with a 0.22µm-syringe filter (Pall 

Corporation) and ultracentrifuged at 120,000 × g for 70 min. Pellets containing exosomes were 

used for electron microscopy, embryo uptake assays, RNA extraction, and qPCR. 

hEEC cultures and exosome isolation. Endometrial samples obtained from healthy 

donors were processed to separate the epithelial and stromal cell fractions by collagenase 

digestion, as previously reported by our group (Simon et al. 1997), and the purified cells 

(hECC) were plated out into 24-well plates (Falcon; Becton Dickinson Inc.). When cultures 

reached confluence they were washed with DMEM (Gibco) to remove FBS-contaminated 

exosomes and cultured in DMEM. After 48 h, conditioned medium was collected, and 

exosomes were isolated. Briefly, approximately 35 mL of primary hEEC-conditioned medium 

was centrifuged at 300 × g for 10 min to remove whole cells; the supernatant was centrifuged at 

2,000 × g for 10 min to remove dead cells and centrifuged again at 10,000 × g for 30 min to 

remove cell debris. The supernatant was then filtered with a 0.22-µm syringe filter (Pall 

Corporation) and ultracentrifuged at 120,000 × g for 70 min. Pellets containing exosomes were 

used for electron microscopy, embryo uptake assays, Western blot analysis, RNA extraction, 

and qPCR. 

Previously isolated exosomes were incubated with 5 µM fluorescent Vybrant DiO (Life 

Technologies) at 37°C for 30 min. After labeling, exosomes were collected and ultracentrifuged 

to wash off the excess dye, added to hatching embryos, and incubated for 12-24 h. 
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2. NUCLEIC ACID ANALYSIS 

2.1. Total RNA extraction 

For hEECs and EF samples, to ensure that the miRNA fraction was recovered we 

performed RNA extraction using the miRNeasy Kit (Qiagen, Valencia, CA, USA). The RNA 

extracted was quantified using a NanoDrop spectrophotometer (Thermo Fisher Scientific Inc., 

MA, USA) and the quality of RNA samples was assessed using a Nano LabChip BioAnalyzer 

2100 (Agilent Technologies Inc., DE, USA). 

For mouse embryos, to ensure that small amounts of messenger RNA are suitable for 

transcriptomic analysis and/or PCR, the total RNA was extracted using the Arcturus PicoPure 

RNA isolation Kit (Applied Biosystems, CA, USA).  The RNA extracted was quantified using 
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Figure 14.  Experimental design for assessment of miRNA’s uptake by murine embryos. 
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a NanoDrop spectrophotometer (Thermo Fisher Scientific Inc., MA, USA) and the quality of 

RNA samples was assessed using a Pico LabChip BioAnalyzer 2100 (Agilent Technologies 

Inc., DE, USA). 

2.2. Retrotranscription 

Since it is desirable to perform miRNA and mRNA quantification in the same samples, 

we used a strategy that allows retrotranscription of both types of RNA in the same reaction. For 

this purpose we used the miScript reverse transcription kit (Qiagen, Valencia, CA, USA) with 

using the HiFlex Buffer protocol according to the manufacturer’s recommendations. 

2.3. Quantitative Real-Time PCR 

Once RNA has been converted to cDNA, relative quantitative PCR was performed using 

LightCycler FastStart DNA Master SYBR green I in a LightCycler 480 (Roche Applied 

Science, USA) and the fold-change was estimated using the -2ΔΔCt formula. 

2.4. RNAse treatment 

To test whether smallRNAs (20-200nts) contained in exosomes were protected from 

degradation, total RNA extraction was performed on exosomes isolated by using the miRNeasy 

Kit (Qiagen). The extracted RNA was treated with 10 ng/µL of RNase A (Sigma-Aldrich, 

Madrid, Spain) at room temperature for 30 min. RNA was quantified using a NanoDrop 

spectrophotometer (Thermo Fisher Scientific), and the proportion of miRNAs was evaluated 

using the Pico RNA LabChip BioAnalyzer 2100 (Agilent) 
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2.5. MiRNA microarrays 

The grouped EF cohorts were analyzed using human miRNA v3.0 8x15K microarrays 

(Agilent), which evaluate the expression of 866 human miRNAs. Total RNA from each sample 

was processed according to the manufacturer’s instructions, and then scanned. Raw data are 

available in the Gene Expression Omnibus (GEO) database with the accession number 

GSE44558. 
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Figure 15. Experimental design for detection of miRNAs secreted 

exosomes and/or as other type of soluble forms 
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2.6. MRNA microarrays 

Total RNA from each sample were analyzed with Agilent GE 4x44K Human v2 and 

Mouse v3 microarrays, processed according to the manufacturer’s instructions and then 

scanned. Raw data for the study of embryos treated with miRNAs is available in the GEO 

database with the accession number GSE44730. 

The raw data for the hEEC transcriptome, transfected under two different conditions 

(scramble or mimic; n = 4) is available in the GEO database with the accession number 

GSE46721. 

2.7. MiRNAs transient transfections 

When hEEC cultures reached 50% confluency the cells were transiently transfected with 

50 nM of either miR-30d mimic or scramble miRNA using HiPerfect, following the 

manufacturer’s instructions (Qiagen, Valencia, CA, USA); after 72 hours RNA was extracted 

from the cells. 

2.8. Methylated DNA Immunoprecipitation 

For MeDIP assay we used the Methylated DNA Immunoprecipitation kit (Abnova 

Corporation, Taiwan). The genomic DNA was extracted from three different scramble- or 

mimic-30d-treated hEECs, sonicated into fragments ranging in size from 200 to 1000 bp, and 

divided into input (non-immunoprecipitated) and immunoprecipitated portions as 

recommended by the manufacturer. The immunoprecipitated DNA was incubated with anti-5-

methylcytosine monoclonal antibody to bind methylated DNA. Methylated DNA was subjected 

to quantitative real-time PCR as previously mentioned for the H19 DMR region (paternally 

methylated and maternally expressed) and the UBE2B (typically unmethylated) genes 

(Movassagh et al. 2010). To evaluate the relative enrichment of target sequences after MeDIP, 

we estimated the fold-change using the -2ΔΔCt formula, normalizing against input DNA. 
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2.9. Primers design 

Appropriate primers for PCR were designed to span exon-exon boundaries to the PCR 

template sequence. Initially, the primer melting temperature (Tm), were calculated. Primers 

were constructed based on the optimal length (20-22 bases) and a melting temperature in the 

range of 60ºC. To avoid regions of homology all primers were tested using NCBI Primer Blast 

software. For the different experiments we used several primers that are enlisted in Table 4. 
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Figure 16.  Endometrial epithelium study workflow 

 



IV. MATERIALS AND METHODS 
 

 
 

 

51 

 

3. PROTEIN ANALYSIS 

3.1. Total protein extraction 

For total protein extraction, pellet of cells and or exosomes were lysed in ice-cold buffer 

containing 300 mM NaCl, 20 mM Tris, 10 mM EDTA, 2% (v/v) Triton X-100, pH = 7.3 

supplemented with a protease inhibitor cocktail (Roche Applied Science, USA), and 10 mM 

PMSF (Sigma-Aldrich, USA). Protein quantification was performed using the Bradford assay. 

Mouse gene primers
Gene

Forward ATGGCAGGCCCTAACTTTCC
Reverse GTGCGAAAACACAGGCCAAT
Forward GGGTACCAAGTTGGCCTCTC
Reverse ATCTCGATTACGGGACACGC
Forward AACTCGGCCCCCAACACT
Reverse CCTAGGCCCCTCCTGTTATTATG

Human gene primers
Gene

Forward GAAGGTGAAGGTCGGAGTC
Reverse GAAGATGGTGATGGGATTTC
Forward GTGGACTTGGTGACGCTGTA
Reverse CACCATCCTCCCTCCTGAGA
Forward GGAGCTTCCACCACGAAGAA
Reverse GGAAGCCCCTTTCCCAATCA
Forward GGGGCAAGGTGGAACAGTTA
Reverse AGGTTGGCAATCTCGGTCTG

>For%MeDIP%assays
Forward GAGCCGCACCAGATCTTCAG
Reverse TTGGTGGAACACACTGTGATCA
Forward CTCAGGGGTGGATTGTTGAC
Reverse TGTGGATTCAAAGACCACGA

miRNA primers
Gene Distribuitor Nº Ref

Sequence

Sequence

DMR_H19

UBE2B

hsa-miR-30d-5p

SNORD96A

QIAGEN

QIAGEN

MS00009387

MS00033733

GAPDH

H19

BMP4

FOS

Itgb3

Gapdh

Cdh5

 
 

Table 4. List of primers used 
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3.2. Western-blot 

For immunoblotting, 25 µg/lane of protein extracts from the cell lysates were separated 

on 10% SDS-polyacrylamide gels, transferred to polyvinylidene difluoride membranes (BIO-

RAD, USA, CA) and incubated overnight at 4˚ C with antibodies specific to human CD63 

(Abcam, UK, MEM-259), DNMT1 (Abcam, UK, ab19905), ALDH2 (Abcam, UK, ab54828), 

WNT1 (Abcam, UK, ab15251), PGRMC1 (Santa Cruz, sc-271275), and β-ACTIN as a 

housekeeping control (Santa Cruz, sc-47778). After washing three times, the blots were 

incubated with diluted horseradish peroxidase-conjugated secondary antibodies (Santa Cruz 

Biotechnology, St. Cruz, CA) for 1 hour at r.t. Blots were then washed extensively and 

developed using SuperSignal West Femto Chemiluminescent kit (Thermo Fisher Scientific). 

Densitometry analysis of the gels was carried out using the ImageJ software 

(http://rsbweb.nih.gov/ij/links.html) and each western blot was normalized to the housekeeping 

protein band to correct for differences during sample loading.  

3.3. Immunohistochemistry 

Formalix-fixed and paraffin-embedded endometrial biopsies were sectioned with a 

thickness of 5 microns and mounted on glass slides coated with Vectabond TM (VectorLab, 

Burlingame, CA, USA). After deparaffinization with three passes of xylene (5min), samples 

were dehydrated by triplicate with ethanol 100% (5min). Samples were limited with PAP PEN 

and then were rehydrated in decreasing concentrations of alcohols 95% (5min), 85%(5min), 

and 70%(5 min), followed by a washing in distilled water (1min) and 1X phosphate-buffered 

saline (PBS) (1min). Immunohistochemistry was performed on endometrial sections using the 

LSAB Peroxidase Kit (DAKO, CA, USA) and primary antibody CD63 (Abcam, UK, MEM-

259). The primary antibody was diluted at the appropriate concentration in 1%BSA in PBS. 

Slides were placed in a wet chamber and 20uL of the antibody-containing solution were added 

to the sample. The chamber was covered and placed in an incubator at 37ºC for 60 minutes. 

Slides were then washed twice with PBS for 10 minutes at room temperature with gentle 

movement. Secondary antibodies were included in the kit and are valid for rabbit, mouse, and 

goat origin primary antibodies. Immunostaining was then visualized with 200uL of 2.30-
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diaminobenzidine (DAB) chromogen. After counterstaining with hematoxylin and washing 

with distilled water, slides were mounted with entellan euKit (Merck, Darmstadt, Germany) 

and analyzed with a Nikon Eclipse 80i microscope. For negative controls, primary antibody 

were omitted and samples were incubated in DAKO Antibody Diluent. 

3.4. Isobaric tag for relative and absolute protein quantitation (iTRAQ) 

Primary hEEC samples under Mimic-30d or Scrambled experimental conditions were 

lysed and 100 μg of each isolated protein mixture were loaded onto a 1D PAGE gel without 

resolving the mixture. Each lane was cut and digested overnight (o.n.) at 37˚ C with 

sequencing-grade trypsin (Promega) as previously described (Shevchenko et al. 1996). The 

reaction mixtures were dried in a speed vacuum. Each sample was re-dissolved in 80 μL of 

TEAB-ethanol solution (3/7; v/v), were sonicated for 10 minutes, added to the appropriate 

iTRAQ Reagent vial, and vortexed thoroughly. Each sample vial was immediately rinsed with 

an additional 20 μL of TEAB-ethanol solution and incubated at room temperature (r.t.) for 

three hours. All samples were combined into a single tube and dried by vacuum centrifugation. 

200 μg of the peptide mixture was dissolved in 225 μL of 7 M urea/2 M thiourea/1.6% 

ampholytes. One IPG strip (GE; 11 cm, pH 3-11 NL) was hydrated with the peptide solution 

o.n. at r.t. and the peptides were isoelectrofocused with 5000-25000 Vh. After focusing, the 

strip was washed with milliQ-grade water, and cut into 11 equal pieces. The peptides were 

extracted with 100 μL each of three solutions (5% ACN, 0.1% TFA; 50% ACN, 0.1% TFA; 

100% ACN 0.1% TFA). All the peptide fractions were combined, dried by vacuum 

centrifugation, and re-dissolved in 20 μL of 2% CAN, 0.1% TFA. The final peptide 

concentration was determined by measuring the absorbance at 280 nm using a NanoDrop 

instrument.  

For the colored peptide solutions an exploratory liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) analysis was performed in order to determine the optimum amount 

to be injected into the column. LC-MS/MS was carried out as follows: 5 μL of each sample was 

loaded onto a trap column (Nano LC Column, 3 μ C18-CL, 75umx15cm; Eksigent) and 

desalted with 0.1% TFA at 3 μL/min for 5 min. The peptides were then loaded onto an 
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analytical column (LC Column, 3 μ C18-CL, 75 μm x 12 cm, Nikkyo Technos) equilibrated in 

5% acetonitrile and 0.1% FA (formic acid). Elution was carried out with a linear gradient of 

35% B in A for 90 min, (A: 0.1% FA; B: ACN, 0.1% FA) at a flow rate of 300 nL/min. 

Peptides were analyzed in a nano-ESI QqTOF mass spectrometer (5600 TripleTOF, 

ABSCIEX). The triple time of flight (TOF) was operated in ‘information-dependent’ 

acquisition mode, in which a 0.25 s TOF-MS scan from 350–1250 m/z was performed, 

followed by 0.075 s product-ion scans from 100–1500 m/z on the 25 most intense 2-5 charged 

ions. ProteinPilot’s default parameters were used to generate a peak list directly from 5600 

TripleTOF wiff files, and their Paragon algorithm was used to search the Expasy protein 

database with the following parameters: iTRAQ QUANTITATION, trypsin specificity, cys-

alkylation (IAM), taxonomy restricted to ‘human’, and the search-effort set to ‘rapid’. To avoid 

using the same spectral evidence in more than one protein, the identified proteins were grouped 

based on MS/MS spectra by the ProteinPilot Pro Group algorithm. Thus, proteins sharing 

MS/MS spectra are grouped regardless of the peptide sequence they are assigned. The protein 

within each group that can explain more spectral data with confidence is shown as the primary 

protein in the group. Only proteins in the group for which there is individual evidence (unique 

peptides with enough confidence) are also listed with a different list number, usually towards 

the end of the protein list.  

4. MICROSCOPY 

4.1. Confocal microscopy 

Viable non-fixed embryos in suspension incubated with either exosomes or fluorescent 

Scramble miRNA at different stages were incubated with DAPI [40,6-diamino-2-phenylindole] 

for nucleus staining and analyzed under a confocal laser microscope (Zeiss, Germany), 

equipped with fluorescence optics and appropriate filters and taking approximately 100 

hundreds image sections that were combined in a single high resolution image of embryos. 
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4.2. Transmission electron microscopy 

To assess the presence of exosomes in primary hEEC using TEM, cells and isolated 

exosomes, samples were fixed in Karnovsky's solution (Doughty et al. 1997). Briefly, freshly 

isolated primary hEEC were post-fixed in osmium tetroxide, washed, and stained with uranyl 

acetate. Samples were dehydrated, embedded in epoxy resin, ultrasectioned, transferred to 

carbon-coated grids, and observed using a JEM-1010 transmission electron microscope (Jeol 

Korea Ltd.) at 100,000 kV.  

Isolated exosomes were resuspended in 50 µL of Karnovsky’s solution, incubated for 1 h 

on a Formvar carbon-coated grid, and contrasted with uranyl acetate.  

4.3. Scanning electron microscopy 

For scanning electron microscopy (SEM), post-fixed embryos in Karnovsky’s solution were 

subjected to critical point dehydration, gold-coated and observed in an S-4100 scanning 

electron microscope (Hitachi) at 10,000 kV. 

5. MOUSE EMBRYOS 

5.1. Day 1.5 mouse embryo collection 

The B6C3F1 mouse strain was purchased from Charles River Laboratories. Female mice 

aged 6-8 weeks were primed to ovulate by administering 10 IU of pregnant mare serum 

gonadotropin (Sigma-Aldrich, Irvine, UK), followed by administration of 10 IU of human 

chorionic gonadotropin (Sigma-Aldrich) 48 h later. Females were housed overnight with male 

studs and examined the following morning for the presence of a vaginal plug (classified as day 

1 of pregnancy). On day 2 of pregnancy, mice were euthanized by cervical dislocation, and 

embryos were flushed from the oviduct with PBS using a 30-gauge blunt needle.  
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5.2. Embryo culture 

Embryos were cultured in CCM-30 medium (Vitrolife, Lübeck, Germany) with or 

without labeled exosomes, 400 nM mir-30d mimic or Alexa 488-scramble miRNA  (Qiagen, 

Valencia, CA, USA) for 72 h. Embryos were then washed 4 times in fresh CCM and used for 

transcriptomic assays, electron microscopy, confocal microscopy, and adhesion assays. 

5.3. Adhesion assays 

Epithelial endometrial cells from six donors were cultured until confluence, and 15 

embryos per condition were added in 3 independent experiments (i.e., 360 embryos). Mouse 

blastocysts expanded with normal morphology and were cultured in the presence of 400 nM 

mir-30d mimic, Alexa 488-scramble miRNA, or mir-30d inhibitor  (Qiagen, Valencia, CA, 

USA) for 72 h. The attachment of mouse blastocysts to the epithelial cell monolayer was 

measured at 24 and 48 h by mechanical assay. Briefly, plates were moved on a rotation shaker 

for 10 s, and the floating blastocysts were deemed to be unattached. 

6. BIOINFORMATIC ANALYSIS 

6.1. Microarrays data analysis 

For miRNA microarrays, the data obtained for each probe were normalized and log2 

transformed using R software and Bioconductor database libraries. The web-based Babelomics 

tool (Medina et al. 2010) was used to merge the resulting data matrix based on the mean 

number of replicates from each probe. Next, the data matrix was analyzed using Rank Products 

in MeV software with a false discovery rate (FDR) correction of less than 5%, and 

differentially expressed miRNAs were listed together with their fold-change number. Principal 
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Figure 17.  Experimental design for assessment of miRNA’s uptake by murine embryos. 
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components analysis on the set of differentially expressed miRNAs was performed using 

Babelomics. IPA software (Ingenuity Systems, www.ingenuity.com) was used to predict the 

biological functions affected and any previously reported interactions between the miRNAs and 

the target genes. 

 

For gene expression (GE) microarrays, the matrix containing the log-transformed, 

normalized, and merged-by-probe data was introduced into the Rank-Product module in MeV 

software for statistical analysis. Samples were assigned to different groups and were compared. 

A false discovery rate (FDR) correction of less than 5% was used, and mRNA fold changes 

between the different samples and groups were calculated. For supervised hierarchical 

clustering heat map representation, only the intensity values for the set of differentially 

expressed genes were standardized. The mRNAs identified were functionally studied in silico 

by computational analysis of the biological processes and pathways that they affected the most, 

using IPA software (Ingenuity® Systems). This software implements an algorithm that finds 

interactions and associations with processes previously reported in the literature. This tool was 

able to predict the ‘physiological system development and functions’, ‘molecular and cellular 

functions’, and ‘diseases and disorders’ affected; it also finds potential upstream regulators that 

might direct the deregulation pattern of differentially expressed genes, and that may stimulate 

significant inactivation (a z-score less than -2) or activation (z-score more than 2). To identify 

potential miRNA target genes, we used Targetscan (http://www.targetscan.org/) a publicly 

available target prediction algorithm.  

6.2. Proteomic data analysis 

For proteomic analysis, a data matrix with areas of each peptide identified was log-

transformed, normalized using quantile normalization, and merged by the mean in R software. 

The data was subjected to Rank-product analysis with a FDR of less than 5%, and was 

corrected in MeV software to obtain the final list of differentially expressed proteins. 
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6.3. Statistics represented 

The data presented in box plots represent the minimum, first quartile, median, second 

quartile, and maximum values. Bar graphs are expressed as means plus or minus the standard 

error of the mean (StEM). Pairwise comparisons between conditions were performed using the 

Mann–Whitney U test for continuous variables, and p-values less than or equal to 0.05 were 

considered as statistically significant. Mean differences among conditions in adhesion 

experiments were evaluated using Student’s t-test (with previous testing for the equal variance 

assumption) in the SPSS Statistics software package (v.17).  P values <0.05 were considered 

significant.
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1. Human EF contains secreted miRNAs of maternal origin 

We confirmed the presence of a large quantity of miRNAs in human EF (Figure 18) and 

mean of percentage of miRNAs in all samples quantified using Pico RNA LabChip (Table 5). 

 EFs were classified as early proliferative (EP; days 6-8; n=4), late proliferative (LP; days 

9-14; n=4), early secretory (ES; days 15-18; n=4), mid secretory or window of implantation 

(MS or WOI; days 19-23; n=4), and late secretory (LS; days 24-28; n=4) phases.  

 

 
Figure 18. Small RNA content of endometrial fluid samples across the menstrual cycle using Pico 

RNA LabChip Bio Analyzer 
 

Menstrual cycle stage Day of cycle ± sd Age ± sd %miRNA ± sd 

Early Proliferative (EP) 6.75 ± 1.25 37.25 ± 3.30 60.5% ± 12.87% 

Late Proliferative (LP) 12.5 ± 1.73 37 ± 5.77 48.75% ± 7.41% 

Early Secretory (ES) 16.25 ± 1.50 38.75 ± 3.09 40.5% ± 2.65% 

Window Of Implantation (WOI) 20.75 ± 1.70 36 ± 3.60 64% ± 19.5% 

Late Secretory (LS) 31.5 ± 4.20 40 ± 3.82 45.25% ± 12.65  
Table 5.  Percentage of miRNA across the menstrual cycle (n=4/group) 
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2. MiRNAs of maternal origin displays differential miRNAs profile during the 
window of implantation (WOI) 

We used microarrays to compare EF miRNA expression in these sample groups with that 

in the WOI group. The Rank Product analysis, with a false discovery rate correction of <5%, 

resulted in nine differentially expressed miRNAs identified in EP, 8 in LP, 6 in ES, and 4 in LS 

versus the WOI (Figure 19a).  

a)! c)!

d)!b)!

 
Figure 19. (a) Heat map of the differential expression of secreted maternal miRNAs during the 
WOI, relative to other phases of the menstrual cycle. (b) Venn diagram demonstrating the overlap 
of different miRNAs at different phases of the menstrual cycle (c) Supervised principal 
components analysis (PCA) to distinguish differentially expressed miRNAs in EF obtained 
throughout the menstrual cycle, relative to the WOI. (d) Hsa-miR-30d concentration in EF over the 
menstrual cycle.  
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The lists of miRNAs differentially expressed for each comparison were represented in a 

Venn’s diagram (Figure 19b) with hsa-miR-30d being the most represented. This lists of 

nineteen differentially expressed miRNAs represented at Venn’s diagram were used to perform 

a supervised principal components analysis (PCA) (Figure 19c). We determined hsa-miR-30d 

concentration in the EF across the menstrual cycle, reaching concentrations of 194.68 ± 29.90 

nM at the WOI (Figure 19d). 

Bioinformatic analysis to predict the function(s) of these differentially expressed miRNAs 

primarily highlighted endocrine; reproductive and cell proliferation disorders (Figure 20). 
 

 
Figure 20. Functional classification of miRNAs identified on endometrial fluid. 
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An interaction network generated by IPA software shows a relation between genes and 

miRNAs based on the literature. In the graph one can also see that some of them have been 

associated with uterine endometroid carcinoma and diabetes mellitus diseases (Figure 21). 

 

Uterine 
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carcinoma 

Diabetes 
mellitus 

 
Figure 21. Interaction network between genes.  



V.RESULTS 
 

 
 

 

65 

3. MiR-30d is expressed in the epithelial compartment of the receptive 
endometrium 

Since previous studies in endometrial biopsies supported the upregulation of hsa-mir-30d 

during the acquisition of endometrial receptivity (Altmae et al. 2013, Kuokkanen et al. 2010, 

Sha et al. 2011), we wanted to determine which cell compartment is upregulating and actively 

secreting it in the endometrial lumen.  Three biopsies from healthy patients during a natural 

cycle were obtained at the receptive phase (LH+7), and the stromal cells from epithelial cells 

were mechanically and enzymatically separated, followed by MiScript qPCR for hsa-miR-30d 

to assess the expression of miR-30d in these two cell compartments. Hsa-miR-30d expression 

increased by 2.65 ± 0.69 fold in the epithelial versus the stromal endometrial fraction (Figure 

22).  

 

 
Figure 22. Real-time qPCR for hsa-miR-30d in 

epithelial versus the stromal endometrial cell fraction. 



V.RESULTS 
 

 
 
 

66 

4. The transcriptomic effect of miR-30d transfection in primary human 
endometrial epithelial cells 

Since the endometrium has shown to highly express hsa-miR-30d during the receptive 

stage, we explored the endogenous effects derived from hsa-miR-30d exogenous introduction in 

the endometrial epithelial cells “in vitro”. First, we transiently transfected and checked the 

efficiency in primary hEEC cultures with mimic-30d versus scramble miRNAs, showing an 

89.95 ± 47.23 fold-increase in miR-30d after the intervention (Figure 23).  

Once gene expression microarrays were performed, a Rank Product analysis with a FDR 

correction of less than 5% resulted in 176 genes differentially regulated after the miR-30d 

transfection. A total of 75 upregulated and 101 downregulated genes were registered (See CD 

Annexed Table 1). A standardized supervised hierarchical clustering heat map (Figure 24a) 

together with a 3D principal component analysis (PCA; Figure 24b) illustrate the different gene 

expression levels between the two conditions, and how they cluster together. These results were 

validated using real time qPCR for three representative genes (BMP4, H19, and FOS) that were 

downregulated in mimic- versus scramble-treated hEECs (Figure 24c). 

 
Figure 23. Transfection efficiency in primary hEEC cultures after 72 hours of transfection with 
mimic-30d versus scramble. 
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5. Bioinformatic analysis of genes regulated by miR-30d in human endometrial 
epithelial cells 

The IPA software analysis allowed us to predict the most implicated functions for the set 

of 251 genes that are differentially regulated by miR-30d. For “diseases and disorders” the 

most represented term was cancer, but there were also genes related to the reproductive and 

endocrine systems (Figure 25a). At the “molecular and cellular functions” level most of the 

 
Figure 24. (a) A standardized supervised hierarchical clustering heat map and (b) A 3D principal 
components analysis (PCA) both used to visualize sample similarities between the differentially 
expressed genes obtained. (c) Real Time PCR validation for three genes down-regulated in mimic-
30d vs scramble transfected cells. 
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genes were involved in cell proliferation (Figure 25b). At the “physiological system 

development and functions” level, the genes appeared to be related to embryonic and tissue 

development (Figure 25c). Based on the literature, IPA software looks for significant interaction 

network nodes that are indirectly affected by fourteen differentially expressed genes. These 

nodes are ‘all-trans retinoic acid’(Tice et al. 2002) and ‘b-estradiol’ (Symmans et al. 2005), 

which are described as essential for cell division in epithelial, stromal, and myometrial cells; 

these two nodes, together with ‘MYC’(Koch et al. 2007) and ‘CTNNB1’(Shimoyama et al. 

1999), are related to the proliferation of pancreatic progenitor cells and beta islet cells (Figure 

a)!

b)!

c)!

 
Figure 25. IPA software summarized results for (a) Main diseases and disorders associated with 
selected genes. (b) Main molecular and cellular functions related with the genes. (c) Physiological 
system development and functions associated with the genes. 
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26a). 

The IPA software was also able to predict the potential upstream regulators, ESR1 and 

STAT5B, which reached an activation z-score of less than -2 (an inhibited state), and KDM5B 

and NUPR1, which achieved a z-score of more than 2 (an activated state). ESR1 (estrogen 

receptor alpha) was the closest to the threshold value, and the target genes for this transcription 

factor are BMP4, CSF2, EGR1, FBLN1, FOS, FOXM1, H19, NOTCH3, RPRM, and SNAI2 

(Figure 26b). 

 

a)!

b)!

Figure 26. IPA software summarized results for (a) The most significant interaction network for 
differentially expressed genes based on the literature. (b) Potential upstream regulators that 
might control these deregulated genes. 
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6. The proteomic effect of miR-30d transfection in primary human endometrial 
epithelial cells 

The proteomic analysis found 108 differentially expressed proteins (See CD Annexed 

Table 2) from the 2,290 originally identified (see CD Annexed Table 3). Fold-change values 

ranged between 3 (upregulated) and -3 (downregulated). Several upregulated (COX6C, 

LGALS1, DNMT1, and MIF) and downregulated (WNT1, ALDH2, PGRMC1, NOTCH4, 

ITGAV, and ALDH1B1) proteins are relevant for endometrial physiology. A standardized 

supervised hierarchical clustering heat map (Figure 27a) together with 3D PCA (Figure 27b) 

illustrates the different protein levels between samples and how they cluster together. Western 

blots for DNMT1, ALDH2, PGRMC1, and WNT1 were used to validate these iTRAQ results 

(Figure 27c), DNMT1 and ALDH2 were statistically significative (p-value<0.05) after Mann–

Whitney U test.  

The genes and proteins, which overlapped between transcriptomic and proteomic profiles, 

are illustrated in a Venn’s diagram (Figure 27d), where only ALDH2 was identified as 

differentially downregulated at both the mRNA and protein levels. This gene has also been 

predicted to be directly be targeted by hsa-miR-30d (Figure 27e, seed region). 
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Figure 27. (a) A standardized supervised hierarchical clustering heat map and (b) a 3D PCA used 
to visualize the sample similarities for the differentially expressed proteins obtained. (c) Western 
blots for DNMT1, ALDH2, PGRMC1, and WNT1 for validation of iTRAQ results (*p-value<0.05 
after Mann–Whitney U test). (d) A Venn diagram of overlapping genes and proteins between 
transcriptomic and proteomic studies; only ALDH2 is found in both. (e) The seed region of 3’-
UTR complementarity with hsa-miR-30d calculated as an RNA hybrid. 
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7. The methylation status of the H19 gene  

Focusing on the probable regulation of the DNMT1 protein and H19 gene (which is 

typically methylated) by miR-30d as suggested by miR-30d overexpression, we hypothesized 

that alteration of the H19 methylation status might lead its silencing. This gene, which has been 

shown to be downregulated in mimic conditions, is a well-known hemi-methylated gene in the 

imprinted control region (ICR; Figure 28a); hence, we performed a methylated DNA 

immunoprecipitation (MeDIP) analysis to assess its global methylation status. We selected 

UBE2B as an unmethylated housekeeping gene to validate the effectiveness of the MeDIP 

(Figure 28b). A statistically significant increase in the methylation status of H19 was observed 

for mimic- versus scramble-treated hEECs (Figure 28c) reinforcing the concept that miR-30d 

modifies not only the transcriptome but also the epigenome of hEECs. 

 

 
Figure 28. (a) A schematic of the H19 gene, indicating its ICR where methylated DNA 
immunoprecipitation was performed. (b) Real-time qPCR showing UBE2B as an unmethylated 
housekeeping gene commonly used to explore the effectiveness of the MeDIP, versus the H19 ICR 
hemi-methylated gene. (c) Real-time qPCR comparing the methylation status of H19 for mimic- 
versus scramble-treated hEECs. 
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8. Exosomes are secreted by the endometrial glands  

Next, we investigated the cellular origin and mechanism of secretion of the endometrial 

miRNA into the EF. Since miRNAs are usually secreted in exosomes (Valadi et al. 2007), we 

searched for these microvesicles in the human endometrium by checking initially the expression 

of CD63, an established marker of exosomes (Ng et al. 2013). CD63 staining localized at the 

apical part and glycocalyx of the glandular epithelium during the WOI, and was absent in the 

early secretory endometrium corresponding to the pre-receptive phase (Figure 29).  

 
Figure 29. Immunohistochemical staining of human glandular and luminal epithelium for CD63 in 
the early secretory phase (4 days after luteinizing hormone peak; LH+4), window of implantation 

WOI (LH+7), and negative (no primary antibody) and positive controls (resident macrophage cell). 
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Using transmission electron microscopy (TEM), we verified that glandular epithelial cells 

in the secretory phase have a high endosome content, with sizes ranging from 50 to 250 nm 

(Figure 30a), that appear to be secreted into the endometrial cavity. In fact, negative-staining 

TEM after ultracentrifugation of human EF identified these small vesicles as exosomes (Figure 

30b). Western blot analysis showed that the exosome fraction of primary human endometrial 

epithelial cells (hEEC) culture media was positive for CD63 and low content of β-actin 

(Mathivanan and Simpson 2009, Ng et al. 2013) (Figure 30c). 

a) 

b) 

c) 

 
Figure 30. (a) Transmission electron microscopy (TEM) images from glandular hEEC show an 
endosome proximal to the plasma membrane with a small exosome (arrow). Another glandular 
hEEC shows the same type of endosome compartment in which a nascent exosome (arrowhead) 
and a broken exosome release their contents (arrow). (b) TEM images from negative staining with 
uranyl acetate for exosomes purified from EF. (c) Western blot identifying Cd63 (specific 
exosomes marker) and b-actin in pelleted microvesicles. 
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9. Maternal miRNAs are transported as free- and exosome-associated molecules  

After demonstrating that the human endometrial epithelium produces and secretes 

exosomes, we used an “in vitro” model of primary hEEC to obtain large quantities of exosomes 

(3.5 ± 1.26 mg of total protein) from the hEEC-conditioned media and used a RNA Pico 

LabChip kit to identify the presence of RNAs. Using a RNase treatment, we demonstrated that 

exosomes protect RNAs from degradation (Figure 31a). Then, using qPCR, hsa-miR-30d was 

identified in the total hEEC-conditioned media, in the primary hEEC, in the exosome-depleted 

conditioned media (supernatant), and in the purified exosomes (Figure 31b). The data are 

represented as crossing points, which are inversely proportional to expression level, meaning 

the lower Cp value, the greater expression.  

a)!

b)!

 
Figure 31 (a) Results from an RNA lab chip assay showing the RNA content from primary hEEC-
derived exosomes with or without treatment with RNase A. (b) Crossing points (y-axis) for hsa-
miR-30d in total conditioned media, cells, supernatant, and exosomes purified from primary hEEC 
cultures. 
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10. Embryo ability to uptake miRNAs 

We hypothesized that the embryo is able to take up free or exosome-associated miRNAs 

from the EF. The uptake of free hsa-miR-30d was tested in an “in vitro” mouse embryo model. 

Day-2 mouse embryos (n=30) were cultured for 72 h with scramble Alexa 488-labeled miRNA 

(400 nM), and the trophectoderm uptake was confirmed by immunofluorescence, either in the 

hatched area or in the trophectoderm after zona pellucida removal (Figure 32a). Then, mouse 

embryos (n=60) were incubated with free synthetic miR-30d mimic (50 nM, 100 nM, or 400 

nM) using scramble miRNA as a negative control, and the embryo uptake was detected by 

traditional and real-time qPCR at all concentrations and tested in the embryo and the washed 

medium (Figure 32b). 

!

MiRNA&

!

a)!

b)!

! 
 
Figure 32. (a) Confocal fluorescence microscopy of live hatching mouse blastocysts treated 
with 400 nM Alexa 488-scrambled miRNA for 72 h. (b) qPCR of embryos (E) and wash 
medium (M) treated with 0, 50, 100, or 400 nM miR-30d mimic. Gel bands indicating the 
absence of Snord96 (housekeeping) or hsa-miR-30d in the final wash media are shown.  
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11. Embryo ability to uptake exosomes derived from hEEC 

To test the embryo uptake of exosome-secreted miRNAs, we stained vesicles isolated 

from the primary hEECs with an exosome membrane marker, Vybrant DiO, and added them to 

culture media containing day-2 mouse embryos (n=15) for 24 h. We also verified that the 

trophectoderm in the hatched area (or after the zona pellucida was removed) was able to take up 

exosomes (Figure 33a). This was confirmed using scanning electron microscopy to visualize the 

trophectoderm surface of the exosome-cocultured embryos (Figure 33b). Small rounded 

vesicles surrounded by microvilli were found attached to the apical trophectoderm membrane 

close to pores or cell membrane invaginations.  

! !

a)!

b)!

 
Figure 33 a) Confocal microscopy images of hatching blastocysts cultured with hEEC 
exosomes labeled with Vybrant DiO for 24 h. (b) Scanning electron microscopy images 
from a hatched mouse blastocyst with typical rounded exosome vesicles adhering to the 
trophectoderm (arrows indicates exosomes adhered to trophectoderm surface; arrowheads 
indicates a contact zone; and bidirectional arrow the detachment of a vesicle that seemed to 
be adhered).  
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12. Transcriptomic changes after hsa-miR-30d uptake by the murine embryo “in 

vitro” 

To demonstrate the functional relevance of this maternal–embryonic communication 

mechanism, we investigated the effects of endometrial miRNA uptake on the embryonic 

transcriptome and phenotype. A gene expression microarray on day-2 mouse embryos 

(n=50/group in biological triplicates) cultured with hsa-miR-30d mimic or scramble at 400 nM 

for 72h revealed embryonic overexpression of 10 specific genes (Figure 34a). These genes were 

interrogated using the DAVID web-based tool (http://david.abcc.ncifcrf.gov/home.jsp) to 

identify the biological processes that were most likely affected. The vast majority of regulated 

genes were related to cell adhesion, the integrin-mediated signaling pathways, and 

developmental maturation (Figure 34b). Selected genes (Itgb3 and Cdh5) were validated by real 

time qPCR (Figure 35a) 

a)!
b)!

c)!

d)!

!

a)!

 

 
Figure 34. (a) Supervised and standardized heat map of differentially expressed genes 
together with fold-changes obtained from gene expression microarrays in embryos treated 
with scrambled miRNA (S) or miR-30d mimic (M). (b) The significant biological processes 
affected, based on predictions made by the DAVID web-based tool.  
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13. Phenotypic changes after hsa-miR-30d uptake by the murine embryo “in vitro” 

The phenotypic effect of this transcriptomic regulation was demonstrated using an “in 

vitro” model of embryo adhesion (Garrido-Gomez et al. 2012, Martin et al. 2000) in four 

conditions —control without miRNA, scramble miRNA, miR-30d mimic, and a miR-30d 

inhibitor— in six experiments (90 embryos per condition, n=360). After 32 h, miR-30d mimic 

increased the rate of embryonic adhesion to the endometrial epithelium relative to scramble 

miRNA (53.44 ± 6.40% versus 35.22 ± 7.40%, respectively), and the adhesive phenotype was 

impaired when a specific miR-30d inhibitor was added (53.44 ± 6.40% versus 18.55 ± 3.72%, 

respectively; p=0.001; Figure 35b). 

a)!

b)!
*!

**!

 
Figure 35. (a) Quantitative real time PCR for the validation of transcriptomic gene 
expression identified on the microarrays. (b) Mouse blastocyst adhesion assay showing a 
functional effect related to the miR-30d uptake. 
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The human embryo undergoes developmental changes during its preimplantation period 

(Niakan et al. 2012) necessary to initiate the implantation process in synchrony with the 

receptive endometrium.  

Accumulated evidences have demonstrated specific transcriptomics (Diaz-Gimeno et al. 

2011, Diaz-Gimeno et al. 2012, Kao et al. 2002), proteomics (Dominguez et al. 2009), and 

lipidomics (Vilella et al. 2013) signatures of the human endometrium during the window of 

implantation. On top of this dynamic regulation, the blastocyst actively regulates the 

endometrium during the implantation process (Caballero-Campo et al. 2002, De los Santos et 

al. 1996). On the other hand, the endometrial fluid (EF), a viscous fluid secreted by the 

endometrial glands provides nutrients for blastocyst formation and constitutes a 

microenvironment where the embryo-endometrial dialog occurs prior to implantation. 

However, its impact on the embryonic implantation and future adult life are unknown. 

MiRNAs are small, 19-22–nucleotide sequences of noncoding RNA that function as 

regulators of endogenous gene expression (Ambros and Chen 2007, Bartel 2004). MiRNAs 

may be secreted by cells and incorporated into microvesicles or, alternatively, may be 

associated with proteins that protect them from RNase degradation, endowing them with a long 

half-life (Turchinovich et al. 2011, Yoshizawa and Wong 2013). These molecules have been 

implicated in the regulation of the human WOI (Altmae et al. 2013, Kuokkanen et al. 2010, Ng 

et al. 2013, Sha et al. 2011) as well as in the decidualization process “in vitro” and “in vivo” 

(Estella et al. 2012).  

In this thesis, we determined that miRNAs are secreted by the human endometrium to the 

endometrial fluid with specific profiles across menstrual cycle, demonstrated that these 

molecules are uptaken by the pre-implantation embryos acting as a previously unknown form 

of regulation, and discussed the potential of this new kind of biomarker for detection of 

endometrial receptivity. 

We detected the presence of a large quantity of small RNAs in human EF that make them 

suitable for containing mature forms of miRNAs (19-22 nts). Moreover, after microarrays 

analysis we identified a differential miRNA expression pattern in EF across the menstrual 
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cycle.  In general, the differential expression of miRNAs is narrower as we approach to the 

WOI. The nineteen differentially expressed miRNA were used to perform a supervised 

principal components analysis (PCA), which showed that the EF obtained from the WOI was 

different from EFs secreted at different stages of the cycle based on its miRNA composition.  

More generally, some miRNAs participate in functions related to endocrine and 

reproductive system disorders, such as for example diabetes mellitus and endometroid 

carcinomas, which shows the importance of these miRNAs not only for embryonic 

implantation but also for the normal physiology of endometrium and pregnancy support. 

Additionally, some individual observations of miRNAs correlates with previous 

observations associated with the endometrium physiology and the embryo implantation 

process, such as miR-320a that has been observed to increase during decidualization (Xia et al. 

2010), miR-141 has been related to the increase of progesterone and to affect implantation in a 

murine model (Liu et al. 2013) and hsa-miR-30d determined to be up-regulated in receptivity 

in several works and also to essential processes in other tissues and cell types, such as glucose 

metabolism and epithelial-to-mesenchymal transitions (Altmae et al. 2013, Joglekar et al. 2009, 

Kuokkanen et al. 2010, Sha et al. 2011, Zhao et al. 2012). Since this last example also was the 

most differentially represented miRNA in the EF of all the comparisons, we decided to 

investigate its possible role at paracrine and autocrine levels, with particular focus on the 

receptivity stage and embryo implantation. 

The miRNA “hsa-miR-30d” belongs to the “mir-30” family, which consists in six 

miRNAs (hsa-miR-30a,b,c,d,e,f) that posses a highly conserved seed sequence between 

species. Some of them are clustered in the same locus of the chromosome: hsa-miR-30c and 

 
Figure 36. hsa-miR-30b and hsa-miR-30d gene cluster. 
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hsa-miR-30e in chromosome 1, and hsa-miR-30b and hsa-miR-30d in chromosome 8 (Figure 

36).  

In general, miR-30 family is ubiquitously expressed in humans and has been associated 

with several functions in different cell types and organisms. They have been determined to 

participate in epithelial-to-mesenchymal transition (Ozcan 2009), to confer epithelial 

phenotypes to human pancreatic cells (Joglekar et al. 2009), to regulate apoptosis through TP53 

targeting and the mitochondrial fission machinery (Li et al. 2010), to be negative regulators of 

the BMP-2-mediated osteogenic differentiation (Wu et al. 2012), to participate in endothelial 

cell behaviour during angiogenesis (Bridge et al. 2012) and to play a role in cardiac functions 

(Pan et al. 2013). But their roles in endometrium were still unknown. This miRNA however, 

has been shown to participate in ectoderm specification during embryonic development by 

targeting the Embryonic Ectoderm Development (EED) protein (Song et al. 2011). 

We were interested in the role of hsa-miR-30d progressive up-regulation in the 

endometrium across the menstrual cycle. We observed that epithelial cells were the main 

source of this miRNA, suggesting that the production in the endometrial fluid of this miRNA 

originates from these cells, also resulting in autocrine regulation.  

To learn how miR-30d participates in the transition to a receptive phenotype, we 

transiently overexpressed this miRNA in hEECs “in vitro” by transfecting the endometrial 

epithelial cells, with synthetic ‘mimic’ or ‘scramble’ miRNAs. Since we decided to explore 

miRNA effects in primary cells instead of endometrial cell lines, the samples were derived 

from LH+0 (non receptive) biopsies from COS donor patients and “in vitro” cultured, which 

would potentially differ from the “in vivo” physiological LH+0 status. 

Analyses of the genes regulated by this miRNA appear to be very interesting for 

endometrial physiology and were chosen for validation. These three genes were BMP4, which 

has been associated with decidualization, and is expressed in the endometrial epithelium during 

pregnancy, and is widely described as a secretion factor essential for the embryonic 

differentiation to trophoblast lineages (Stoikos et al. 2008, Xu et al. 2002); H19, an mRNA 

which is not translated into protein but whose deregulation is usually associated with 



VI.DISCUSSION 
 

 
 
 

86 

endometrial hyperplasia (Tanos et al. 2004), implantation failure, and DNA methylation 

impairment (Korucuoglu et al. 2010); and FOS, an essential gene associated with endometrial 

cell proliferation driven by b-estradiol, and which is reported to be downregulated during the 

WOI (Fujimoto et al. 1995, Kao et al. 2002).  

The ectopic overexpression of miR-30d in hEECs affects genes that have been associated 

with cancer and with reproductive and endocrine system disorders. Moreover, β-estradiol 

receptor, which has been determined as a potential upstream regulator in our analysis, affects 

estrogen response that modulates endometrial proliferation (Owen 1975), suggesting that miR-

30d might modulate the action of β-estradiol. All-trans retinoic acid can also target different 

genes to modulate local β-estradiol inactivation in the endometrium (Wang et al. 2011). 

Finally, both MYC and FOS gene transcription are rapidly activated by β-estradiol, and its 

presence stimulates cell cycle progression (Cheng et al. 2008). However, it remains to be 

determined if all these effects are a consequence of mir-30d levels or it causes its changes.  The 

effect of ESR1 is likely to take place at the transcription factor activation level rather than at the 

production level because the amount of mRNA has not changed. Inactivation of ESR1 would 

lead to downregulation of BMP4, EGR1, FOS, and H19, as previously reported (Adriaenssens 

et al. 1999, Eger et al. 2000, Giacomini et al. 2009, Kim et al. 2011).  

Proteomic analysis identified 2,290 proteins, the majority being cytoplasmic rather than 

transmembrane proteins, because the cell membrane precipitation fraction was not analyzed. 

After Rank Product analysis, 108 proteins were differentially expressed between the mimic and 

scramble conditions. Several upregulated proteins are relevant to endometrial physiology such 

as: LGALS1, also called galectin-1, a glycoprotein which has been shown to be upregulated 

during the late-secretory stage in human endometrium, and which seems to be implicated in 

immune tolerance and embryo implantation (Jeschke et al. 2009, Tirado-Gonzalez et al. 2013, 

von Wolff et al. 2005); MIF, a pro-inflammatory cytokine which has been observed in pre-

decidualised stromal cells and in glandular epithelia (Arcuri et al. 2001); DNMT1, which has 

been reported not to change at the mRNA level throughout the menstrual cycle (Vincent et al. 

2011); and COX6C, which has been reported to be involved in uterine leiomyoma (Kurose et 

al. 2000). We also found some proteins relevant for the endometrium physiology amongst the 
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downregulated proteins, including WNT1, which regulates the balance between estrogen-

induced proliferation and progesterone-mediated differentiation in the normal endometrium 

(Wang et al. 2009); the aldehyde dehydrogenase enzymes (ALDH2 and ALDH1B1) which 

have been associated with endometrial cancer (Laniewska-Dunaj et al. 2013, Orywal et al. 

2013), specifically ALDH2, which was the only molecule downregulated at both the protein 

and mRNA levels, and interestingly, is also a predicted direct target of hsa-miR-30d; 

PGRMC1, a type of progesterone receptor that is abundant in the endometrium during the 

proliferative phase and is localized in the nucleus, but whose function remains to be fully 

explored (Pru and Clark 2013); NOTCH4, a transmembrane receptor that has shown to be 

downregulated during the change from the proliferative to the secretory phase in normal human 

endometrium (Cobellis et al. 2008); and  ITGAV, an essential receptor which mediates cell 

adhesion and embryo implantation (Erikson et al. 2009). 

The downregulation of H19 imprinted-gene non-coding RNA and the upregulation of the 

DNMT1 protein (which is responsible for the maintenance of DNA methylation), may result in 

epigenetic regulation of the H19 methylation pattern. The global methylation status of a gene 

can be studied using a MeDIP approach, which enriches the gene of interest in the two 

conditions (mimic versus scramble). Using this type of analysis we showed that H19 

methylation was elevated in mimic-treated hEECs versus scramble controls. Given this 

interesting result in this well-known hemi-methylated gene, it would be very interesting to 

analyze CpG sites, which may be enriched or differentially methylated throughout the whole 

genome, using microarrays or sequencing technologies to assess if miR-30d indirectly affects 

DNMT1, thus altering the global methylation patterns. Another interesting observation was the 

downregulation of the nicotinamide N-methyltransferase gene (NNMT) whose expression has 

been described to reduce the cellular methylation potential. Therefore, given that mimic 

treatment downregulates this gene, this could increase the global methylation potential 

(Ulanovskaya et al. 2013).  

Previous studies has shown that miR-30 family is able to inhibit the epithelial-to-

mesenchymal transition by downregulating some genes, such as SNAI1, and increasing 

expression of others such as e-cadherin (Zhang et al. 2012) – a gene that is also activated by 
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DNMT1 (Espada et al. 2011). These observations would explain the maintenance of the 

epithelial phenotype in primary hEECs “in vitro” and in part they could suggest an implication 

for the developing embryo that shows increased expression of epithelial markers after miR-30d 

incorporation. Another point that merits further research is that the postulated alterations to the 

methylation pattern of the ESR1 promoter would lead to a reduced response to estrogens in the 

endometrium (Shiozawa et al. 2002, Vincent et al. 2011), what is especially interesting because 

the downregulation of several genes (FOS, BMP4, H19, and EGR1) indirectly predicts ESR1 

inactivation. Further investigation will be required to discover how DNMT1 is indirectly 

upregulated by hsa-miR-30d (Figure 37). 

The miRNA profile obtained across the menstrual cycle strongly demonstrates the 

potential uses of this subset of miRNAs in the future development of a non-invasive tool for the 

detection of endometrial receptivity. But since the number of fold-change observed are 

relatively small, we expect that there are slight global changes in these profiles due to our 

sample, effecting on the statistical power, and resulting in a low number of statistically 

differentially expressed miRNAs.  

The potential uses of miRNAs as novel biomarkers of endometrial receptivity comes 

from similar studies of specific profiles in some types of endometrial cancer, preeclampsia and 

 
Figure 37. Schematic representation of the working hypothesis relating hsa-miR-30d effects on 
methylation status and epithelial phenotype of endometrial epithelial cells. 
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endometriosis (Cohn et al. 2010, Hever et al. 2007, Hull et al. 2008, Ohlsson Teague et al. 

2009, Pan et al. 2007). This novel tool can be based on microarrays similar to the endometrial 

receptivity array tool (Diaz-Gimeno et al. 2011), that consists on an algorithm and a machine 

learning to improve detection. But alternatives, such as PCR arrays and also the development of 

RNA sequencing as an affordable platform, would not only determine altered expression of 

miRNAs and mRNAs, but also identify novel miRNAs never described before. The stability of 

miRNA in the endometrial fluid and their sensitivity of detection are two very important 

advantageous points towards considering this type of molecule for development of a non-

invasive tool. 

One of our goals was also to determine what mechanisms are responsible for releasing 

these miRNAs in the EF and for protecting them to exert their function once they reach their 

target cell. As we mentioned before, it has been recently proposed that miRNAs can 

communicate from cell to cell at very distant parts of the body by using microvesicles 

(exosomes), lipid carriers such as LDL or HDL, and protein complexes (Arroyo et al. 2011, 

Vickers et al. 2011). Since exosomes were not yet described in the endometrial fluids, we 

tested for the presence of a specific exosome marker (CD63) by immunohistochemistry, and 

obtained a positive result that was also confirmed by electron microscopy observations of small 

vesicles in endometrial fluid samples and in endosomes from epithelial cells. Moreover, we 

were able to confirm by western blots for CD63 marker that “in vitro” cultured primary 

endometrial epithelial cells are actively producing large quantities of exosomes. Not only the 

pelleted exosomes contained miRNAs, but also we were also able to observe miRNAs in the 

remaining supernatants of these endometrial fluid and conditioned media samples. These 

results raise the question of whether not only exosome-associated miRNAs are produced by the 

endometrial epithelial cells, but also free or another kind of associated soluble forms can also 

be present in the endometrial fluid. 

Exosomes contained not only miRNAs, but also a portion of small RNAs with longer 

sizes, whether they also contain pre-miRNAs remain to be determined, but some works have 

observed that exosomes are able to transport mRNAs that cells can incorporate and translate 

into proteins using their own machinery (Valadi et al. 2007). In any case, exosomes are 
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protecting the RNA from degradation, as we observed after RNAse treatment for 30 minutes in 

extracted and non-extracted samples of exosomes, in which RNA fractions corresponding to 

sizes ranging from 200-1000 nts is lost. 

The novel concept of intercellular communication between mother and embryo mediated 

by exosomes has the important caveat that at the moment it only can be studied “in vitro”. 

However, some groups are developing miRNA sensors, such as McManus’ Lab at the 

University of California San Francisco, that it is actually developing a reporter system that 

would facilitate the observations in animal models by detecting the functional incorporation of 

exogenous miRNAs quantitatively with fluorimetric detection. However, this system will take 

years to be developed and will not be available in the near future to be incorporated in our 

studies to have the “in vivo” confirmation.  

Fluorescent labeled exosomes derived from primary endometrial epithelial cultures 

showed ability to be incorporated by murine blastocysts in the hatching zones; confocal 

microscopy suggested that they were able to reach the trophoblastic cells and not the inner cell 

mass after 24 hours of co-incubation. These viable hatched embryos with exosomes attached 

were subjected to scanning electron microscopy, which resulted in images of embryos with 

small rounded exosomes in direct contact and attached to the trophoblast surface. Several 

mechanisms could explain the content release from exosome to target cell, although it is mainly 

considered to occur by endocytosis; however, other hypothesis such as fusion with plasma 

membrane should be considered.  

Remarkably, the murine embryo presented microvilli and what seems to be small pores 

interspaced along the trophoblastic surface. This could explain how blastocyst also mediates a 

fast exchange of nutrients and molecules. In this sense, addition of free miRNAs into culture 

media at different concentrations resulted in incorporation by the embryos at the hatching zone 

of the trophoblastic cells. Transcriptomic studies of the effects of mimic miR-30d miRNAs 

versus Scramble miRNA in embryos only showed increase in expression of ten genes, and this 

slight change could be due to the fact that this miRNA plays a small role on global 

transcriptome at this stage of embryonic development, or to the fact that miRNA is 
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incorporated but it is either degraded or has not yet been incorporated in RISC complexes to be 

functional.  

 
Since transcriptomic changes were found for genes classified as adhesive molecules such 

as Itgb3, Itga7 and Cdh5, we tested if there were any effects in the adhesive phenotype of 

embryos treated with Scramble, Mimics or Inhibitors for mir-30d. The results showed 

significant increase in adhesion in mimic versus inhibitor treated embryos: in particular, 

inhibitor treatment drops the adhesion significantly, suggesting that while the mir-30d might 

not potentiate implantation, its presence is necessary. Also, it remains to be elucidated if other 

family members of this miRNAs, which share the same seed sequence, have compensatory 

actions. 

A scheme of biological mechanisms directing miRNAs communication between mother 

and embryo is summarized in Figure 38.  Endogenous miRNAs are produced in the 

endometrial epithelial cells and are released into the endometrial lumen in several forms: as 

shedding vesicles, as protein-lipoprotein associated forms, as free miRNAs, and as exosomes. 

Several mechanisms of uptaking miRNAs by the trophectoderm can then take place: vesicle 

fusion, receptors, pores, and endocytosis can mediate their internalization. Finally, the 

trophectoderm cells incorporate miRNAs in the RISC complex to regulate the proper 

implantation.  

In summary, we have demonstrated that endometrial fluid contains miRNAs, and that 

they show a specific profile across menstrual cycle. Hsa-miR-30d, which is the most increasing 

miRNA during the menstrual cycle, has functions associated to the changes in several genes 

that are important for the endometrial physiology, hormone response and maintenance of the 

epithelial phenotype through control at the epigenetic level. In addition to that, we also 

demonstrated that miRNAs are secreted by epithelial cells in free or as exosomes associated 

forms, and that they are able to reach the hatching embryo and to modify its transcriptome and 

adhesive phenotype “in vitro”. 
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Figure 38. Schematic summary of the novel cross-talk mechanism that involves the delivery of 
endometrial miRNAs from the maternal endometrium to the endometrial fluid and in turn modify 
the embryo transcriptome, proteome and its adhesive phenotype 
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1. MiRNAs are present in the endometrial fluid aspiration across the menstrual cycle during 

natural cycles. 

2. The profile of miRNAs during the window of implantation stage shows important 

differences compared to the rest of stages of menstrual cycle, supporting its use as a novel 

biomarker of endometrial receptivity. 

3. The ectopic expression of hsa-miR-30d in primary hEEC induces transcriptomic 

modifications related to the cell cycle, proliferation and endocrine disorders that could 

influence endometrial receptivity.  

4. The estrogen receptor seems to be an upstream regulator associated with the effects of hsa-

miR-30d. 

5. The ectopic expression of hsa-miR-30d in primary hEEC induces proteomic modifications 

relevant for the endometrial physiology and epigenetic status. 

6. There is an increase in the methylation status of the DMR region of the H19 gene in the 

mimic mir-30d versus the scramble treated primary epithelial cells. 

7. Endometrial epithelial cells secrete exosomes both in the endometrial fluid and in the 

culture medium “in vitro”.  

8. Exosomes and free-form miRNAs can be internalized by the trophectoderm of murine 

blastocyst embryos. 

9. Hsa-miR-30d is present in the secretions during endometrial receptivity stage and can 

modulate the gene expression and adhesiveness phenotype of the hatched, ready-to-

implant murine embryos “in vitro”. 
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1. Informed written consent model 

 
Título del Proyecto titulado: Análisis de miRNAs en fluido endometrial como diagnóstico no invasivo de 
receptividad endometrial. 
Investigador principal: Dr. Felipe Vilella Mitjana 
Servicio: xxxxxxxxxxxxxxxxxxxxx  
 
 
Yo, ______________________________________________ he sido informado por el Dr. _________________, 
colaborador del proyecto de investigación arriba mencionado, y declaro que: 
 
 
- He leído la Hoja de Información que se me ha entregado 
- He podido hacer preguntas sobre el estudio 
- He recibido respuestas satisfactorias a mis preguntas 
- He recibido suficiente información sobre el estudio 
 
Comprendo que mi participación es voluntaria 
Comprendo que todos mis datos serán tratados confidencialmente 
Comprendo que puedo retirarme del estudio:  
- Cuando quiera 
- Sin tener que dar explicaciones 
- Sin que esto repercuta en mis cuidados médicos 
 
Autorizo a que las muestras obtenidas durante el proyecto de investigación sean utilizadas con fines científicos en 
otros proyectos de investigación que tengan por objeto el estudio de mi enfermedad y que hayan sido aprobados 
por el Comité de Ética de Investigación Clínica del Hospital Clínico Universitario de Valencia  
� Sí 
 
 � No 
 
Quiero que se me pida autorización previa para utilizar mis muestras biológicas para futuros proyectos de 
investigación 
  � Sí 
 
 � No 
  
Con esto doy mi conformidad para participar en este estudio, 
 
 
 
 
Firma del paciente 
 
 
Fecha: 

Firma del Investigador: 
  
 
Fecha 
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AUTORIZACION DEL JEFE DE SERVICIO 

 

 

D.  

Como Jefe del Servicio de  

 

Declaro: 

 

Que conozco cuanta documentación da base al trabajo de proyecto que lleva por  título Análisis de miRNAs en 

fluido endometrial como diagnóstico no invasivo de receptividad endometrial. 

 

 

Y cuyo investigador principal será el Dr. Felipe Vilella Mitjana  

 

Que el investigador principal, así como el resto del equipo, reúne las características de competencia necesarias para 

realizar proyectos  así como la metodología específica del proyecto  de referencia. 

 

Que autorizo la realización de este trabajo en el Servicio /Unidad que dirijo. 

 

 

En Valencia a  2 de Abril de 2012 

 

 

 

 

 

Dr.  

 

Jefe del Servicio de  

 

 

 


