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Weak Pion Production off the Nucleon
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We develop a model for the weak pion production off the nucleon, which besides the Delta pole
mechanism (weak excitation of the ∆(1232) resonance and its subsequent decay into Nπ), includes
also some background terms required by chiral symmetry. We re-fit the CA

5 (q2) form factor to
the flux averaged νµp → µ−pπ+ ANL q2−differential cross section data, finding a substantially
smaller contribution of the Delta pole mechanism than traditionally assumed in the literature.
Within this scheme, we calculate several differential and integrated cross sections, including pion
angular distributions, induced by neutrinos and antineutrinos and driven both by charged and
neutral currents. In all cases we find that the background terms produce quite significant effects
and that they lead to an overall improved description of the data, as compared to the case where only
the Delta pole mechanism is considered. We also show that the interference between the Delta pole
and the background terms produces parity-violating contributions to the pion angular differential
cross section, which are intimately linked to T−odd correlations in the contraction between the
leptonic and hadronic tensors. However, these latter correlations do not imply a genuine violation
of time reversal invariance because of the existence of strong final state interaction effects.

PACS numbers: 25.30.Pt,13.15.+g,12.15.-y,12.39.Fe

I. INTRODUCTION

The pion production processes from nucleons and nuclei at intermediate energies are important tools to study
the hadronic structure and have become very important in the analysis of the neutrino oscillation experiments with
atmospheric neutrinos. The energy spectrum of atmospheric neutrino at Kamioka [1] is such that the weak pion
production contributes about 20% of the quasielastic lepton production and it is a major source of uncertainty in
the identification of electron and muon events. In particular, the Neutral Current (NC) π0 production contributes
to the background of e± production while π± contributes to the background of µ± production. This is because both
particles, i.e. π0 and e± or π± and µ± produce similar single–ring events in Cherenkov detectors, commonly used
in neutrino oscillation experiments. Moreover, the neutral current π0 production might play an important role in
distinguishing between the two oscillation mechanisms νµ → ντ and νµ → νsterile [2]. These comments apply also for
νe appearance experiments such as K2K [3] and MiniBooNE [4].

The neutrino oscillation experiments are generally performed with detectors which use material with nuclei like
12C, 16O, etc. as targets. It is therefore desirable that nuclear medium effects be studied in the production of leptons
and pions induced by the atmospheric as well as accelerator neutrinos used in these oscillation experiments. To
this end, the starting point should be a correct understanding of the reaction mechanisms in the free space. In this
context we study in this work, the weak pion production off the nucleon driven both by Charged Currents (CC) and
NC at intermediate energies. The model derived here will allow us to extend the results of Refs. [5, 6] for CC and
Ref. [7] for NC driven neutrino-nucleus reactions in the quasielastic region, to higher excitation energies above the
pion production threshold up to the ∆(1232) peak.

In the past, there have been several studies of the weak pion production off the nucleon at intermediate energies [8]–
[19]. Most of them describe the pion production process at intermediate energies1 by means of the Delta pole (∆P )
mechanism (weak excitation of the ∆(1232) resonance and its subsequent decay into Nπ) and do not incorporate any
background terms. Here, we have also included some background terms, required by chiral symmetry. Starting from a
SU(2) non-linear σ model involving pions and nucleons, which implements the pattern of spontaneous chiral symmetry
breaking of QCD, we derive the corresponding vector and axial currents (up to order O(1/f3

π)) which determine the
structure of the chiral non-resonant terms. Some background terms were also considered in Refs. [11, 12] and [15].
In the latter reference, the chiral counting was broken to account explicitly for ρ and ω exchanges in the t−channel,

1 Higher resonance effects, which are certainly important for energies larger than those considered in this work, are carefully discussed in
Ref. [19].
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while the first two works are not consistent with the chiral counting either, since contact terms were not included.
Moreover in [11, 12] a rather small axial mass (≈ 0.65 GeV) was used.

We will show that the background terms produce quite significant effects, which will require to re-adjust the CA
5 (q2)

form–factor that controls the largest term of the ∆−axial contribution. We will find corrections of the order of 30%
to the off diagonal Goldberger-Treiman relation when the Argonne bubble chamber cross section [20] are fitted. Such
corrections would be smaller if the Brookhaven bubble chamber data [21] were considered. We will also show that
interference between the ∆P and the background terms produces parity-violating contributions to the pion angular
differential cross section, which are intimately linked to T−odd correlations in the contraction between the leptonic
and hadronic tensors. However, these T−odd correlations do not imply a genuine violation of time reversal invariance
because of the existence of strong final state interaction effects.

The paper is organized as follows. After this introduction, in Sect. II the model for CC neutrino and antineutrino
induced reactions is presented. There, some general definitions involving kinematics and differential cross sections
are given (Subsect. II A). The consequences of isospin symmetry are exploited in Subsect. II B, while in the next
subsection the model for the WN → N ′π reaction is presented. In Sect. III, the findings of the latter section are
extended to the case of NC driven processes. Results are presented and discussed in Sect. IV and the main conclusions
of this work can be found in Sect. V. Besides in Appendix A, the cross section dependence on the pion azimuthal
angle is discussed in terms of Lorentz, parity and time–reversal invariances, and finally in Appendix B, we discuss in
some detail the effects on the neutrino and antineutrino induced cross sections of different relative signs between the
axial and vector W±∆N form-factors, and between the resonant and chiral non-resonant contributions.

II. CC NEUTRINO AND ANTINEUTRINO INDUCED REACTIONS

A. Kinematics and differential cross section

We will focus on the neutrino–pion production reaction off the nucleon driven by charged currents,

νl(k) + N(p) → l−(k′) + N(p′) + π(kπ) (1)

though the generalization of the obtained expressions to antineutrino induced reactions is straightforward.
The unpolarized differential cross section, with respect to the outgoing lepton and pion kinematical variables, is

given in the Laboratory (LAB) frame (kinematics is sketched in Fig 1) by2
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FIG. 1: Definition of the different kinematical variables used through this work.

d 5σνll

dΩ(k̂′)dE′dΩ(k̂π)
=

|~k′|
|~k |

G2

4π2

∫ +∞

0

d|~kπ ||~kπ|2
Eπ

L(ν)
µσ (Wµσ

CCπ)
(ν)

(2)

with ~k and ~k′ the LAB lepton momenta, E′ = (~k′ 2 + m2
l )

1/2 and ml the energy and the mass of the outgoing lepton

(mµ = 105.65 MeV, me = 0.511 MeV ), G = 1.1664× 10−11 MeV−2, the Fermi constant, ~kπ and Eπ = (~k2
π + m2

π)1/2

2 To obtain Eq. (2) we have neglected the four-momentum carried out by the intermediate W−boson with respect to its mass (MW ), and
have used the existing relation between the gauge weak coupling constant, g = e/ sin θW , and the Fermi constant: G/

√
2 = g2/8M2

W ,
with e the electron charge, θW the Weinberg angle and MW the W−boson mass.
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the LAB momentum and energy of the outgoing pion3, and L and W the leptonic and hadronic tensors, respectively.
The leptonic tensor is given by (in our convention, we take ǫ0123 = +1 and the metric gµν = (+,−,−,−)):

L(ν)
µσ = (L(ν)

s )µσ + i(L(ν)
a )µσ = k′

µkσ + k′
σkµ − gµσk · k′ + iǫµσαβk′αkβ (3)

and it is not orthogonal to qµ even for massless neutrinos, i.e, L
(ν)
µσ qµ = −m2

l kσ.
The hadronic tensor includes all sort of non-leptonic vertices and it reads

(Wµσ
CCπ)(ν) =

1

4M

∑

spins

∫
d3p′

(2π)3
1

2E′
N

δ4(p′ + kπ − q − p)〈N ′π|jµ
cc+(0)|N〉〈N ′π|jσ

cc+(0)|N〉∗ (4)

with M the nucleon mass4, q = k − k′ and E′
N the energy of the outgoing nucleon. The bar over the sum of initial

and final spins, denotes the average on the initial ones. As for the one particle states, they are normalized so that
〈~p |~p ′〉 = (2π)32p0δ

3(~p − ~p ′), and finally for the charged current which couples to the W+ we take

jµ
cc+ = Ψ̄uγµ(1 − γ5)(cos θCΨd + sin θCΨs) (5)

with Ψu, Ψd and Ψs quark fields, and θC the Cabibbo angle (cos θC = 0.974). Note that with all these definitions,
the matrix element 〈N ′π|jµ

cc(0)|N〉 is dimensionless. After performing the d3p′ integration, there will still be left an
energy conserving Dirac’s delta function (δ(p′ 0 + k0

π − q0 − p0)) in the hadronic tensor, which can be used to perform

the d|~kπ | integration in Eq. (2). Since the quantity
∫

dΩπL
(ν)
µσ (Wµσ

CCπ) is a scalar to evaluate it we take for convenience
~q in the Z direction. Referring now the pion variables to the outgoing πN pair Center of Mass (CM) frame (as it
is usual in pion electroproduction) would be readily done by means of a boost in the Z direction. Note that the
azimuthal angle φπ is left unchanged by such a boost.

By construction, the hadronic tensor accomplishes

(Wµσ
CCπ)

(ν)
= (Wµσ

CCπ)
(ν)

s + i (Wµσ
CCπ)

(ν)

a (6)

with (Wµσ
CCπ)

(ν)
s and (Wµσ

CCπ)
(ν)
a real symmetric and antisymmetric parts, respectively.

As it is explicitly shown in Appendix A, Lorentz invariance restricts the φπ dependence,

d 5σνll

dΩ(k̂′)dE′dΩ(k̂π)
=

|~k′|
|~k |

G2

4π2
{A + B cosφπ + C cos 2φπ + D sin φπ + E sin 2φπ} (7)

with A, B, C, D and E real, structure functions, which depend on q2, p · q, kπ · q and kπ · p.
For antineutrino induced reactions we have

L(ν̄)
µσ = L(ν)

σµ (8)

and we will discuss below the existing relation between the matrix elements of jµ
cc+ and jµ

cc− = jµ†
cc+, charged currents

which couple to the W+ and W− bosons, respectively.

B. Isospin relations

The non-strange parts of jµ
cc± behave as the spherical ±1 component of an isovector, since

Ψ̄uΨd = −Ψ̄q
τ1
+1√
2

Ψq, Ψ̄dΨu = Ψ̄q
τ1
−1√
2

Ψq, Ψq =

(
Ψu

Ψd

)

, τ1
0 = τz , τ

1
±1 = ∓τx ± iτy√

2
(9)

3 For mπ , we use the isospin averaged pion mass.
4 We take the average of the neutron and proton masses.
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with ~τ the Pauli matrices. Thanks to the Wigner-Eckart’s theorem, we find that all 〈N ′π|jµ
cc±(0)|N〉 matrix elements

are just determined by two of them, f.i. 〈pπ+|jµ
cc+(0)|p〉 and 〈nπ+|jµ

cc+(0)|n〉,

〈pπ0|jµ
cc+(0)|n〉 = − 1√

2

[
〈pπ+|jµ

cc+(0)|p〉 − 〈nπ+|jµ
cc+(0)|n〉

]
(10)

〈pπ−|jµ
cc−(0)|p〉 = 〈nπ+|jµ

cc+(0)|n〉 (11)

〈nπ−|jµ
cc−(0)|n〉 = 〈pπ+|jµ

cc+(0)|p〉 (12)

〈nπ0|jµ
cc−(0)|p〉 = −〈pπ0|jµ

cc+(0)|n〉 =
1√
2

[
〈pπ+|jµ

cc+(0)|p〉 − 〈nπ+|jµ
cc+(0)|n〉

]
(13)

Thus, Eqs. (8) and (11)–(13) allow us to determine all CC antineutrino cross sections from the neutrino induced
amplitudes.

Besides, the vector contribution of the matrix elements of the weak CC between N and N ′π states is related to
that of the electromagnetic current sµ

em(0),

sµ
em =

2

3
Ψ̄uγµΨu − 1

3
Ψ̄dγ

µΨd − 1

3
Ψ̄sγ

µΨs (14)

=
1

6
Ψ̄qγ

µΨq −
1

3
Ψ̄sγ

µΨs +
1√
2
Ψ̄q γµ τ1

0√
2

Ψq (15)

The matrix elements of the isovector part (τ1
0 ) are related to those of jcc±, while the first two terms are isoscalar

operators. One easily finds,

1

cos θC
〈pπ+|V µ

cc+(0)|p〉 =
√

2〈nπ0|sµ
em(0)|n〉 + 〈pπ−|sµ

em(0)|n〉 (16)

1

cos θC
〈nπ+|V µ

cc+(0)|n〉 =
√

2〈pπ0|sµ
em(0)|p〉 − 〈pπ−|sµ

em(0)|n〉 (17)

C. Model for the WN → N ′π reaction

1. SU(2) non-linear σ model

Let us start with the effective lagrangian of the SU(2) non-linear σ model. It implements the pattern of spontaneous
chiral symmetry breaking of QCD and it is given by

LNπ = Ψ̄iγµ [∂µ + Vµ] Ψ − MΨ̄Ψ + gAΨ̄γµγ5AµΨ +
1

2
Tr

[
∂µU †∂µU

]
(18)

where Ψ =

(
p
n

)

is the nucleon field. The fields Vµ and Aµ are given in terms of the matrix field ξ derived from the

pion fields5 ~φ,

Vµ =
1

2

(
ξ∂µξ† + ξ†∂µξ

)
Aµ =

i

2

(
ξ∂µξ† − ξ†∂µξ

)
(19)

The pions ~φ are the Goldstone bosons associated to the spontaneous breaking of the SU(2)V ×SU(2)A chiral sym-
metry. We describe their dynamics in terms of 2 × 2 matrix field U given by

U =
fπ√

2
ei ~τ ·~φ/fπ =

fπ√
2
ξ2 (20)

with fπ ≃ 93 MeV the pion weak decay constant. The matrix field

ξ = ei ~τ ·~φ/(2fπ) (21)

5 We use a convention such that φ = (φx − iφy)/
√

2 creates a π− from the vacuum or annihilates a π+ and the φz field creates or
annihilates a π0.
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transforms under SU(2)V ×SU(2)A as

ξ
SU(2)V

=⇒ TV ξ T †
V

ξ
SU(2)A

=⇒ T †
A ξ Λ† = Λ ξ T †

A

(22)

where TV = exp(−i~τ · ~θV )/2 and TA = exp(−i~τ · ~θA)/2 are global transformations belonging to SU(2)V and SU(2)A

respectively. As for Λ = exp(−i~τ · ~θΛ)/2, it is a unitary matrix field that depends on the axial transformation TA and

the ~φ Goldstone boson fields.
On the other hand the nucleon field, Ψ transforms as

Ψ
SU(2)V

=⇒ TV Ψ Ψ
SU(2)A

=⇒ Λ Ψ
(23)

Each term of the effective Lagrangian of Eq. (18) is separately invariant under the chiral group SU(2)V ×SU(2)A.
This is why one can introduce an axial nucleon coupling gA 6= 1 in the model without violating chiral symmetry. We
will use gA = 1.26 through this work.

Explicit SU(2)A breaking terms are included in the model as

m2
π

fπ√
2

1

2
Tr(U + U † −

√
2fπ) (24)

to give mass to the pions. Neglecting O(1/f4
π), the effective Lagrangian of Eqs. (18) and (24) reads

L = Ψ̄[i/∂ − M ]Ψ +
1

2
∂µ

~φ∂µ~φ − 1

2
m2

π
~φ 2 + Lσ

int (25)

Lσ
int =

gA

fπ
Ψ̄γµγ5

~τ

2
(∂µ

~φ)Ψ − 1

4f2
π

Ψ̄γµ~τ
(

~φ × ∂µ~φ
)

Ψ − 1

6f2
π

(

~φ 2∂µ
~φ∂µ~φ − (~φ∂µ

~φ)(~φ∂µ~φ)
)

+
m2

π

24f2
π

(~φ 2)2

− gA

6f3
π

Ψ̄γµγ5

[

~φ 2 ~τ

2
∂µ

~φ − (~φ∂µ
~φ)

~τ

2
~φ

]

Ψ + O(
1

f4
π

) (26)

In contrast to the linear σ model, the coupling between the p and n and the pions is of the pseudo-vector type.
Writing the coupling constant in the usual way as gπNN/2M = f/mπ, we recover the Goldberger–Treiman relation

f =
mπ

2fπ
gA (27)

which phenomenologically is satisfied at the level of 5%.
The vector and axial currents that we derive from the lagrangian in Eq. (18) and the transformation properties of
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the fields6 are given by

~V µ = ~φ × ∂µ~φ
︸ ︷︷ ︸

~V µ
a

+ Ψ̄γµ~τ

2
Ψ

︸ ︷︷ ︸

~V µ
b

+
gA

2fπ
Ψ̄γµγ5(~φ × ~τ )Ψ

︸ ︷︷ ︸

~V µ
c

~V µ
d

︷ ︸︸ ︷

− 1

4f2
π

Ψ̄γµ
[

~τ ~φ 2 − ~φ(~τ · ~φ)
]

Ψ −
~φ 2

3f2
π

(~φ × ∂µ~φ) +O(
1

f3
π

) (31)

~Aµ = fπ∂µ~φ
︸ ︷︷ ︸

~Aµ
a

+ gAΨ̄γµγ5
~τ

2
Ψ

︸ ︷︷ ︸

~Aµ
b

+
1

2fπ
Ψ̄γµ(~φ × ~τ )Ψ

︸ ︷︷ ︸

~Aµ
c

+

~Aµ
d

︷ ︸︸ ︷

2

3fπ

[

~φ(~φ · ∂µ~φ) − ~φ 2∂µ~φ
]

− gA

4f2
π

Ψ̄γµγ5

[

~τ ~φ 2 − ~φ(~τ · ~φ)
]

Ψ

+ O(
1

f3
π

) (32)

and determine the weak transition vertex where the W−boson is absorbed. This is because these currents, up to a
factor of cos θC , are the hadronic realization of the electroweak quark current jµ

cc for a system of interacting pions and

nucleons. Thus, ~Aµ
a and ~V µ

a account for the W−decay into one and two pions, respectively, while ~Aµ
b and ~V µ

b provide

the WNN vector and axial vector couplings. Besides, ~Aµ
c and ~V µ

c lead to contact WNNπ vertices and finally ~Aµ
d

and ~V µ
d either contribute to processes with more than one pion in the final state or provide loop corrections to the

leading order amplitude for one pion production.
The overall normalization is fixed by the W+np vertex

〈p; ~p ′ = ~p + ~q |jα
cc+(0)|n; ~p 〉 = cos θC ū(~p ′)(V α

N (q) − Aα
N (q))u(~p ) (33)

where the u’s are Dirac spinors for the neutron and proton, normalized such that ūu = 2M , and vector and axial
nucleon currents are given by

V α
N (q) = 2 ×

(

FV
1 (q2)γα + iµV

FV
2 (q2)

2M
σανqν

)

, Aα
N (q) = GA(q2) ×

(

γαγ5 +
q/

m2
π − q2

qαγ5

)

(34)

being all form factors real thanks to invariance under time reversal. Invariance under G-parity has been assumed to
discard a term of the form (pµ + p′µ)γ5 and we have only considered the pion pole-contribution in the pseudoscalar
form factor. Isospin symmetry relates the vector form factors to the electromagnetic ones7

FV
1 (q2) =

1

2

(
F p

1 (q2) − Fn
1 (q2)

)
, µV FV

2 (q2) =
1

2

(
µpF

p
2 (q2) − µnFn

2 (q2)
)

(36)

and the axial form-factor is given by [23]

GA(q2) =
gA

(1 − q2/M2
A)2

, gA = 1.26, MA = 1.05 GeV (37)

6 For infinitesimal vector and axial transformations, we get from Eq. (22)

~τ · ~θΛ =
~φ × ~τ

2fπ

~θA + O(
1

f3
π

) (28)

δ~φ

SU(2)V

= (~θV × ~φ) + O(1/f3
π) δ~φ

SU(2)A

= fπ
~θA +

“

~φ(~φ · ~θA) − ~θA
~φ 2
”

/(3fπ) + O(1/f3
π)

(29)

δΨ
SU(2)V

= −i ~τ ·~θV
2

Ψ δΨ
SU(2)A

= −i
(~φ×~τ)·~θA

4fπ
Ψ + O(1/f3

π)
(30)

where δ~φ and δΨ denote the infinitesimal variations of the fields.
7 We use the parameterization of Galster and collaborators [22]

F N
1 =

GN
E + τGN

M

1 + τ
, µN F N

2 =
GN

M − GN
E

1 + τ
, Gp

E =
Gp

M

µp
=

Gn
M

µn
= −(1 + λnτ)

Gn
E

µnτ
=

 

1

1 − q2/M2
D

!2

(35)

with τ = −q2/4M2, MD = 0.843 GeV, µp = 2.792847, µn = −1.913043 and λn = 5.6.
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Thus, one realizes that, up to an overall −
√

2 cos θC factor, the +1 spherical component8 ([Aµ
b ]+1 =

− ([Aµ
b ]x + i[Aµ

b ]y) /
√

2 ) of ~Aµ
b gives the axial vector contribution, at q2 = 0, of the W+n → p weak transition. Be-

sides, −
√

2[Aµ
a ]+1 and the πNN coupling in Lσ

int lead to the qµγ5 term in Eq. (34). Analogously, −
√

2 cos θC [V µ
b ]+1,

provides the Dirac part of the vector contribution, at q2 = 0, of the W+n → p weak transition. The magnetic part in
Eq. (34) is not provided by the non-linear sigma model constructed here which assumes structureless nucleons.

From the above discussion, we conclude that −
√

2 cos θC ([V µ]+1 − [Aµ]+1) provides the W+− absorption vertex,
with the appropriate normalization, in the 〈N ′π|jµ

cc+(0)|N〉 matrix element. We will improve on that by including

the q2 dependence induced by the form factors in Eq. (34) and adding the magnetic contribution (FV
2 term) to the

vector part of the W+N → N amplitude.

2. The WN∆ and N∆π vertices

At intermediate energies, the weak excitation of the ∆(1232) resonance and its subsequent decay into Nπ domi-
nates the WN → N ′π reaction. A convenient parameterization for the W+n → ∆+ hadron matrix element is the
following [9]

〈∆+; p∆ = p + q |jµ
cc+(0)|n; p〉 = ūα(~p∆)Γαµ (p, q)u(~p ) cos θC , where (39)

Γαµ(p, q) =

[
CV

3

M
(gαµq/ − qαγµ) +

CV
4

M2
(gαµq · p∆ − qαpµ

∆) +
CV

5

M2
(gαµq · p − qαpµ) + CV

6 gµα

]

γ5

+

[
CA

3

M
(gαµq/ − qαγµ) +

CA
4

M2
(gαµq · p∆ − qαpµ

∆) + CA
5 gαµ +

CA
6

M2
qµqα

]

, p∆ = p + q (40)

with CV
3,4,5,6 and CA

3,4,5,6 scalar and real vector and axial form factors, which depend on q2. Besides, uα is a Rarita

Schwinger spinor for the ∆+. The N∆π coupling is given by

LπN∆ =
f∗

mπ
Ψ̄µ

~T †(∂µ~φ)Ψ + h.c. (41)

where Ψµ is a Rarita Schwinger Jπ = 3/2+ field, ~T † is the isospin transition operator9 from isospin 1/2 to 3/2 and
f∗ = 2.13 × f = 2.14. The Goldberger–Treiman relation implies here10

CA
5 (0) =

√

2

3

fπ

mπ
f∗ ∼ 1.15 (42)

For the ∆−propagator Gµν(p∆), we use in momentum space

Gµν(p∆) =
Pµν(p∆)

p2
∆ − M2

∆ + iM∆Γ∆
(43)

with M∆ the resonance mass (∼ 1232 MeV), Pµν the spin 3/2 projection operator

Pµν(p∆) = −(/p∆ + M∆)

[

gµν − 1

3
γµγν − 2

3

pµ
∆pν

∆

M2
∆

+
1

3

pµ
∆γν − pν

∆γµ

M∆

]

(44)

and Γ∆ the resonance width in its rest frame, given by

Γ∆(s) =
1

6π

(
f∗

mπ

)2
M√

s

[

λ
1
2 (s, m2

π, M2)

2
√

s

]3

Θ(
√

s − M − mπ), s = p2
∆ (45)

8 Note,
−

√
2τ+1|n〉 = (τx + iτy) |n〉 = 2|p〉 (38)

.
9 It is a vector under isospin rotations and its Wigner-Eckart irreducible matrix element is taken to be one.

10 Note that the CA
5 sign is quoted incorrectly in Ref. [9] (see comment in Ref. [10]).
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with λ(x, y, z) = x2 + y2 + z2 − 2xy− 2xz − 2yz and Θ the step function, as deduced from the lagrangian of Eq. (41).
The determination of the form factors follows from general principles and experimental results. The imposition of

the conserved vector current hypothesis implies CV
6 = 0. The other three vector form factors are then given in terms of

the isovector electromagnetic form factors in the p−∆+ transition. The analysis of photo and electroproduction data
of ∆ is done in terms of multipole amplitudes [24]. Most of the previous papers on neutrino production [13, 17, 18]
assume M1+ dominance11 of the electroproduction amplitude, which implies CV

5 = 0 and a relation between CV
4 and

CV
3 . Here, we take advantage of the recent work of Lalakulich, Paschos and Piranishvili and improve on that by

including the effect of the subdominant multipoles [19]

CV
3 =

2.13

(1 − q2/M2
V )2

× 1

1 − q2

4M2
V

, CV
4 =

−1.51

(1 − q2/M2
V )2

× 1

1 − q2

4M2
V

, CV
5 =

0.48

(1 − q2/M2
V )2

× 1

1 − q2

0.776M2
V

(46)

with MV = 0.84 GeV. Among the axial form factors the most important contribution comes from CA
5 whose numerical

value is related to the pseudoscalar form factor CA
6 by PCAC. Since there are no other theoretical constraints for

CA
3 (q2), CA

4 (q2) and CA
5 (q2)/CA

5 (0), they have to be fitted to neutrino scattering data. The available information
comes mainly from two bubble chamber experiments, ANL [20, 26, 27] and BNL [21, 28]. We adopt the Adler model
[8], as the ANL and BNL analyses did, where

CA
4 (q2) = −CA

5 (q2)

4
, CA

3 (q2) = 0 (47)

and for CA
5,6 we shall use [16]

CA
5 (q2) =

1.2

(1 − q2/M2
A∆)2

× 1

1 − q2

3M2
A∆

, CA
6 (q2) = CA

5 (q2)
M2

m2
π − q2

, with MA∆ = 1.05 GeV. (48)

The value for CA
4 was found to give a small contribution to the cross section and setting the CA

3 form factor to zero
is consistent with early dispersion calculations [8, 29] and recent lattice QCD results [30]. Note that the contribution
to the differential cross section of the CA

6 term will be always proportional to the outgoing lepton mass.

Isospin symmetry implies that the transition matrix element W+p → ∆++ is a factor
√

3 bigger than the W+n →
∆+ one discussed above.

For the weak transition ∆ → N , we have

〈N ; p′|jµ
cc+(0)|∆; p∆ = p′ − q 〉 = 〈∆; p∆ = p′ − q|jµ

cc−(0)|N ; p′〉∗ (49)

= − (1
2 , 1, 3

2 |tN ,−1, t∆)

(1
2 , 1, 3

2 | − 1
2 , 1, 1

2 )
{ūα(~p∆ = ~p ′ − ~q )Γαµ (p′,−q)u(~p ′ ) cos θC}∗ (50)

with (t1, t2, t|m1, m2, m) Clebsch–Gordan coefficients and tN and t∆ the nucleon and delta isobar isospin third com-
ponents, respectively.

3. Explicit expressions for the 〈pπ+|jµ
cc+(0)|p〉 and 〈nπ+|jµ

cc+(0)|n〉 amplitudes

In this subsection, we give explicit expressions for the 〈pπ+|jµ
cc+(0)|p〉 and 〈nπ+|jµ

cc+(0)|n〉 amplitudes, which we
will denote by (jµ

cc+)pπ+ and (jµ
cc+)nπ+ , respectively. All 〈N ′π|jµ

cc±(0)|N〉 matrix elements can be expressed in terms of
these two amplitudes (Subsect. II B). The model consists of seven Feynman diagrams, depicted in Fig. 2, constructed
out of the W+N → N , W+N → ∆, W+N → Nπ and the contact W+π → π weak transition vertices (Eqs. (31–33)
and (39) ) and the πNN , ππNN (Eq. (26)) and πN∆ (Eq. (41)) couplings, discussed in the Subsects. II C 1 and
II C 2. Since we have included a q2 dependence (FV

1 (q2)) on the Dirac part of the vector WNN vertex and to preserve
vector current conservation, we also include form–factors (FPF (q2) and FV

CT (q2)) in the V µ
a and V µ

c weak operators.
This partially accounts for the nucleon structure.

We do not include loop corrections. This model is an extension of that developed in Ref. [31] for the eN → e′Nπ
reaction, though there exist some minor differences related to the used form factors and a non–relativistic reduction
was performed in Ref. [31].

11 Recent data determine the contribution from the electric multipole E1+/M1+ to be ∼ −2.5% and from the scalar multipole S1+/M1+ ∼
−2.5% [25] .
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FIG. 2: Model for the W+N → N ′π reaction. It consists of seven diagrams: Direct and crossed ∆(1232)− (first row) and nucleon (second
row) pole terms, contact and pion pole contribution (third row) and finally the pion-in-flight term. Throughout this work, we will denote
these contributions by: ∆P , C∆P , NP , CNP , CT , PP and PF , respectively. The circle in the diagrams stands for the weak transition
vertex.

The amplitudes read,

jµ
cc+

∣
∣
∣
∆P

= i C∆ f∗

mπ

√
3 cos θC

kα
π

p2
∆ − M2

∆ + iM∆Γ∆
ū(~p ′)Pαβ(p∆)Γβµ(p, q)u(~p ), p∆ = p + q,

and C∆ =

(
1 for pπ+

1/3 for nπ+

)

jµ
cc+

∣
∣
∣
C∆P

= i CC∆ f∗

mπ

1√
3

cos θC
kβ

π

p2
∆ − M2

∆ + iM∆Γ∆
ū(~p ′)Γ̂µα(p′, q)Pαβ(p∆)u(~p ), p∆ = p′ − q,

and CC∆ =

(
1 for pπ+

3 for nπ+

)

, Γ̂µα(p′, q) = γ0 [Γαµ( p′,−q)]†γ0

jµ
cc+

∣
∣
∣
NP

= −i CNP gA√
2fπ

cos θC ū(~p ′)/kπγ5
/p + q/ + M

(p + q)2 − M2 + iǫ
[V µ

N (q) − Aµ
N (q)] u(~p ), CNP =

(
0 for pπ+

1 for nπ+

)

jµ
cc+

∣
∣
∣
CNP

= −i CCNP gA√
2fπ

cos θC ū(~p ′) [V µ
N (q) − Aµ

N (q)]
/p′ − q/ + M

(p′ − q)2 − M2 + iǫ
/kπγ5u(~p ), CCNP =

(
1 for pπ+

0 for nπ+

)

jµ
cc+

∣
∣
∣
CT

= −i CCT 1√
2fπ

cos θC ū(~p ′)γµ
(
gAFV

CT (q2)γ5 − Fρ

(
(q − kπ)2

))
u(~p ), CCT =

(
1 for pπ+

−1 for nπ+

)

jµ
cc+

∣
∣
∣
PP

= −i CPP Fρ

(
(q − kπ)2

) 1√
2fπ

cos θC
qµ

q2 − m2
π

ū(~p ′) q/ u(~p ), CPP =

(
1 for pπ+

−1 for nπ+

)

jµ
cc+

∣
∣
∣
PF

= −i CPF FPF (q2)
gA√
2fπ

cos θC
(2kπ − q)µ

(kπ − q)2 − m2
π

2Mū(~p ′)γ5u(~p ), CPF =

(
1 for pπ+

−1 for nπ+

)

(51)
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Note that in the PF (PP) term the weak transition is purely driven by the vector (axial) CC. The contribution
proportional to gA in the CT diagram is the one due to the vector weak transition. We impose

FPF (q2) = FV
CT (q2) = 2FV

1 (q2) = F p
1 − Fn

1 (52)

to preserve conservation of vector current, as we required for the ∆N weak transition. Besides, we have included a
form factor

Fρ(t) =
1

1 − t/m2
ρ

, mρ = 0.7758 GeV (53)

in the PP term to account for the ρ−meson dominance of the ππNN coupling. To preserve PCAC, the same form-
factor has been included in the CT axial contribution.

In the pion in flight term, we have the coupling πNN with a virtual pion. It is usual in the literature to use
a form factor to account for the off-shellness of the pion. To preserve vector current conservation, if one includes
this form–factor in this term, one should also multiply by the same factor the CT term and the NP and CNP FV

1

contributions. This was the adopted scheme in the study of the eN → e′Nπ reaction carried out in Ref. [31], where
the induced changes by its inclusion turned out to be moderately small. In the weak pion production case, there are
more important sources of uncertainties12 and the existing measurements are poorer. Being this work one of the first
studies of weak pion production where background terms are added to the dominant ∆ contribution, and for the sake
of simplicity, we do not include this form factor.

The average and sum over the initial and final spins in Eq. (4) is readily done thanks to

∑

spins

ū(~p ′)Sµu(~p ) [ū(~p ′)Sσu(~p )]
∗

=
1

2
Tr

(
(/p′ + M)Sµ(/p + M)γ0S† σγ0

)
(54)

where the spin dependence of the Dirac’s spinors is understood and Sµ is a matrix in the Dirac’s space for each value
of the Lorentz index µ.

III. NC NEUTRINO AND ANTINEUTRINO INDUCED REACTIONS

The unpolarized differential cross section in the LAB frame for the process

νl(k) + N(p) → νl(k
′) + N(p′) + π(kπ) (55)

reads

d 5σνν

dΩ(k̂′)dE′dΩ(k̂π)
=

|~k′|
|~k |

G2

16π2

∫ +∞

0

dkπk2
π

Eπ
L(ν)

µσ (Wµσ
NCπ)

(ν)
(56)

with ~k′ , E′ = |~k′ | the LAB outgoing neutrino momentum and energy. The leptonic tensor is given in Eq. (3) and it

is now orthogonal to qµ = (k − k′)µ for massless neutrinos, i.e, L
(ν)
µσ qµ = L

(ν)
µσ qσ = 0.

The hadronic tensor reads

(Wµσ
NCπ)(ν) =

1

4M

∑

spins

∫
d3p′

(2π)3
1

2E′
N

δ4(p′ + kπ − q − p)〈N ′π|jµ
nc(0)|N〉〈N ′π|jσ

nc(0)|N〉∗ (57)

where the neutral current at the quark level is

jµ
nc = Ψ̄uγµ(1 − 8

3
sin2 θW − γ5)Ψu − Ψ̄dγ

µ(1 − 4

3
sin2 θW − γ5)Ψd − Ψ̄sγ

µ(1 − 4

3
sin2 θW − γ5)Ψs

= Ψ̄qγ
µ(1 − γ5)τ

1
0 Ψq − 4 sin2 θW sµ

em − Ψ̄sγ
µ(1 − γ5)Ψs (58)

12 For instance: partial knowledge of the ∆ resonance form factors, possible pion off-shell effects in the weak transition vertex of the PP
diagram, etc. . .
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where θW is the Weinberg angle (sin2 θW = 0.231).
Both, lepton and hadron tensors are independent of the neutrino lepton family, and therefore the cross section for

the reaction of Eq. (55) is the same for electron, muon or tau incident neutrinos. For antineutrino induced reactions
we have, besides the relation of Eq. (8) for the leptonic tensor,

(Wµσ
NCπ)(ν̄) = (Wµσ

NCπ)(ν) (59)

As discussed above for CC induced process, Lorentz invariance here also restricts the φπ dependence, and the NC
differential cross section can be written as in Eq. (7). This φπ dependence has been carefully studied in Ref. [32] as a
potential tool to distinguish τ−neutrinos from antineutrinos, below the τ−production threshold, but above the pion
production one.

The NC can be expressed as

jµ
nc = Ψ̄qγ

µ(1 − 2 sin2 θW − γ5)τ
1
0 Ψq − 4 sin2 θW sµ

em,IS − Ψ̄sγ
µ(1 − γ5)Ψs (60)

where the isoscalar part of the electromagnetic current is given by

sµ
em,IS =

1

6
Ψ̄qγ

µΨq −
1

3
Ψ̄sγ

µΨs (61)

Isospin symmetry relates the matrix elements of the isovector part (τ1
0 term) of jµ

nc with those of the vector (V µ
cc+)

and axial (Aµ
cc+) part of the current jµ

cc+ (= V µ
cc+ − Aµ

cc+),

〈pπ0
∣
∣Ψ̄qγ

µ(1 − 2 sin2 θW − γ5)τ
1
0 Ψq

∣
∣p〉 =

1√
2 cos θC

{

(1 − 2 sin2 θW )
[
〈pπ+|V µ

cc+(0)|p〉 + 〈nπ+|V µ
cc+(0)|n〉

]

−
[
〈pπ+|Aµ

cc+(0)|p〉 + 〈nπ+|Aµ
cc+(0)|n〉

] }

(62)

〈nπ+
∣
∣Ψ̄qγ

µ(1 − 2 sin2 θW − γ5)τ
1
0 Ψq

∣
∣p〉 = − 1

cos θC

{

(1 − 2 sin2 θW )
[
〈pπ+|V µ

cc+(0)|p〉 − 〈nπ+|V µ
cc+(0)|n〉

]

−
[
〈pπ+|Aµ

cc+(0)|p〉 − 〈nπ+|Aµ
cc+(0)|n〉

] }

(63)

〈nπ0
∣
∣Ψ̄qγ

µ(1 − 2 sin2 θW − γ5)τ
1
0 Ψq

∣
∣n〉 = 〈pπ0

∣
∣Ψ̄qγ

µ(1 − 2 sin2 θW − γ5)τ
1
0 Ψq

∣
∣p〉

〈pπ−
∣
∣Ψ̄qγ

µ(1 − 2 sin2 θW − γ5)τ
1
0 Ψq

∣
∣n〉 = −〈nπ+

∣
∣Ψ̄qγ

µ(1 − 2 sin2 θW − γ5)τ
1
0 Ψq

∣
∣p〉 (64)

For the isoscalar part of the electromagnetic current we have

〈nπ+
∣
∣sµ

em,IS

∣
∣p〉 = 〈pπ−

∣
∣sµ

em,IS

∣
∣n〉 =

√
2〈pπ0

∣
∣sµ

em,IS

∣
∣p〉 = −

√
2〈nπ0

∣
∣sµ

em,IS

∣
∣n〉 (65)

with

〈pπ0
∣
∣sµ

em,IS

∣
∣p〉 = −〈nπ0|sµ

em(0)|n〉 − 〈pπ0|sµ
em(0)|p〉

2
(66)

To compute 〈Nπ0|sµ
em(0)|N〉, we derive the electromagnetic current associated to the lagrangian of the SU(2) non-

linear σ model of Eq. (25),

sµ
em = Ψ̄γµ

(
1 + τz

2

)

Ψ +
igA

2fπ
Ψ̄γµγ5

(
τ1
−1φ

† + τ1
+1φ

)
Ψ + i

(
φ†∂µφ − φ∂µφ†

)
+ · · · (67)

where we have only kept those terms contributing to one pion production in absence of chiral loop corrections. Thus,
within our framework, the model for the γN → πN reaction would consist of direct and crossed nucleon pole, contact
and pion-in-flight terms. As we did for the CC driven processes, such model should be supplemented by including i)
the q2 dependence induced by the Dirac F p,n

1 form factors, ii) the magnetic contribution in the γNN vertex and iii)
the direct and crossed ∆(1232) pole terms [31]. However, the ∆−resonance diagrams cannot contribute to the matrix
elements of the isoscalar part of the electromagnetic current. Besides, from Eq. (67) we see that neither the pion-in-
flight nor the contact terms contribute for π0 photoproduction. Hence, to compute 〈nπ0|sµ

em(0)|n〉 − 〈pπ0|sµ
em(0)|p〉,
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we are just left with the direct and crossed nucleon pole terms

〈nπ0|sµ
em(0)|n〉 − 〈pπ0|sµ

em(0)|p〉
2

= i
gA

2fπ
ū(~p ′)

{

/kπγ5
/p + q/ + M

(p + q)2 − M2 + iǫ

[

F IS
1 (q2)γµ + iµIS

F IS
2 (q2)

2M
σµνqν

]

+

[

F IS
1 (q2)γµ + iµIS

F IS
2 (q2)

2M
σµνqν

]
/p′ − q/ + M

(p′ − q)2 − M2 + iǫ
/kπγ5

}

u(~p ) (68)

with

F IS
1 (q2) =

1

2

(
F p

1 (q2) + Fn
1 (q2)

)
, µISF IS

2 (q2) =
1

2

(
µpF

p
2 (q2) + µnFn

2 (q2)
)

(69)

Finally, we pay attention to the matrix elements of the isoscalar operator Ψ̄sγ
µ(1 − γ5)Ψs which are sensitive to

the strange content of the hadrons. Due to its isoscalar character we have

〈nπ+
∣
∣
(
Ψ̄sγ

µ(1 − γ5)Ψs

)
(0)

∣
∣p〉 = 〈pπ−

∣
∣
(
Ψ̄sγ

µ(1 − γ5)Ψs

)
(0)

∣
∣n〉 =

√
2〈pπ0

∣
∣
(
Ψ̄sγ

µ(1 − γ5)Ψs

)
(0)

∣
∣p〉

= −
√

2〈nπ0
∣
∣
(
Ψ̄sγ

µ(1 − γ5)Ψs

)
(0)

∣
∣n〉 (70)

This part of the NC operator can neither lead to N∆ transitions nor couple to a single pion. Thus, and assuming
a model for the Z0N → N ′π reactions similar to that used for the CC driven process, we should consider the
contributions of the direct and crossed nucleon pole, the contact and the pion-in-flight terms to the matrix element
of the Ψ̄sγ

µ(1 − γ5)Ψs quark operator. The contribution of the first two terms (NP and CNP ) reads

〈pπ0
∣
∣
(
Ψ̄sγ

µ(1 − γ5)Ψs

)
(0)

∣
∣p〉 = −i

gA

2fπ
ū(~p ′)

{

/kπγ5
/p + q/ + M

(p + q)2 − M2 + iǫ

[

F s
1 (q2)γµ + iµs

F s
2 (q2)

2M
σµνqν

−Gs
A(q2)γµγ5 − Gs

P qµγ5

]

+
[

F s
1 (q2)γµ + iµs

F s
2 (q2)

2M
σµνqν

−Gs
A(q2)γµγ5 − Gs

P qµγ5

] /p′ − q/ + M

(p′ − q)2 − M2 + iǫ
/kπγ5

}

u(~p ) (71)

where F s
1 , µsF

s
2 , Gs

A and Gs
P are the strange vector and axial nucleon form factors [33]. The pseudoscalar part of the

axial current does not contribute to the differential cross section for massless neutrinos and for the rest of strange
form factors we use the results of the fit II of Ref. [34],

Gs
A(q2) =

gS

(1 − q2/(M s
A)2)2

, F s
1 (q2) = µsF

s
2 (q2) = 0 (72)

with gS = −0.15 and M s
A = MA.

The vector part in Eq. (71) is conserved, i.e., it is orthogonal to qµ independently of F s
1 . Because of parity and

angular momentum conservation, a pion-in-flight type term can only contribute to the vector part of the matrix
element of the Ψ̄sγ

µ(1 − γ5)Ψs operator and its contribution should be proportional to (2kπ − q)µū(~p ′)γ5u(~p ), as in
Eq (51). Assuming a structure of the type ū(~p ′)γ5γ

µu(~p ), as in Eq (51), for the contact term vector contribution
to the matrix element of the Ψ̄sγ

µ(1 − γ5)Ψs operator, we will conclude that both types of contributions should be
exactly zero to preserve vector current conservation. Within our scheme, we cannot say anything about a possible
contact term axial contribution to 〈pπ0

∣
∣
(
Ψ̄sγ

µ(1 − γ5)Ψs

)
(0)

∣
∣p〉, that for simplicity we will neglect. Thus, we will

assume that this latter matrix element is given by the NP and CNP contributions in Eq. (71).

IV. RESULTS

In this section, we will show differential and partially integrated neutrino and antineutrino cross sections for pion
production processes driven by both CC and NC. As it is usual in pion electroproduction, we will work with angular

pion variables (dΩ∗(k̂π)) defined in the outgoing πN pair CM frame, while the incoming and outgoing lepton variables
will be in the LAB frame. We will pay here an special attention to the CC pion production cross section dependence
on the azimuthal pion angle φ∗

π (note that this angle is not affected by the LAB→CM boost), and thus we will show
the different contributions to Σ∗

(
q2, p · q , θ∗π, φ∗

π

)
, defined by its relation to the differential cross section,
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d 5σνll

dΩ(k̂′)dE′dΩ∗(k̂π)
=

|~k′|
|~k |

G2

4π2
Σ∗ (73)

Σ∗
(
q2, p · q , θ∗π, φ∗

π

)
= {A∗ + B∗ cosφ∗

π + C∗ cos 2φ∗
π + D∗ sin φ∗

π + E∗ sin 2φ∗
π} (74)

For the NC case this dependence has been already discussed in Ref. [32] with the aim of distinguishing between ντ

and ν̄τ below the τ−production threshold, but above the pion production one.

After integrating the pion solid angle, we will take as independent variables the incoming neutrino energy E = |~k |,
the invariant mass W of the outgoing pion-nucleon pair (W 2 = (p+q)2) and the squared of the lepton four-momentum
transfer q2,

d 3σa

dq2dW
=

d 3σa

dΩ(k̂′)dE′
× πW

ME|~k′ |
, a = νll, νν. (75)

where W varies in the range (mπ + M) ≤ W ≤ (
√

S − ml), with S = (k + p)2 = M(M + 2E). Thus, the incoming
neutrino energy in the LAB system, E, should be greater than

(
mπ + ml + (mπ + ml)

2/2M
)

for the pion production

process to take place. Besides for a given outgoing πN invariant mass W , q2 is comprised in the interval

q2
min(W ) ≡

[

m2
l − 2ECM

(

E′
CM +

√

E
′2
CM − m2

l

)]

≤ q2 ≤
[

m2
l − 2ECM

(

E′
CM −

√

E
′2
CM − m2

l

)]

≡ q2
max(W )

(76)

with ECM = (S − M2)/2
√

S and E′
CM = (S − W 2 + m2

l )/2
√

S, the incoming neutrino and outgoing lepton energies
in the neutrino–nucleon CM frame. It is also useful to perform the phase space integrals in the other order around,
which allows one to find the dσ/dq2 differential cross section. The total range of q2 is given by q2

min(W = mπ + M) ≤
q2 ≤ q2

max(W = mπ + M) and for a given q2, the outgoing πN invariant mass W varies

Wmin ≡ M + mπ ≤ W ≤
[

M2 + q2 + 2M

(
q2

q2 − m2
l

E − m2
l − q2

4E

)] 1
2

≡ Wmax(q
2) (77)

where in all equations above, ml should be set to zero for NC processes.
In the outgoing πN CM frame we will also use that

∫ +∞

0

d|~kπ ||~kπ|2
Eπ

δ(p′ 0 + k0
π − q0 − p0) =

|~kπ|E′
N

W

∣
∣
∣
CM

=
W 2 + M2 − m2

π

4W 3
× λ

1
2 (W 2, M2, m2

π). (78)

Since the main dynamical ingredients of our model are the excitation of the ∆ resonance and the non-resonant
contributions deduced from the leading SU(2) non-linear σ lagrangian involving pions and nucleons, we will concentrate
in the M + mπ ≤ W ≤ 1.3 − 1.4 GeV region. For larger invariant masses, the chiral expansion will not work, or at
least the lowest order used here will not be sufficient [35, 36]. Moreover, the effect of heavier resonances will become
much more important [19]. Thus, we will limit the available phase–space to guarantee that the invariant mass W
will lie in the above range. For a fixed incoming neutrino energy, imposing an upper limit in W will lead to different
amounts of phase-space reduction depending on q2 (see Fig. 3). For neutrino energies of about 1 GeV of relevance in
the CC ANL [20] and BNL [21, 28] bubble chamber experiments, great part of the available phase space satisfies the
W ≤ 1.3− 1.4 constrain. As the neutrino energy increases, the q2 interval which leads to CM πN energies around the
∆−resonance pole gets reduced and the corresponding kinematic cuts performed by the various experiments produces
a significant reduction of statistics.

We will see, as it also happens in the pion electroproduction case [31], that the inclusion of non-resonant terms
(background terms) plays a crucial role close to the M + mπ threshold.

A. CC pion production cross sections

There exist several sets of data taken and analyzed in the late seventies and early eighties. The most detailed
studies, including measurements, not only of the totally integrated neutrino cross sections, but also of the neutrino
flux–averaged q2 and some angular distributions were made in the ANL 12-foot bubble chamber [20, 27] and in the
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FIG. 3: Upper integration limit Wmax as a function of q2 (Eq. (77)) for incoming neutrino LAB energies E = 0.5, 1.0, 1.5 and 5 GeV and
different outgoing lepton masses. In all case the horizontal line stands for the phase space threshold M + mπ.

BNL 7-foot deuterium-filled bubble chamber [21, 28]. In both experiments the bubble chambers were exposed to a
wide-band of muon-type-neutrino beams with average energies of approximately 1 GeV (ANL) and 1.6 GeV (BNL)
and events for the νµp → µ−pπ+, νµn → µ−pπ0 and νµn → µ−nπ+ reactions, with and without a W ≤ 1.4 GeV
cut, were obtained. The ANL experiment used hydrogen and deuterium targets, though most of data come from
deuterium exposure. Incoming neutrino energy distributions can be found in Figure 8 of Ref. [37] and in Figure 7 of
Ref. [38] for the ANL and BNL experiments, respectively13.

Muon-type-antineutrino (energy beam peaked around 1.5 GeV) induced total cross sections off the proton (neutron)
for final π−p and π0n (π−n) channels with and without the invariant mass cut W < 1.4 GeV were measured in the
Gargamelle propane experiment at CERN PS [39].

There also exist experiments at higher neutrino energies carried out at the FNAL 15 foot bubble chamber [40]
(neutrino energies from 5 to 100 GeV) and at CERN [41]. In this latter case, a hydrogen target was illuminated with
a wide band neutrino and antineutrino beams (energies from 5 to 120 GeV), the mean event energy being about 25
GeV. At such high energies the integrated cross section remains constant with high accuracy, so the exact value of
neutrino energy is not important. The implementation of the invariant mass cut W < 1.4 GeV reduces significantly
the statistics and we will not consider these data sets in this work.

We start looking at the flux averaged q2 differential cross sections for the reaction νµp → µ−pπ+ measured by
the ANL and BNL experiments (Fig. 4). In the latter experiment, the cross section overall normalization is not

13 Flux–averaged q2 differential cross sections read

d σ

dq2
=

1

N

Z Emax

Emin

dE
dσ(E)

dq2
Φ(E), N =

Z Emax

Emin

Φ(E) dE, (79)

and similarly for other flux-averaged differential cross sections.
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FIG. 4: Flux averaged q2−differential νµp → µ−pπ+ cross section
R 1.4 GeV

M+mπ
dW

d σ
νµµ−

dq2dW
compared with the ANL [20] (left) and BNL [21]

(right) experiments. Dashed lines stand for the contribution of the excitation of the ∆++ resonance and its subsequent decay (∆P
mechanism) with CA

5 (0) = 1.2 and MA∆ = 1.05 GeV. Dashed–dotted and central solid lines are obtained when the full model of Fig. 2
is considered with CA

5 (0) = 1.2, MA∆ = 1.05 GeV (dashed-dotted) and with our best fit parameters CA
5 (0) = 0.867, MA∆ = 0.985 GeV

(solid). In addition, we also show the 68% CL bands (solid lines) deduced from the Gaussian correlated errors quoted in Eq. (80).

provided. The ∆ vector form factors are fixed by electroproduction data, while the axial weak ∆N transition form
factors have been adjusted in such a way that the ∆++ contribution alone would lead to a reasonable description
of the shape of the BNL data (see for instance Ref. [16]). Moreover, this set of axial form factors also leads to a
reasonable description [17] of the ANL data (dashed line in left panel of Fig. 4). The agreement with the ANL data
is certainly worsened when the background terms, required by chiral symmetry, are considered (dashed-dotted line).
Since the CA

5 (q2) controls the largest term of the axial contribution, this strongly suggests the re-adjustment of this
form–factor. Assuming the same q2 dependence as in Eq. (48), a χ2−fit to the flux averaged (W < 1.4 GeV) ANL
νµp → µ−pπ+ q2 differential cross section provides

CA
5 (0) = 0.867 ± 0.075, MA∆ = 0.985± 0.082 GeV, (80)

with a Gaussian correlation coefficient r = −0.85 and a χ2/dof = 0.4. This fitted axial mass in the weak N∆ vertex
is in good agreement with the estimates of about 0.95 GeV and 0.84 GeV given in the original ANL reference [20]
and in the work of Ref. [17]. On the other hand, we observe a correction of the order of 30% to the off diagonal
Goldberger-Treiman relation (Eq. (42)). The lattice QCD results shown in Figure 4 of Ref. [30] might support the

ratio
√

2
3

fπ

mπ
f∗/CA

5 (0) becoming significantly larger than unity for realistic pion masses.

The ANL data come mostly from deuterium exposure, and thus deuteron structure effects might affect/are included
in this determination of the CA

5 form–factor. Such effects were investigated in Ref. [14], where it was estimated that
they were always less than 7%. The solid line in the left panel of Fig. 4 shows the quality of the fit. We also plot
the 68% CL band deduced from the statistical errors quoted in Eq. (80). We do not fit to the BNL q2 differential
cross section because this data set is given in arbitrary units. To fix the overall BNL data scale, we normalize the
area under the theoretical curve, obtained when the full model of Fig. 2 is considered with our best fit parameters
CA

5 (0) = 0.867, MA∆ = 0.985 GeV, to that under the experimental data. Here again it can be appreciated that, and
despite the fact that the isospin factor of the ∆−pole mechanism (with the excitation of the ∆++ resonance and its
subsequent decay) in this channel is bigger than in the others, the effect of the background terms is quite significant.

Next we show in Fig. 5, the total ANL νµp → µ−pπ+, νµn → µ−pπ0 and νµn → µ−nπ+ cross sections, with
the kinematical cut W < 1.4 GeV, as a function of the neutrino energy and the predictions of the three schemes
defined above: only ∆P contribution with CA

5 (0) = 1.2, MA∆ = 1.05 GeV and the full model derived in this work,
including background terms, with the latter set of parameters for CA

5 (q2) and with that given in Eq. (80). As can
be appreciated in the different plots of the figure we achieve a reasonable description of data, finding the largest
discrepancies in the π+n channel. The inclusion of the chiral symmetry background terms derived in this work, brings
in an overall improved description of the three channels as compared to the case where only the ∆P mechanism is
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FIG. 5: Experimental and theoretical results for νµp → µ−pπ+, νµn → µ−pπ0 and νµn → µ−nπ+ cross sections, as a function of the
neutrino energy. The ANL results [20] and theoretical cross sections incorporate the kinematical cut W < 1.4 GeV. Dashed lines stand
for the contribution of the excitation of the ∆ resonance and its subsequent decay (∆P mechanism) with CA

5 (0) = 1.2 and MA∆ = 1.05
GeV. Dashed–dotted and central solid lines are obtained when the full model of Fig. 2 is considered with CA

5 (0) = 1.2, MA∆ = 1.05 GeV
(dashed-dotted) and with our best fit parameters CA

5 (0) = 0.867, MA∆ = 0.985 GeV (solid). In addition, we also show the 68% CL bands
(solid lines) deduced from the Gaussian correlated errors quoted in Eq. (80). We also display BNL cross section data from Ref. [21] which
do not include the W < 1.4 GeV cut in the πN invariant mass (see text).

considered. In the case of π+n and π0p cross sections the reduction of the contribution of this latter mechanism is
compensated by the inclusion of the background terms. Our results are similar in quality to those obtained from the
model of Ref. [15]. We also display in the various plots of this figure, BNL cross section data from Ref. [21] which
do not include the W < 1.4 GeV cut in the πN invariant mass. For neutrino energies below 1 GeV, the effects of
the πN invariant mass cut is almost negligible (see Table III of Ref. [20]). Such effects become much more sizeable
for larger neutrino energies (see Table III of Ref. [20]) which have prevented us to present BNL cross section data
in the plots for neutrino energies above 1 GeV. We observe some degree of inconsistency among the ANL and BNL
measurements. The present model, including non-resonant background terms, with a CA

5 (q2) form factor consistent
with the off diagonal Goldberger-Treiman relation (Eq. (42)) would lead to a better description of the BNL data (see
dashed–dotted lines).

In Fig. 6 we compare the pion azimuthal and pion-nucleon invariant mass distributions (neutrino flux averaged)
predicted by the different models examined here with that measured in the ANL experiment [20, 26]. For both plots,
we normalize the area under the theoretical curve obtained when the full model of Fig. 2 is considered with parameters
CA

5 (0) = 0.867, MA∆ = 0.985 GeV, to that under the experimental data. The inclusion of chiral background terms
leads to a more pronounced φ∗

π dependence improving in this way the agreement with the observed event distribution
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FIG. 6: Flux averaged ANL distribution of events in the pion azimuthal angle with W < 1.4 GeV (left) and in the πN invariant mass
(right) for µ−pπ+ final state. Data taken from Refs. [20] and [26], respectively. Dashed lines stand for the contribution of the excitation
of the ∆++ resonance and its subsequent decay (∆P mechanism) with CA
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solid lines are obtained when the full model of Fig. 2 is considered with CA

5 (0) = 1.2, MA∆ = 1.05 GeV (dashed-dotted) and with our
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the Gaussian correlated errors quoted in Eq. (80).
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FIG. 7: Energy dependence of the muon antineutrino cross section, with the invariant mass cut W ≤ 1.4 GeV, for the ν̄µn → µ+π−n
(left panel) and the π− exclusive production (right panel) reactions. Data–points are taken from the CERN PS experiment of Ref. [39].
Dashed lines stand for the contribution of the excitation of the ∆ resonance and its subsequent decay (∆P mechanism) with CA

5 (0) = 1.2
and MA∆ = 1.05 GeV. Dashed–dotted and central solid lines are obtained when the full model of Fig. 2 is considered with CA

5 (0) =
1.2, MA∆ = 1.05 GeV (dashed-dotted) and with our best fit parameters CA

5 (0) = 0.867, MA∆ = 0.985 GeV (solid). In addition, we also
show the 68% CL bands (solid lines) deduced from the Gaussian correlated errors quoted in Eq. (80).

in the ANL experiment. In the right panel of Fig. 6 we show the W−distribution of ANL events, which clearly shows
the ∆(1232) peak. The chiral background terms dominate the distribution near the pion production threshold, and
they also produce a slight shift of the maximum of the distribution to lower invariant masses.

In Fig. 7, we compare the predictions of our model with the CERN-PS muon antineutrino cross section data of
Ref. [39]. Our model provides larger cross sections than the experiment, but nevertheless, we find here again a
reasonable description of the data, which is certainly better than when the ∆P mechanism alone is considered. We
would like to remind here that from isospin symmetry we have 〈nπ−|jµ

cc−(0)|n〉 = 〈pπ+|jµ
cc+(0)|p〉. Therefore the only
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dynamical difference between the νµp → µ−pπ+, which we describe correctly (see Fig. 5), and the ν̄µn → µ+pπ−

reactions is the sign of the antisymmetric term of the lepton tensor (L
(ν̄)
µσ = L

(ν)
σµ ). Thus, if one neglects the parity–

violating part of the antisymmetric hadronic tensor (Wµν
CCπ)

PV

a (see Eq. (A1) in Appendix A), the cross sections for
both reactions will be the same but for differences in the interference between the axial and vector contributions of
the hadronic current. However, this vector–axial interference does not affect the sum of the cross sections σ(νµp →
µ−pπ+)+σ(ν̄µn → µ+pπ−), except for its contribution to the parity–violating part of the symmetric hadronic tensor.
For instance at E = 3 GeV, the experimental value for this sum of cross sections is around 0.78 × 10−38 cm2 while
our best theoretical prediction for it is around 11% bigger. Considering the large errors in experimental data we think
this difference is not significative14. That might suggest that the discrepancy in the antineutrino cross section might
be solved by the inclusion of relative phases between the vector and the axial current theoretical contributions.

Relative signs among the different background contributions are well established, since all of them have been deduced
from the same lagrangian (Eq. (26)) and the vector and axial currents derived from it. One might think in a possible
inconsistency between the relative signs of background and resonant pieces. However,

• These relative signs are consistent with those deduced from a quark model picture [42].

• As already mentioned, the vector part of the model presented here, reduces to that derived in Ref. [31] for the
eN → e′Nπ reaction. Note the relation

CV
3 (q2) =

M

mπ

√

2

3
fγ(q2)/e (81)

with e =
√

4πα the proton charge, between CV
3 and the usual γN∆ coupling, fγ , used in pion electroproduction

reactions (see Eqs.(5) and (A-12) in Ref. [31]). This relation is obtained from the non-relativistic reduction
of the CV

3 Dirac structure, which dominates in that limit. Using fγ(0) ≈ 0.122 as in Ref. [31], one obtains
CV

3 (0) ≈ 2.2 in good agreement with Eq. (46). The model of Ref [31] described15 reasonably well the available
data for the eN → e′Nπ reaction at low and intermediate energies, including pion angular dependences. This
makes us confident on our election of relative signs between resonant and non-resonant terms.

• In what the axial part concerns, we use a consistent sign convention for both the diagonal and off-diagonal
Goldberger-Treiman’s relations (see the choice of relative signs in Eqs. (27) and (42)).

Nevertheless, in the Appendix B we have examined the effect of including relative minus signs between the axial and
vector resonant contributions and also between the ∆P and the background terms. Changing the relative sign between
the vector and axial contributions of the ∆ mechanism is totally discarded by the data, while modifying the relative
sign between resonant and non-resonant terms has a little effect, once the W integration is performed. This can be
understood by looking at the πN invariant mass distribution of the right panel in Fig. 6. At the ∆ peak resonant
and non-resonant contributions do not interfere, since the first one is purely imaginary while the latter one is real,
and thus in this region the relative sign between both type of contributions is irrelevant. At lower and higher values
of W , where the resonant contribution takes also a real part and thus it has a non-vanishing interference with the
background terms, there exists a constructive and destructive, respectively, interference. A change of the relative sign
between resonant and non-resonant terms would reverse constructive into destructive interferences, and vice-versa,
but the net effect after integrating in W is greatly diminished.

After this discussion, we stress that one would need relative phases (and not merely minus signs) between vector
and axial resonant and non resonant contributions to improve the combined description of neutrino and antineutrino
cross sections. However, very recently S.K. Singh and collaborators have pointed out [44] that nuclear medium effects
and pion absorption (note that the antineutrino data of Ref. [39] presented in Fig. 7 were measured on freon-propane)
were not properly taken into account in the original work of Bolognese and collaborators [39]. In this manner, the
apparent discrepancies highlighted by the former discussion might disappear (see Figs. 17 and 18 of Ref. [44]). More
accurate data, possibly available in the next future from the MiniBoone and T2K experiments, in conjunction with
Watson’s theorem [43] might shed light into this interesting issue.

Next we pay attention to the differential cross section decomposition of Eq. (74) following the different allowed
dependences on the pion azimuthal angle. In Figs. 8 and 9 we simultaneously compare results for the νµn → µ−pπ0

and ν̄µp → µ+nπ0 reactions. Thanks to isospin symmetry (see Eq. (13)), the hadronic tensor is the same for both

14 We note the discrepancy is significantly larger (≈ 60%) if one uses CA
5 (0) = 1.2.

15 A small relative phase between the ∆P and the background terms was also included in Ref. [31]. This phase is deduced from Watson’s
theorem [43], it depends on q2 and W , and for the kinematics of interest in this work is comprised in the range 10 − 20o.
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ANL Our results

R+ = σ(νp → νnπ+)/σ(νp → µ−pπ+) 0.12 ± 0.04 [49] 0.12 – 0.10

R0 = σ(νp → νpπ0)/σ(νp → µ−pπ+) 0.09 ± 0.05 [49] 0.18 – 0.14

R− = σ(νn → νpπ−)/σ(νp → µ−pπ+) 0.11 ± 0.022 [48] 0.12 – 0.09

TABLE I: NC to CC (νp → µ−pπ+) cross section ratios. Experimental data taken from the ANL analyses of Refs. [48] (R−),
and [49] (R0,R+). Our results are obtained for an incoming neutrino energy range of E = 0.6 − 1.2 GeV using our full model
of Fig. 2 and with our best fit parameters CA

5 (0) = 0.867, MA∆ = 0.985 GeV. No kinematical cut in the W invariant mass has
been used.

processes and hence, they are only distinguished by the different neutrino– and antineutrino–induced lepton vertices,
which produces a change of sign in the antisymmetric part of the leptonic tensor. Therefore, and following Eqs. (A8)
and (A9), the C∗ and E∗ structure functions are equal for both reactions, while the antisymmetric contributions to the
neutrino and antineutrino A∗, B∗ and D∗ ones change sign. We fix E = 1.5 GeV and q2 = −0.5 GeV2, which naturally
lies into the ANL kinematics, and we consider two different πN invariant masses, W = 1150 MeV and W = M∆, to
better understand the effect of the chiral symmetry background terms on the structure functions defined in Eq. (74).
Results displayed in these plots show clearly both the difference between neutrino and antineutrino structure functions
and the effect of the the chiral symmetry background terms on them. For instance in the W = M∆ case, neutrino
and antineutrino A∗ structure functions differ by about a factor of three, which will provide a similar factor in the
integrated cross sections. In these channels, background terms have a greater influence in the antineutrino induced
process than in the neutrino one. On the other hand, for W = 1150 MeV the ∆P mechanism becomes sub-dominant
and the bulk of the structure functions is determined by the background terms and their interferences with the ∆P
one.

Besides, the interference between the ∆P mechanism and the rest of the chiral background terms leads to non-
vanishing D∗ and E∗ structure functions. These functions provides dependences in sin φ∗

π and sin 2φ∗
π and arise from

the parity violating terms in the hadronic tensor decomposition in Eq. (A1). These parity-violating contributions to the

fifth differential cross section d 5σνll/dΩ(k̂′)dE′dΩ(k̂π) disappear when the pion solid angle integration is performed,

as required by the scalar, up to the factor |~k′|/|~k |, nature of the triple differential cross section d 3σνll/dΩ(k̂′)dE′.

Note that the coordinate system used to define dΩ(k̂π) involves the pseudo-vector ~k ×~k′ to set up the Y −axis, which

induces the non-parity invariant nature of d 5σ/dΩ(k̂′)dE′dΩ(k̂π). In electropion production processes, the leptonic
tensor is purely symmetric, and the symmetric part of the hadronic one can not contain terms involving the Levi-Civita

tensor, since the electromagnetic interaction preserves parity. Hence in that case d 5σ/dΩ(k̂′)dE′dΩ(k̂π) turns out to
be a scalar under parity. Moreover, these terms also induce T−odd correlations in the (L(ν,ν̄))µνWµν contraction (see
Eqs. (A1)–(A7) in the Appendix A), which do not imply a genuine violation of time reversal invariance because of
the existence of strong final state interaction effects16 [45, 46].

B. NC pion production cross sections

There hardly exist [47, 48, 49] NC experimental measurements at intermediate energies. In the Gargamelle propane–
freon experiment run at CERN [47], the NC neutrino induced pion production cross sections, in all possible channels,
were measured at averaged neutrino energy of around 2.2 GeV, and given in the form of NC/CC ratios. These
data have been reanalyzed and absolute cross sections, without imposing any cut in the pion-nucleon invariant
mass, have been recently provided [50]. Experiments using the Argonne 12-foot deuterium bubble chamber were run
over a neutrino energy interval (0.3 ≤ E ≤ 1.5) GeV [48, 49]. These latter experiments gave results for the NC
νn → νpπ− cross section [48], as well as the NC to CC cross section ratios R+ = σ(νp → νnπ+)/σ(νp → µ−pπ+),
R0 = σ(νp → νpπ0)/σ(νp → µ−pπ+) [49] and R− = σ(νn → νpπ−)/σ(νp → µ−pπ+) [48].

The NC pion production reaction was proposed in Ref. [32] as a potential tool to distinguish τ−neutrinos from
antineutrinos, below the τ−production threshold, but above the pion production one. Model independent neutrino-
antineutrino asymmetries both in the totally integrated cross sections and in the pion azimuthal differential distri-
butions were predicted in Ref. [32]. Results of the current model for these neutrino–antineutrino asymmetries were
presented there. Here, we will focus on the comparison of our results with the available experimental data as well as
emphasizing other aspects of the NC pion production processes.

16 Within our formalism, the inclusion of the ∆ resonance width accounts partially for the strong final state effects.
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[50] Our results

σ(νp → νpπ0) 0.130 ± 0.020 0.105±0.006

σ(νp → νnπ+) 0.080 ± 0.020 0.091±0.003

σ(νn → νnπ0) 0.080 ± 0.020 0.104±0.006

σ(νn → νpπ−) 0.110 ± 0.030 0.082±0.003

TABLE II: NC cross sections in units of 10−38cm2 for different channels. Data shown correspond to the results of a recent
reanalysis [50] of the original data taken by the Gargamelle experiment at CERN [47]. Our results are obtained for an incoming
neutrino energy of E = 2.2 GeV using our full model of Fig. 2 and with our best fit parameters CA

5 (0) = 0.867± 0.075, MA∆ =
0.985 ± 0.082 GeV. No cut in the pion–nucleon invariant mass W has been applied and we Monte Carlo propagate the latter
errors to our results for the cross sections.

In Table I we compare our results for the R+, R0 and R− NC over CC ratios with the ANL experimental data.
Our results are obtained for an incoming neutrino energy range of E = 0.6 − 1.2 GeV using our full model of Fig. 2
and with our best fit parameters CA

5 (0) = 0.867, MA∆ = 0.985 GeV. We find a fair agreement for all ratios, when the
experimental uncertainties are taken into account.

In Table II we present results for the total NC cross sections in different channels at E =2.2 GeV and compare
them with the reanalysis done in Ref. [50] of the original data by the Gargamelle experiment at CERN [47]. We use
our full model of Fig. 2 with our best fit parameters CA

5 (0) = 0.867, MA∆ = 0.985 GeV with no upper limit in the
W−integration to allow a direct comparison with the experiment. The agreement with data is good. However a word
of caution is in order here. As we discussed above, our model suffers from larger uncertainties in the W > 1.4 GeV
region which will be accessible for neutrinos of this energy.

In the left panel of Fig. 10 we show our results for the νn → νpπ− cross section as a function of the energy and
compare them with the ANL data of Ref. [48]. There, and to better compare with the data, we also give results without
the W ≤ 1.4 GeV constraint. Up to incoming neutrino LAB energies of the order of 1 GeV the implementation of
this cut hardly changes the cross section. We find a good description of the data. In the right panel of Fig. 10 we
show the W−differential cross section for the same channel and neutrinos of 1 GeV. There one can appreciate clearly
the ∆(1232) peak. The chiral background terms dominate the differential cross section near the pion production
threshold, and they also produce a slight shift of the maximum of the cross section to lower invariant masses, as it
also happened in the distribution of CC events displayed in Fig. 6. In both plots we see that the reduction of the
contribution of the ∆P mechanism, due to the diminution of the value of CA

5 (0), is partially compensated by the
inclusion of the background terms.

Next, we study the effect of the strange content of the nucleon within our model (left panel of Fig. 11). We find that
effects are even smaller than the statistical uncertainties deduced from the fit of the CA

5 (q2) form factor to the ANL
data in Eq.(80). Similarly, results of the right panel of this figure show that the isovector part of the NC completely
dominates the pion production reaction at the intermediate energies studied here. This is because, as can be deduced
from Eqs. (64), (65) and (70), both cross sections just differ in the interference between the isovector and the isoscalar
parts of the NC. Finally, we would like to mention that antineutrino induced cross sections are around a factor 2 or 3
smaller than neutrino induced ones, as can be appreciated by comparing predictions for pπ− final state given in the
left panel of Fig. 10 and the right panel of Fig. 11.

V. CONCLUSIONS

We have developed a model for the weak pion production off the nucleon driven both by CC and NC at intermediate
energies, which improves most of the existing ones. Besides the ∆P mechanism, we have also included some background
terms, required by chiral symmetry. Starting from a SU(2) non-linear σ model involving pions and nucleons, which
implements the pattern of spontaneous chiral symmetry breaking of QCD, we derive the corresponding vector and
axial currents (up to order O(1/f3

π))) which determine the structure of the chiral non-resonant terms. Vector current
conservation and PCAC are also employed to establish some relations between the weak form factors. In this way
constructed, this model represents the natural extension of that developed in Ref. [31] for the eN → e′N ′π reaction.

As a result of the inclusion of the background contributions, we had to re-fit the CA
5 (q2) form factor to the flux

averaged νµp → µ−pπ+ ANL q2−differential cross section data with W < 1.4, finding a smaller contribution of the
∆P mechanism than traditionally assumed in the literature (see Eq. (80)). We find a correction of the order of
30% to the off diagonal Goldberger-Treiman relation (Eq. (42)), which we interpret is not in conflict with the lattice
QCD results shown in Figure 4 of Ref. [30], if they were extrapolated to realistic pion masses. Within this scheme,
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we have calculated several differential and integrated17 cross sections, including pion angular distributions, induced
by neutrinos and antineutrinos and driven both by CC and NC. In all cases we find that the background terms
produce quite significant effects, and for those quantities where there are experimental measurements, we find that
the inclusion of these terms brings in an overall improved description of the data, as compared to the case where only
the ∆P mechanism is considered. We give 68% CL bands for most of the computed observables as deduced from
the Gaussian correlated errors quoted in Eq. (80). For NC reactions the isoscalar contribution is quite small and in
particular we find the nucleon strange content effects are smaller than the statistical uncertainties deduced from the
fit of CA

5 (q2) to the ANL data.
At higher πN invariant masses than those considered in this work, heavier resonances than the ∆(1232) (as for

example N(1440), N(1535), N(1520) · · ·) will certainly play an important role. However, we might safely expect
the contribution of these heavier resonances to be negligible at pion threshold, where the chiral background terms
computed in this work are dominant, and that it would remain quite small up to the πN invariant masses around
1.3–1.4 GeV considered here [19].

We also show that the interference between the ∆P and the background terms produces parity-violating contribu-

tions to the fifth differential cross section d 5σνll/dΩ(k̂′)dE′dΩ(k̂π), which are intimately linked to T−odd correlations
in the (L(ν,ν̄))µνWµν contraction. However, these latter correlations do not imply a genuine violation of time reversal
invariance because of the existence of strong final state interaction effects.

The extension of this work to the study of the weak two-pion production off the nucleon near threshold is natural
and will be presented elsewhere [51].
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APPENDIX A: DEPENDENCE OF THE NEUTRINO DIFFERENTIAL CROSS SECTION ON THE

OUTGOING PION AZIMUTHAL ANGLE

The hadronic tensor is completely determined by up to a total of 19 Lorentz scalar and real, structure functions [32]
Wi(q

2, p · q, p · kπ, kπ · q),

(Wµν
CCπ)

(ν)

s,a = (Wµν
CCπ)

(ν),PC

s,a + (Wµν
CCπ)

(ν),PV

s,a (A1)

where (for simplicity from now on we drop the CCπ and (ν) labels in the notation of the hadronic tensor)

(Wµν)
PC
s = W1g

µν + W2p
µpν + W3q

µqν + W4k
µ
πkν

π + W5(q
µpν + qνpµ) + W6(q

µkν
π + qνkµ

π)

+ W7(p
µkν

π + pνkµ
π) (A2)

(Wµν)
PV
s = W8

(

qµǫν
.αβγkα

πpβqγ + qνǫµ
.αβγkα

πpβqγ
)

+ W9

(

pµǫν
.αβγkα

π pβqγ + pνǫµ
.αβγkα

πpβqγ
)

+ W10

(

kµ
πǫν

.αβγkα
πpβqγ + kν

πǫµ
.αβγkα

πpβqγ
)

(A3)

(Wµν)
PV
a = W11(q

µpν − qνpµ) + W12(q
µkν

π − qνkµ
π) + W13(p

µkν
π − pνkµ

π) (A4)

(Wµν)
PC
a = W14ǫ

µναβpαqβ + W15ǫ
µναβpαkπβ + W16ǫ

µναβqαkπβ + W17

(

qµǫν
.αβγkα

πpβqγ − qνǫµ
.αβγkα

πpβqγ
)

+ W18

(

pµǫν
.αβγkα

πpβqγ − pνǫµ
.αβγkα

π pβqγ
)

+ W19

(

kµ
πǫν

.αβγkα
πpβqγ − kν

πǫµ
.αβγkα

πpβqγ
)

(A5)

The tensor (Wµν)PV = (Wµν)PV
s + i (Wµν)PV

a when contracted with the leptonic one, L
(ν)
µν , provides a pseudo-scalar

quantity, i.e., such contraction is not invariant under a parity transformation. Indeed, under a parity transformation

17 There are some inconsistencies among the ANL and BNL totally integrated cross section data (Fig. 5) and we would obtain a better
description of the BNL data with a CA

5 (q2) form factor consistent with the off diagonal Goldberger-Treiman relation.
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we have,

L(ν)
µν → (Lνµ)

(ν)
, (Wµν)

PV → − (W νµ)
PV

(A6)

whereas the tensor (Wµν)
PC

= (Wµν)
PC
s + i (Wµν)

PC
a transforms as (Lµν)

(ν)
. This explains the origin of the

adopted labels PC and PV, which stand for parity violating and conserving contributions to the fifth differential

cross section d 5σνll/dΩ(k̂′)dE′dΩ(k̂π), respectively. The triple differential cross section d 3σνll/dΩ(k̂′)dE′ is a scalar,

up to the factor |~k′|/|~k |. Thus all parity-violating contributions must disappear when performing the pion solid
angle integration. A further remark concerns about the time-reversal (T ) violation effects apparently encoded in the
decomposition of the hadronic tensor in Eqs. (A1–A5). Under a time reversal transformation, and taking into account
the antiunitary character of the T−operator, we have

L(ν)
µν → (Lµν)

(ν)
, (Wµν)PC → (Wµν)

PC
, (Wµν)

PV → − (Wµν)
PV

(A7)

and therefore (L(ν))µνWµν is not T−invariant either, because of the presence of the PV terms in the hadronic tensor18.
This does not necessarily means that there exists a violation of T−invariance in the process because of the existence
of strong final state interaction effects [45, 46].

With our election of kinematics (~k,~k′ in the XZ plane), we find (L
(ν)
s )0y = (L

(ν)
s )xy = (L

(ν)
s )zy = (L

(ν)
a )0x =

(L
(ν)
a )0z = (L

(ν)
a )xz = 0, and then

∫ +∞

0

dkπk2
π

Eπ
(L(ν)

s )µνWµν
s =

∫ +∞

0

dkπk2
π

Eπ

{

(L(ν)
s )00W

00
s + 2(L(ν)

s )0xW 0x
s + 2(L(ν)

s )0zW
0z
s + (L(ν)

s )xxW xx
s

+ (L(ν)
s )yyW yy

s + (L(ν)
s )zzW

zz
s + 2(L(ν)

s )xzW
xz
s

}

= As + Bs cosφπ + Cs cos 2φπ + Ds sinφπ + Es sin 2φπ (A8)
∫ +∞

0

dkπk2
π

Eπ
(L(ν)

a )µνWµν
a = 2

∫ +∞

0

dkπk2
π

Eπ

{

(L(ν)
a )0yW 0y

a + (L(ν)
a )xyW xy

a + (L(ν)
a )yzW

yz
a

}

= −Aa − Ba cosφπ − Da sin φπ (A9)

where we explicitly show the φπ dependence19. The PV term of the hadronic tensor has led to the parity violating
sin φπ and sin 2φπ contributions (all of them proportional to kπy). They disappear when the pion solid angle integration
is performed, as anticipated. The above equations automatically imply Eq. (7).

APPENDIX B: VECTOR–AXIAL RESONANT AND RESONANT–NONRESONANT RELATIVE SIGNS

Because of the poor description of the muon antineutrino cross section data of Ref. [39] (see Fig. 7) achieved with
the different models studied in this work, we examined here the effect of including relative minus signs between the
axial and vector resonant contributions and also between the ∆P and the background terms. We have focused on
the flux averaged νµp → µ−pπ+ ANL q2−differential cross section displayed in the left panel of Fig. 4, and on the
total νµp → µ−pπ+ and ν̄µn → µ+pπ− cross sections given as a function of the neutrino/antineutrino energy in
the top and left panels of Figs. 5 of 7, respectively. Results of our analysis are presented in Fig. 12. There, and
in addition to the results obtained from the three models presented up to now (excitation of the ∆ resonance and
its subsequent decay, ∆P mechanism, with CA

5 (0) = 1.2 and MA∆ = 1.05 GeV (blue dashed–lines), and the full
model of Fig. 2 with CA

5 (0) = 1.2, MA∆ = 1.05 GeV (cyan dashed-dotted lines) and with our best fit parameters
CA

5 (0) = 0.867, MA∆ = 0.985 GeV (red solid lines)) with the set of signs deduced in our scheme, we also show results
from different choices of the relative signs. Curves denoted by V (A) have been obtained by changing the sign of the
WN∆ vector (axial) form factors in Eq. (40), and similarly results denoted by VA have been obtained by including
an extra minus sign between the ∆P and the background contributions. Changing the sign of either the vector or the
axial contributions of the ∆ mechanism is strongly disfavored by the data, while modifying the relative sign between
resonant and non-resonant terms has a little effect, as we already mentioned in the discussion of Fig. 7.

18 Note that transformations given in Eqs. (8), (A6) and (A7) imply that the leptonic tensor, by itself, is invariant under CPT.
19 All structure functions, Wi=1,···19, depend on the Lorentz scalar p ·kπ and kπ ·q factors, which are functions of the angle formed between

the ~q and ~kπ vectors, and thus they are independent of φπ, when ~q is taken along the Z−axis.
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These results provide a further confirmation of the sign convention used in this work, and the muon antineutrino
discrepancies of Fig. 7 point out to the existence of non–trivial relative phases (and not merely minus signs) between
vector and axial resonant and non resonant contributions and/or more likely that some nuclear medium effects were
not properly discounted [44] in Ref. [39], when providing cross sections off the nucleon from measurements obtained
in the liquid bubble chamber Gargamelle that was filled with propane and a small admixture of heavy freon CF3Br.
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FIG. 8: Pion polar angle dependence of the φ∗

π structure functions defined in Eq. (74) for the νµn → µ−pπ0 and ν̄µp → µ+nπ0 reactions.
The neutrino incoming energy is E = 1.5 GeV, q2 = −0.5 GeV2, W = M∆ and the pion polar angle is referred to the πN CM frame.
Neutrino (antineutrino) A∗, B∗ and D∗ structure functions are displayed in the three upper right (left) hand side plots. The C∗ and E∗

structure functions, which are equal for both reactions, are showed in the two panels of the last row. Dashed lines stand for the contribution
of the excitation of the ∆ resonance and its subsequent decay (∆P mechanism) with CA

5 (0) = 1.2 and MA∆ = 1.05 GeV. Dashed–dotted
and central solid lines are obtained when the full model of Fig. 2 is considered with CA

5 (0) = 1.2, MA∆ = 1.05 GeV (dashed-dotted) and
with our best fit parameters CA

5 (0) = 0.867, MA∆ = 0.985 GeV (solid). In addition, we also show the 68% CL bands (solid lines) deduced
from the Gaussian correlated errors quoted in Eq. (80).
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FIG. 9: Same as in Fig. 9 for W = 1150 MeV.
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FIG. 10: Total (left) and W−differential (right) cross sections for the νn → νpπ− reaction. Left panel data are taken from Ref. [48]
and have been measured without limiting the pion–nucleon invariant mass W . Dashed lines stand for the contribution of the excitation
of the ∆ resonance and its subsequent decay (∆P mechanism) with CA

5 (0) = 1.2 and MA∆ = 1.05 GeV. Dashed–dotted and central solid
lines are obtained when the full model of Fig. 2 is considered with CA

5 (0) = 1.2, MA∆ = 1.05 GeV (dashed-dotted) and with our best
fit parameters CA

5 (0) = 0.867, MA∆ = 0.985 GeV (solid). In addition, we also show the 68% CL bands (solid lines) deduced from the
Gaussian correlated errors quoted in Eq. (80). In all these cases, we have limited the invariant mass phase-space (W ≤ 1.4 GeV). In the
left hand side panel the long dashed-line stands for our full model results without including the W ≤ 1.4 GeV cut. The LAB incoming
neutrino energy in the right hand side plot is 1 GeV.
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FIG. 11: Total νp → νpπ0 (left panel), ν̄n → ν̄pπ− and ν̄p → ν̄nπ+ (right panel) cross sections, with the W ≤ 1.4 GeV cut, as a function
of the neutrino or antineutrino energy. In the left panel we show results obtained for two different values of the nucleon strange content
(gS in Eq. (72)) with the full model of Fig. 2 and our fitted CA

5 (q2) form factor. We also include the 68% CL bands inferred from Eq. (80).
In the right panel we do not give the CL bands and gS is set to −0.15.
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FIG. 12: Flux averaged νµp → µ−pπ+ ANL q2−differential cross section (top) and total νµp → µ−pπ+ and ν̄µn → µ+pπ− cross sections
as a function of the neutrino/antineutrino energy (bottom) from different choices of the vector–axial resonant and resonant–nonresonant
relative signs (see text for details).
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