Study of the semileptonic decays $B \to \pi$, $D \to \pi$ and $D \to K$

C. Albertus¹, J. M. Flynn¹, E. Hernández², J. Nieves³, J. M. Verde-Velasco²

- ¹ School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom.
- ² Grupo de Física Nuclear, Departamento de Física Fundamental e IUFFyM, Facultad de Ciencias, E-37008 Salamanca, Spain.
- ³ Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada, Spain.

Received: date / Revised version: date

Abstract. The semileptonic decay $B \to \pi$ is studied starting from a simple quark model that takes into account the effect of the B^* resonance. A novel, multiply subtracted, Omnès dispersion relation has been implemented to extend the predictions of the quark model to all q^2 values accessible in the physical decay. By comparison to the experimental data, we extract $|V_{ub}| = 0.0034 \pm 0.0003 (\text{exp.}) \pm 0.0007 (\text{theory})$. As a further test of the model, we have also studied $D \to \pi$ and $D \to K$ decays for which we get good agreement with experiment.

PACS. 12.15.Hh - 11.55.Fv - 12.38.Jh - 13.20.He

1 Introduction

The exclusive semileptonic decay $B \to \pi l^+ \nu_l$ provides an important alternative to inclusive reactions $B \to X_u l^+ \nu_l$ in the determination of de Cabibbo-Kobayashi-Maskawa (CKM) matrix element $|V_{ub}|$.

This reaction has been studied in different approaches like lattice-QCD (both in the quenched and unquenched approximations), light-cone sum rules (LCSR) and constituent quark models (CQM), each of them having a limited range of applicability: LCSR are suitable for describing the low momentum transfer square (q^2) region, while lattice-QCD provides results only in the high q^2 region. CQM can in principle provide form factors in the whole q^2 range but they are not directly connected to QCD. A combination of different methods seems to be the best strategy.

The use of Watson's theorem for the $B\to\pi l^+\nu_l$ process allows one to write a dispersion relation for each of the form factors entering in the hadronic matrix element. This procedure leads to the so-called Omnès representation, which can be used to constrain the q^2 dependence of the form factors from the elastic $\pi B\to\pi B$ scattering amplitudes. The problem posed by the unknown $\pi B\to\pi B$ scattering amplitudes at high energies can be dealt with by using a multiply subtracted dispersion relation. The latter will allow for the combination of predictions from various methods in different q^2 regions.

In this work we study the semileptonic $B \to \pi l^+ \nu_l$ decay. The use of a multiply subtracted Omnès representation of the form factors will allow us to use the predictions of LCSR calculations at $q^2 = 0$ in order to extend the results of a simple nonrelativistic constituent quark model (NRCQM) from its region of applicability, near the zero

recoil point, to the whole physically accessible q^2 range. To test our model we shall also study the $D \to \pi$ and $D \to K$ semileptonic decays for which the relevant CKM matrix elements are well known and there is precise experimental data.

$$\mathbf{2} B \to \pi l^+ \bar{\nu}$$

The matrix element for the semileptonic $B^0 \to \pi^- l^+ \nu_l$ decay can be parametrized in terms of two dimensionless form factors

$$\langle \pi(p_{\pi}) | V^{\mu} | B(p_{B}) \rangle = \left(p_{B} + p_{\pi} - q \frac{m_{B}^{2} - m_{\pi}^{2}}{q^{2}} \right)^{\mu} f^{+}(q^{2}) + q^{\mu} \frac{m_{B}^{2} - m_{\pi}^{2}}{q^{2}} f^{0}(q^{2})$$

$$(1)$$

where $q^{\mu}=p_B-p_{\pi}$ is the four momentum transfer and $m_B=5279.4$ MeV and $m_{\pi}=139.57$ MeV are the B^0 and π^- masses. For massless leptons, the total decay width is given by

$$\Gamma(B^0 \to \pi^- l^+ \nu_l) = \frac{G_F^2 |V_{ub}|^2}{192\pi^3 m_B^3} \int_0^\infty dq^2 [\lambda(q^2)]^{\frac{3}{2}} |f^+(q^2)|^2 \tag{2}$$

with $q_{\text{max}}^2 = (m_B - m_\pi)^2$, $G_F = 1.16637 \times 10^{-5} \text{ GeV}^{-2}$ and $\lambda(q^2) = (m_B^2 + m_\pi^2 - q^2)^2 - 4m_B^2 m_\pi^2 = 4m_B^2 |\boldsymbol{p}_\pi|^2$, with \boldsymbol{p}_π the pion three-momentum in the B rest frame.

2.1 Nonrelativistic constituent quark model: Valence quark and B^{\ast} resonance contributions

Figure 1 shows how the naive NRCQM valence quark description of the f^+ form factor fails in the whole q^2 range.

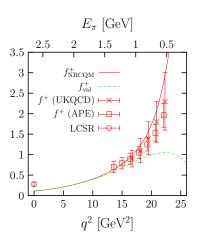


Fig. 1. f^+ form factor obtained with the valence quark (val) contribution alone and with the valence quark plus B^* contribution (NRCQM). We also plot lattice QCD results by the UKQCD [2] and APE [3] Collaborations, and LCSR [4] f^+ results.

In the region close to $q_{\rm max}^2$, where a nonrelativistic model should work best, the influence of the B^* resonance pole is evident. Close to $q^2=0$ the pion is ultra relativistic, and thus predictions from a nonrelativistic model are unreliable.

As first pointed out in Ref. [5], the effects of the B^* resonance pole dominate the $B \to \pi l^+ \nu_l$ decay near the zero recoil point $(q_{\rm max}^2)$. Those effects must be added coherently as a distinct contribution to the valence result. The hadronic amplitude from the B^* -pole contribution is given by

$$-iT^{\mu} =$$

$$-i\hat{g}_{B^*B\pi}(q^2)p_{\pi}^{\nu} \left(i\frac{-g_{\nu}^{\mu} + q^{\mu}q_{\nu}/m_{B^*}^2}{q^2 - m_{B^*}^2}\right)i\sqrt{q^2}\hat{f}_{B^*}(q^2)$$
(3)

with $m_{B^*} = 5325$ MeV. \hat{f}_{B^*} and $\hat{g}_{B^*B\pi}$ are respectively the off-shell B^* decay constant and off-shell strong $B^*B\pi$ coupling constant. See Ref. [1] and references therein for details on their calculation. From the above equation one can easily obtain the B^* -pole contribution to f^+ which is given by

$$f_{pole}^{+}(q^2) = \frac{1}{2}\hat{g}_{B^*B\pi}(q^2) \frac{\sqrt{q^2}\hat{f}_{B^*}(q^2)}{m_{B^*}^2 - q^2}$$
(4)

The inclusion of the B^* resonance contribution to the form factor improves the simple valence quark prediction down to q^2 values around 15 GeV². Below that the description is still poor.

2.2 Omnès representation

Now one can use the Omnès representation to combine the NRCQM predictions at high q^2 with the LCSR at

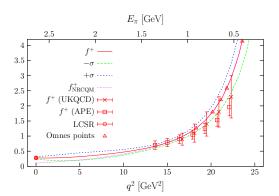


Fig. 2. Omnès improved form factor (solid line). The subtraction points are denoted by triangles. The $\pm \sigma$ lines show the theoretical uncertainty band.

 $q^2=0$. This representation requires as an input the elastic $B\pi\to B\pi$ phase shift $\delta(s)$ in the $J^P=1^-$ and isospin I=1/2 channel, plus the form factor at different q^2 values below the πB threshold where the subtractions will be performed. For a large enough number of subtractions, only the phase shift at or near threshold is needed. In that case one can approximate $\delta(s)\approx \pi$, arriving at the result that

$$f^{+}(q^{2}) \approx \frac{1}{s_{th} - q^{2}} \prod_{j=0}^{n} [f^{+}(q_{j}^{2})(s_{th} - q_{j}^{2})]^{\alpha_{j}(q^{2})}, \ n \gg 1$$
 (5)

with
$$s_{th} = m_B + m_{\pi}$$
 and $\alpha_j(q^2) = \prod_{j \neq k=0} \frac{q^2 - q_k^2}{q_j^2 - q_k^2}$

Figure 2 shows with a solid line the form factor obtained using the Omnès representation with six subtraction points: we take five q^2 values between 18 GeV² and $q_{\rm max}^2$ for which we use the f^+ NRCQM predictions (valence + B^* pole), plus the LCSR prediction at $q^2=0$. The $\pm \sigma$ lines enclose a 68% confidence level region that we have obtained from an estimation of the theoretical uncertainties. The latter have two origins: (i) uncertainties in the quark–antiquark nonrelativistic interaction and (ii) uncertainties on the product $g_{B^*B\pi}f_{B^*}$, and on the input to the multiply subtracted Omnès representation. See Ref. [1] for details.

By Comparison with the experimental value for the decay width, we obtain

$$|V_{ub}| = 0.0034 \pm 0.0003 \text{(exp.)} \pm 0.0007 \text{(theo.)}$$
 (6)

in very good agreement with the value found by the CLEO Collaboration [6].

3
$$D \to \pi l \bar{\nu}_l$$
 and $D \to K l \bar{\nu}_l$

Our results for the f^+ form factor are depicted in Figures 3 and 4. As before we have considered valence quark plus resonant pole contributions (D^* and D_s^* respectively). In both cases, we obtain a good description in the physical region of the experimental data [7] and previous lattice

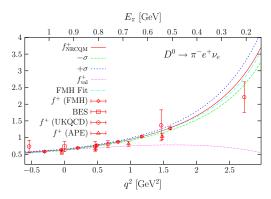


Fig. 3. The solid line denotes our determination of the f^+ form factor (f_{NRCQM}^+) for the $D^0 \to \pi^- e^+ \nu_e$ decay. The $\pm \sigma$ lines denote the theoretical uncertainty band on the form factor. We compare with experimental data by the BES Collaboration [7] and with lattice results by the Fermilab-MILC-HPQCD [8], UKQCD [9] and APE [3] Collaborations.

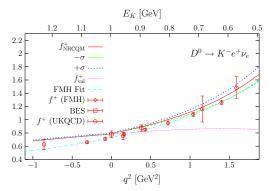


Fig. 4. Same as Fig. 3 for the decay $D^0 \to K^- e^+ \nu_e$

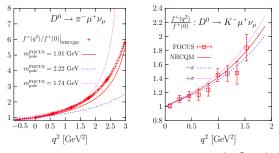


Fig. 5. NRCQM predictions for the ratio $f^+(q^2)/f^+(0)$ for $D \to \pi$ and $D \to K$ decays. We compare with experimental resuls by the FOCUS Collaboration [10] (a pole fit $(m_{pole} = 1.91^{+0.31}_{-0.17} \text{ GeV})$ to data in the $D \to \pi$ case). For the $D \to K$ case we show the theoretical uncertainty band.

results [8,9,3], without using the Omnès dispersion relation. In the case of the $D \to K$ decay, our predictions for negative q^2 values could had been improved by the Omnès representation.

In Fig. 5 we compare our results for the $f^+(q^2)/f^+(0)$ with experimental results by the FOCUS Collaboration [10]. We find very good agreement with the data.

Besides we have found for the decay widths

$$\begin{split} \Gamma(D^0 \to \pi^- e^+ \nu_e) &= (5.2 \pm 0.1 (\text{exp.}) \pm 0.5 (\text{theo.})) \\ &\quad \times 10^{-12} \text{MeV} \\ \Gamma(D^0 \to K^- e^+ \nu_e) &= (66 \pm 3 (\text{theo.})) \times 10^{-12} \text{MeV} \ \ (7) \end{split}$$

For $D \to \pi$ we are in good agreement with experimental data while for $D \to K$ our result is two standard deviations higher.

4 Concluding remarks

We have shown the limitations of a pure valence quark model to describe the $B \to \pi, D \to \pi$ and $D \to K$ semileptonic decays. As a first correction, we have included vector resonance pole contributions which dominate the relevant f^+ form factor at high q^2 transfers. Subsequently, for the $B \to \pi$ decay, we have applied a multiply subtracted Omnès dispersion relation. This has allowed us to extend the results of the NRCQM model to the whole q^2 range. Our result for $|V_{ub}|$ is in good agreement with recent experimental data by the CLEO Collaboration. For $f^+(q^2)$ of the $D \to \pi$ and $D \to K$ decays and q^2 in the physical region we have found good agreement with experimental and lattice data.

5 Acknowledgments

This work was supported by DGI and FEDER funds, under Contracts No. FIS2005-00810, BFM2003-00856 and FPA2004-05616, by the Junta de Andalucía and Junta de Castilla y León under Contracts No. FQM0225 and No. SA104/04, and it is a part of the EU integrated infrastructure initiative Hadron Physics Project under Contract No. RII3-CT-2004-506078. J.M.V.-V. acknowledges an E.P.I.F contract with the University of Salamanca. C. A. acknowledges a research contract with the University of Granada.

References

- C. Albertus, J. M. Flynn, E. Hernández, J. Nieves, J. M. Verde-Velasco, Phys. Rev. D 72 (2005) 033002-1.
- K.C. Bowler et al. (UKQCD Collaboration), Phys. Lett. B 486 (2000) 111
- 3. A. Abada et al., Nuc. Phys. B 619 (2001) 565.
- 4. A. Khodjamiriam et al., Phys. Rev. D 62 (2000) 114002.
- 5. N. Isgur, M. B. Wise, Phys. Rev. D 41 (1990) 151.
- S. B. Athar *et al.* (CLEO Collaboration), Phys. Rev. D 68 (2003) 072003.
- M. Abilikim et al. (BES Collaboration), Phys. Lett. B 597 (2004) 39.
- 8. C. Aubin *et al.* (Fermilab MILC and HPQCD Collaborations), Phys. Rev. Lett. 94 (2005) 011601.
- 9. K.C. Bowler et al. (UKQCD Collaboration), Phys. Rev. D 51 (1995) 4905.
- 10. J. M. Link *et al.* (FOCUS Collaboration), Phys. Lett. B **607**, (2005) 233.