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We study the quasi–elastic contribution to the inclusive (νl, νlN), (νl, l
−N), (ν̄l, ν̄lN) and

(ν̄l, l
+N) reactions in nuclei using a Monte Carlo simulation method to account for the rescat-

tering of the outgoing nucleon. As input, we take the reaction probability from the microscopical
many body framework developed in Phys. Rev. C70 (2004) 055503 for charged-current induced
reactions, while for neutral currents we use results from a natural extension of the model described
in that reference. The nucleon emission process studied here is a clear signal for neutral–current
neutrino driven reactions, that can be used in the analysis of future neutrino experiments.

PACS numbers: 25.30.Pt,13.15.+g, 24.10.Cn,21.60.Jz

I. INTRODUCTION

Neutrino physics is at the forefront of current theoretical and experimental research in astro, nuclear, and particle
physics. Indeed, neutrino interactions offer unique opportunities for exploring fundamental questions in these domains
of the physics. One of these questions is the neutrino-oscillation phenomenon, for which there have been conclusive
positive signals in the last years [1]. Neutrino-oscillation experiments are presently evolving from the discovery to
the precision phase. This new generation of experiments faces a major difficulty: the elusive nature of the neutrinos.
The presence of neutrinos, being chargeless particles, can only be inferred by detecting the secondary particles they
create when colliding and interacting with matter. Nuclei are often used as neutrino detectors, thus a trustable
interpretation of neutrino data heavily relies on detailed and quantitative knowledge of the features of the neutrino-
nucleus interaction [2]. For instance, in the case of neutrino processes driven by the electroweak Neutral Current (NC),
the energy spectrum and angular distribution of the ejected nucleons are the unique observables. There is a general
consensus among the theorists that a simple Fermi gas model, widely used in the analysis of neutrino oscillation
experiments, fails to provide a satisfactory description of the measured cross sections, and inclusion of further nuclear
effects is needed [3].

Simultaneously, in recent years there have also been some initiatives aiming at understanding the quark and gluon
substructure of the nucleon. The flavor dependence of the nucleon’s spin is a significant fundamental question that
is not yet fully understood. Experiments [4, 5] measuring the spin content of the nucleon have reported conflicting
results on the amount of nucleon spin carried by strange quarks [6]. Recently, the FINeSSE collaboration at Fermilab
has suggested [7, 8] that Quasi-Elastic (QE) neutrino–nucleus scattering, observed using a novel detection technique,
provides a theoretically clean measure of this quantity. In this context, it is also necessary to control nuclear effects.

At intermediate energies, above the nuclear giant resonance and below the ∆(1232) regions1, neutrino–nucleus
interactions have been studied within several approaches. Several different Fermi gas, Random Phase Approximation
(RPA), shell model and superscaling based calculations have been developed during the last 15 years [19]–[38]. Some
of these approaches have been also employed to compute neutrino or antineutrino induced single–nucleon emission
cross sections. Most of the calculations use the plane wave and distorted wave impulse approximations (PWIA and
DWIA, respectively), including or not relativistic effects. The PWIA calculations neglect all types of interactions
between the ejected nucleon and the residual nuclear system, and therefore such a framework constitutes a poor
approximation to evaluate nucleon emission cross sections. However, the PWIA has been often used to compute the
ratio of proton (ν, p) to neutron (ν, n) yields, which at low neutrino energies and for light nuclei might be rather
insensitive to rescattering effects.

1 There exists an abundant literature studying these two regions. See for instance a recent paper [9] on the excitation of nuclear giant
resonances in neutrino scattering off nuclei or the older works of Refs. [10]–[15] also studying QE neutrino–nucleus scattering at low
energies. On the ∆−excitation in neutrino reactions, there are works, among others, by Alvarez-Ruso and collaborators [16], S.K. Singh
and collaborators [17] and Lalakulich y Paschos [18].
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Within the DWIA the ejected nucleon is described as a solution to the Dirac or Schrödinger equation with an optical
potential obtained by fitting elastic proton–nucleus scattering data. The imaginary part accounts for the absorption
into unobserved channels2. This scheme, first developed in (e, e′p) studies where the final nucleus is left in the ground
or in a particular excited state, is incorrect to study nucleon emission processes where the state of the final nucleus
is totally unobserved, and thus all final nuclear configurations, either in the discrete or on the continuum, contribute.
The distortion of the nucleon wave function by a complex optical potential removes all events where the nucleons
collide with other nucleons. Thus, in DWIA calculations, the nucleons that interact are lost when in the physical
process they simply come off the nucleus with a different energy, angle, and maybe charge, and they should definitely
be taken into account. A clear example which illustrates the deficiencies of the DWIA models is the neutron emission
process: (νl, l

−n). Within the impulse approximation neutrinos only interact via Charged Current (CC) interactions
with neutrons and would emit protons, and therefore the DWIA will predict zero cross sections for CC one neutron
knock-out reactions. However, the primary protons interact strongly with the medium and collide with other nucleons
which are also ejected. As a consequence there is a reduction of the flux of high energy protons but a large number
of secondary nucleons, many of them neutrons, of lower energies appear.

The distortion by a real potential does not eliminate the events where there are nucleon collisions. But, it does not
account either for the changes of energy, direction and charge of the nucleons induced by these collisions. Besides, it
cannot account either for more than one nucleon knock-out events.

In this work, we study the QE contribution to the inclusive (νl, νlN), (νl, l
−N), (ν̄l, ν̄lN) and (ν̄l, l

+N) reactions
in nuclei. We use a Monte Carlo (MC) simulation method to account for the rescattering of the outgoing nucleon. A
reliable description of the gauge bosons (W± and Z0 ) absorption in the nucleus is the first essential ingredient.

For CC driven processes, we use the many body framework developed in Ref. [34]. Starting from a Local Fermi
Gas (LFG) picture of the nucleus, which automatically accounts for Pauli blocking, several nuclear effects are taken
into account in the scheme of Ref. [34]: i) a correct energy balance, using the experimental Q−values, is enforced,
ii) Coulomb distortion of the charged leptons is implemented by using the so called “modified effective momentum
approximation” [40], iii) medium polarization (RPA), including ∆−hole degrees of freedom and explicit pion and rho
exchanges in the vector–isovector channel of the effective nucleon–nucleon force, and Short Range Correlation (SRC)
effects are computed, and finally iv) the nucleon propagators are dressed in the nuclear medium, which amounts to
work with a LFG of interacting nucleons and it also accounts for reaction mechanisms where the gauge boson, W+

or W−, is absorbed by two nucleons (the real part of the nucleon selfenergy modifies the free nucleon dispersion
relation, while the imaginary part takes into account two nucleon absorption reaction channels). The model has no
free parameters. The W±N couplings and form factors are fixed in the vacuum, while the main features concerning the
nuclear corrections, expansion parameter and all sorts of constants, are completely fixed from previous hadron-nucleus
studies (pionic atoms, elastic and inelastic pion-nucleus reactions, Λ− hypernuclei, etc.) [41–43]. Thus, the model is a
natural extension of previous studies [41–45] on electron, photon and pion dynamics in nuclei, and should be able to
describe inclusive CC QE neutrino and antineutrino nuclear reactions at intermediate energies of interest for future
neutrino oscillation experiments. Even though the scarce existing CC data involve very low nuclear excitation energies,
for which specific details of the nuclear structure might play an important role, the model of Ref. [34] provides one
of the best existing combined description of the inclusive muon capture in 12C and of the measurements of the 12C
(νµ, µ−)X and 12C (νe, e

−)X reactions near threshold. Inclusive muon capture from other nuclei is also successfully
described by the model. Besides, above, let us say 80 or 100 MeV of energy transferred to the nucleus, this many
body framework leads also to excellent results for the (e, e′) inclusive reaction in nuclei, not only in the QE region,
but also when it is extended to the study of the ∆−peak and the dip region (situated between the QE and the ∆
peaks) [44]3 and to the description of the absorption of real photons by nuclei [45].

In Sect. II, we extend the model of Ref. [34] to NC driven processes, both for neutrino and antineutrino induced
nuclear reactions in the QE region. Thus we compute, for a fixed incoming neutrino or antineutrino Laboratory (LAB)
energy, the inclusive QE cross sections d2σ/dΩ′dE′ (Ω′, E′ are the solid angle and energy of the outgoing lepton) for
(νl, νl), (νl, l

−), (ν̄l, ν̄l) and (ν̄l, l
+) processes. This cross section gives us the reaction probability and it is the first

required ingredient to start with our cascade model to describe the collisions suffered by the nucleons through their way
out of the nucleus4. Details on the MC simulation are given in Sect. III. The MC method used here was designed for

2 For nucleon energies above 1 GeV, the Glauber model [39], which is a multiple–scattering extension of the eikonal approximation, has
also been used (see for instance the recent work of Ref. [35]). In this approach, a relativistic plane wave is modulated by a factor which
accounts for the absorption into unobserved channels.

3 Data in 12C, 40Ca and 208Pb of differential cross sections for different electron kinematics and split into longitudinal and transverse
response functions are successfully described.

4 Besides, we also compute differential cross sections with respect to d3r. Thus, we also know the point of the nucleus where the gauge
boson was absorbed, and we can start from there our MC propagation of the ejected nucleon.
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single and multiple nucleon and pion emission reactions induced by pions [42, 46] and has been successfully employed
to describe inclusive (γ, π), (γ, N), (γ, NN),..., (γ, Nπ),... [47, 48], (e, e′π), (e, e′N), (e, e′NN),..., (e, e′Nπ),... [49]
reactions in nuclei or the neutron and proton spectra from the decay of Λ hypernuclei [50]. Thus, we are using a quite
robust and well tested MC simulator.

In Sect. IV we discuss our results and the main conclusions of this work are outlined in Sect. V. We start presenting
(Subsect. IVA) results for the inclusive QE NC cross sections for both neutrino and antineutrino beams in several
nuclei and in the next subsection we show results for inclusive (νl, νlN), (νl, l

−N), (ν̄l, ν̄lN) and (ν̄l, l
+N) reactions in

nuclei at low energies, obtained from our cascade model. Some preliminary results of this work were already presented
in Ref. [51]. Finally, in the appendix we give explicit expressions for the NC nucleon tensor, both in the impulse
approximation and when RPA corrections are taken into account.

To end this introduction, we would like to devote a few words on the applicability of the nuclear model used here.
One might think that a LFG description of the nucleus is poor, and that a proper finite nuclei treatment is necessary.
For inclusive processes and nuclear excitation energies of around 100 MeV or higher, the findings of Refs. [43], [44]
and [45] clearly contradict this conclusion. The reason is that in these circumstances one should sum up over several
nuclear configurations, both in the discrete and in the continuum, and this inclusive sum is almost not sensitive to
the details of the nuclear wave function5, in sharp contrast to what happens in the case of exclusive processes where
the final nucleus is left in a determined nuclear level. On the other hand, the LFG description of the nucleus allows
for an accurate treatment of the dynamics of the elementary processes (interaction of gauge bosons with nucleons,
nucleon resonances, and mesons, interaction between nucleons or between mesons and nucleons, etc.) which occur
inside the nuclear medium. Within a finite nuclei scenario, such a treatment becomes hard to implement, and often
the dynamics is simplified in order to deal with more elaborated nuclear wave functions. This simplification of the
dynamics cannot lead to a good description of nuclear inclusive electroweak processes at the intermediate energies of
interest for future neutrino experiments.

II. EXTENSION OF THE MODEL OF REF. [34] TO NEUTRAL–CURRENTS

A. General formalism: hadronic tensor and many body expansion

We will first focus on the neutrino induced inclusive reaction driven by the electroweak NC

νl(k) + AZ → νl(k
′) + X (1)

and we will follow the same notation and convention as in Ref. [34]. The double differential cross section, with respect
to the outgoing neutrino kinematical variables, for the process of Eq. (1) and for massless neutrinos, is given in the
LAB frame by

d2σνν

dΩ(k̂′)d|~k′|
=

|~k′|2MiG
2

4π2

{

2W1 sin2 θ′

2
+ W2 cos2

θ′

2
− W3

|~k | + |~k′|
Mi

sin2 θ′

2

}

(2)

with ~k and ~k′ the LAB neutrino momenta, G = 1.1664× 10−11 MeV−2, the Fermi constant, θ′ the outgoing neutrino
scattering angle and Mi the target nucleus mass. To obtain Eq. (2) we have neglected the four-momentum carried
out by the intermediate Z−boson with respect to its mass. Finally, the three independent, Lorentz scalar and real,
structure functions, Wi(q

2), enter into the definition of the hadronic tensor, Wµν , which includes all sort of non-
leptonic vertices and corresponds to the neutral current electroweak transitions of the target nucleus, i, to all possible

5 The results of Ref. [34] for the inclusive muon capture in nuclei through the whole periodic table, where the capture widths vary from
about 4×104 s−1 in 12C to 1300 ×104 s−1 in 208Pb, and of the LSND measurements of the 12C (νµ, µ−)X and 12C (νe, e−)X reactions
near threshold indicate that the predictions of our scheme, for totally integrated inclusive observables, could even be extended to much
smaller, of the order of 10 or 20 MeV, nuclear excitation energies. In this respect, the works of Refs. [52] and [53] for inclusive muon
capture and radiative pion capture in nuclei, respectively, turn out to be quite enlightening. In those works, continuum shell model
results are compared to those obtained from a LFG model for several nuclei from 12C to 208Pb. The differential decay width shapes
predicted for the two set of models are substantially different. Shell model distributions present discrete contributions and in the
continuum appear sharp scattering resonances. Despite the fact that those distinctive features do not appear in the LFG differential
decay widths, the totally integrated widths (inclusive observable) obtained from both descriptions of the process do not differ in more
than 5 or 10%. The typical nuclear excitation energies in muon and radiative pion capture in nuclei are small, of the order of 20 MeV,
and thus one expects that at higher excitation energies, where one should sum up over a larger number of nuclear final states, the LFG
predictions for inclusive observables would become even more reliable.
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final states. It is thus given by (in our convention, we take ǫ0123 = +1 and the metric gµν = (+,−,−,−))6

Wµσ

2Mi
=

1

4M2
i

∑

f

(2π)3δ4(P ′

f − P − q)〈f |jµ
nc(0)|i〉〈f |jσ

nc(0)|i〉∗

= −gµνW1 +
PµP ν

M2
i

W2 + i
ǫµνγδPγqδ

2M2
i

W3 +
qµqν

M2
i

W4 +
Pµqν + P νqµ

2M2
i

W5 + i
Pµqν − P νqµ

2M2
i

W6 (3)

with Pµ the four-momentum of the initial nucleus (M2
i = P 2), P ′

f the total four momentum of the hadronic state f

and q = k − k′ the four momentum transferred to the nucleus. The bar over the sum denotes the average over initial
spins. By construction, the hadronic tensor accomplishes

Wµσ = Wµσ
s + iWµσ

a (4)

with Wµσ
s (Wµσ

a ) real symmetric (antisymmetric) tensors, and finally for the NC we take

jµ
nc = Ψuγµ(1 − 8

3
sin2 θW − γ5)Ψu − Ψdγ

µ(1 +
4

3
sin2 θW − γ5)Ψd − Ψsγ

µ(1 +
4

3
sin2 θW − γ5)Ψs (5)

with Ψu, Ψd and Ψs quark fields, and θW the Weinberg angle (sin2 θW = 0.231).

Taking ~q in the z direction, ie, ~q = |q|~uz, and Pµ = (Mi,~0), it is straightforward to find the six structure functions in
terms of the W 00, W xx = W yy, W zz, W xy and W 0z components of the hadronic tensor7. The neutrino cross section,
Eq. (2), does not depend on Mi, as can be seen from the relations of Eq. (6), and also note that the structure functions
W4,5,6 do not contribute in the limit of massless neutrinos.

The cross section for the antineutrino induced nuclear reaction

ν̄l(k) + AZ → ν̄l(k
′) + X (7)

is easily obtained from Eq. (2), just by changing the sign of the parity-violating term (W3).
The hadronic tensor is determined by the Z0−boson selfenergy, Πµρ

Z (q), in the nuclear medium. We follow here the
formalism of Ref. [34], and we evaluate the selfenergy, Σr

ν(k; ρ), of a neutrino, with four-momentum k and helicity r,
moving in infinite nuclear matter of constant density ρ. We find,

Wµσ
s = −Θ(q0)

(

4 cos θW

g

)2 ∫
d3r

2π
Im [Πµσ

Z + Πσµ
Z ] (q; ρ(r)) (8)

Wµσ
a = −Θ(q0)

(

4 cos θW

g

)2 ∫
d3r

2π
Re [Πµσ

Z − Πσµ
Z ] (q; ρ(r)), (9)

where we have used the Local Density Approximation (LDA) to obtain results in a finite nucleus of density ρ(r), and

g is the gauge weak coupling constant, g = e/ sin θW , related to the Fermi constant: G/
√

2 = g2/8M2
W , with e the

electron charge.
As we see, the basic object is the selfenergy of the Gauge Boson (Z0) inside of the nuclear medium. As it is done in

Ref. [44] for electro induced nuclear reactions, we plan to perform a many body expansion, where the relevant gauge
boson absorption modes would be systematically incorporated: absorption by one nucleon, or a pair of nucleons or
even three nucleon mechanisms, real and virtual meson (π, ρ, · · ·) production, excitation of ∆ of higher resonance
degrees of freedom, etc. In addition, nuclear effects such as RPA or SRC should also be taken into account. Some of
the Z0−absorption modes are depicted in Fig. 1.

6 Note that: (i) Eq. (3) holds with states normalized so that 〈~p|~p ′〉 = (2π)32p0δ3(~p − ~p ′), (ii) the sum over final states f includes an

integration
∫

d3pj

(2π)32Ej
, for each particle j making up the system f , as well as a sum over all spins involved.

7 Thus, one readily finds

W1 =
W xx

2Mi

, W2 =
1

2Mi

(

W 00 + W xx +
(q0)2

|~q |2
(W zz − W xx) − 2

q0

|~q |
Re W 0z

)

, W3 = −i
W xy

|~q |
(6)
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++ N N

π,ρ,...

∆, N*

 N N ∆, N*
N N NN
N N π , Νρ, ... 

+ 
∆ , N*

π,ρ...
 + ...

∆ , N*

q

p
p+q

q

2

Z0 

Z

Z0 

N

N

0 Z0

0Z 0Z

0 Z

Z0 

Z 0

Z 0

Z0 

Z0 

N < F
 N

N 

Z0 

N

FIG. 1: Diagrammatic representation of some diagrams contributing to the Z0
−selfenergy.

B. QE contribution and Pauli blocking

The virtual Z0 can be absorbed by one nucleon leading to the QE contribution of the nuclear response function.
Such a contribution corresponds to a 1p1h nuclear excitation (first of the diagrams depicted in Fig. 1). To evaluate
this selfenergy, the free nucleon propagator in the medium is required.

S(p ; ρ) = (/p + M)G(p ; ρ), G(p ; ρ) =

(

1

p2 − M2 + iǫ
+

2πi

2E(~p )
δ(p0 − E(~p ))Θ(kF − |~p |)

)

(10)

with the local Fermi momentum kF (r) = (3π2ρ(r)/2)1/3, M = 940 MeV the nucleon mass, and E(~p ) =
√

M2 + ~p 2.
We will work on a non-symmetric nuclear matter with different Fermi sea levels for protons, kp

F , than for neutrons,
kn

F (equation above, but replacing ρ/2 by ρp or ρn, with ρ = ρp + ρn). On the other hand, for the Z0NN vertex we
take (N = n or p)

< N ; ~p ′ = ~p + ~q |jα
nc(0)|N ; ~p >= ū(~p ′)(V α

N − Aα
N )u(p) (11)

with spinor normalization given by ūu = 2m, and vector and axial nucleon currents given by

V α
N = 2 ×

(

FZ
1 (q2)γα + iµZ

FZ
2 (q2)

2M
σανqν

)

N

, Aα
N =

(

GZ
A(q2)γαγ5 + GZ

P (q2)qαγ5

)

N
(12)

Invariance under G-parity has been assumed to discard a term of the form (pµ + p′µ)γ5 in the axial sector, while
invariance under time reversal guarantees that all form factors are real. Besides, and thanks to SU(3) symmetry,
some relations exist among the NC form factors and the CC (FV

1,2, GA and GP , see Ref. [34]) and the electromagnetic
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ones8 (F p,n
1 , µpF

p
2 and µnFn

2 )

(

FZ
1

)p,n
= ±FV

1 − 2 sin2 θW F p,n
1 − 1

2
F s

1 (13)

(

µZFZ
2

)p,n
= ±µV FV

2 − 2 sin2 θW µp,nF p,n
2 − 1

2
µsF

s
2 (14)

(

GZ
A,P

)p,n
= ±GA,P − Gs

A,P (15)

where F s
1 , µsF

s
2 , Gs

A and Gs
P are the strange vector and axial nucleon form factors [55]. The pseudoscalar part of the

axial current does not contribute to the differential cross section for massless neutrinos and for the rest of strange
form factors we use the results of the fit II of Ref. [56],

Gs
A(q2) =

gs
A

(1 − q2/(M s
A)2)2

, F s
1 (q2) = µsF

s
2 (q2) = 0 (16)

with gs
A = −0.15 and M s

A = 1049 MeV. With all of these ingredients is straightforward to evaluate the contribution
to the Z0−selfenergy of the first diagram of Fig. 1, which leads to

Wµν(q0, ~q ) = − 1

2M2

∫ ∞

0

drr2
{

2Θ(q0)

∫

d3p

(2π)3
M

E(~p)

M

E(~p + ~q)
(−π)

×
∑

N=n,p

{

Θ(kN
F (r) − |~p |)Θ(|~p + ~q | − kN

F (r))Aνµ
N (p, q)

}

p0=E(~p)
δ(q0 − Q + E(~p) − E(~p + ~q )) (17)

where Q is the experimental Q−value, included in order to properly reproduce the energy threshold. For inclusive
observables we have set it to zero to approximately take into account the possibility of elastic scattering and transitions
to nuclear excited states. The d3p integrations above can be analytically done and all of them are determined by the
imaginary part of the relativistic Lindhard function, UR(q, kN

F , kN
F ). Explicit expressions can be found in Appendix

B of Ref. [34]. The NC nucleon tensor, Aνµ
N , can be found in Appendix A1. The non-relativistic reduction of the

hadronic tensor can be obtained by replacing the factors M/E(~p) and M/E(~p + ~q) in Eq. (17) by one. Explicit
expressions can be found in Appendix C of Ref. [34].

To finish this section, we devote a few words to the Low Density Theorem (LDT). At low nuclear densities the
imaginary part of the relativistic Lindhard function can be approximated by

ImUR(q, kN
F , kN

F ) ≈ −πρN
M

E(~q )
δ(q0 + M − E(~q )) (18)

and thus one readily finds

σνl+ AZ→νl+X ≈ Nσνl+ n→νl+n + Zσνl+ p→νl+p, N = A − Z (19)

which agrees with the LDT.

C. QE contribution: RPA nuclear correlation and FSI effects

Pauli blocking, through the imaginary part of the Lindhard function, is the main nuclear effect included in the
hadronic tensor of Eq. (17). RPA nuclear correlation and FSI effects played a crucial role for inclusive QE CC
neutrino-nucleus reactions, and we include those here, following the same formalism as in Ref. [34].

1. RPA

We replace the 1p1h contribution to the Z0 selfenergy by an RPA response as shown diagrammatically in Fig. 2.
For that purpose we use an effective ph–ph interaction of the Landau-Migdal type, with explicit contribution of pion
and rho meson exchanges,

V = c0

{

f0(ρ) + f ′
0(ρ)~τ1~τ2 + g0(ρ)~σ1~σ2

}

+ ~τ1~τ2

{

Vl(q)~σ1 q̂~σ2q̂ + Vt(q)(~σ1~σ2 − ~σ1q̂~σ2q̂)
}

(20)

8 We use the parameterization of Galster and collaborators [54], which is also compiled in Ref. [34].
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where ~σ and ~τ are Pauli matrices acting on the nucleon spin and isospin spaces, respectively, and q̂ = ~q/|~q |. We take
the coefficients f0, f ′

0 and g0 from Ref. [57],

fi(ρ(r)) =
ρ(r)

ρ(0)
f

(in)
i +

[

1 − ρ(r)

ρ(0)

]

f
(ex)
i (21)

where

f
(in)
0 = 0.07 f

′(ex)
0 = 0.45

f
(ex)
0 = −2.15 f

′(in)
0 = 0.33

g
(in)
0 = g

(ex)
0 = g0 = 0.575

(22)

and c0 = 380 MeVfm3. In the S = 1 = T channel (~σ~σ~τ~τ operator) we use an interaction with explicit π (longitudinal)
and ρ (transverse) exchanges, which has been used for the renormalization of the pionic and pion related channels in
different nuclear reactions at intermediate energies [42]–[45]. The strengths of the ph-ph interaction in the longitudinal
and transverse channel are given by

Vl(q
0, ~q) =

f2

m2
π

{

(

Λ2
π − m2

π

Λ2
π − q2

)2
~q 2

q2 − m2
π

+ g′l(q)

}

,
f2

4π
= 0.08, Λπ = 1200 MeV

+    +

Z

Z q

V

V

V

V

V

V

+  .....

+

µ

ν

ν

ν

ν

µ

µ

µ

Z

Z

Z

Z

Z

Z

FIG. 2: Set of irreducible diagrams responsible for the polarization (RPA) effects in the 1p1h contribution to the Z−selfenergy.
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Vt(q
0, ~q) =

f2

m2
π







Cρ

(

Λ2
ρ − m2

ρ

Λ2
ρ − q2

)2
~q 2

q2 − m2
ρ

+ g′t(q)







, Cρ = 2, Λρ = 2500 MeV, mρ = 770 MeV (23)

The SRC functions g′l and g′t have a smooth q−dependence [41, 58], which we will not consider here9, and thus we
will take g′l(q) = g′t(q) = g′ = 0.63 as it was done in the study of inclusive nuclear electron scattering carried out in
Ref. [44], and also in some of the works of Ref. [42, 43].

The above interaction has been successfully tested in different nuclear processes at intermediate energies [41]–[49],
and we will use here the same form and parameters as in our recent study of CC neutrino nucleus reactions [34].
As it is explained there, ∆(1232) degrees of freedom are also taken into account. Given the spin-isospin quantum
numbers of the ∆ resonance, these degrees of freedom only modify the vector-isovector (S = 1 = T ) channel of the
RPA response function. The ph–∆h and ∆h–∆h effective interactions are obtained from the interaction of Eq. (20)

by replacing ~σ → ~S, ~τ → ~T , where ~S, ~T are the spin, isospin N∆ transition operators [41] and f → f∗ = 2.13 f , for
any ∆ which replaces a nucleon.

Thus, the V lines in Fig. 2 stand for the effective ph(∆h)-ph(∆h) interaction described so far. Keeping track of the
operators responsible, we have examined and renormalized all different contributions to the NC nucleon tensor Aµν

N ,
by summing up the RPA series depicted in Fig. 2. The procedure is discussed in detail in Ref. [34], now however the
isospin structure of the Z0NN vertex

Γµ
(

Fp
1 + τz

2
+ Fn

1 − τz

2

)

(24)

with Γµ some matrix in the Dirac space and F some form factor, does not select only the isovector channels of the in
medium effective ph(∆h)-ph(∆h) interaction, as it is the case for the CC induced processes studied in [34], and hence
we also find contributions from the isoscalar part of the effective force.

For simplicity and to compute these polarization corrections, we have assumed a symmetric nuclear matter with
the same Fermi sea level for protons and neutrons. On the other hand, since the ph(∆h)-ph(∆h) effective interaction
is non-relativistic, we have computed polarization effects only for the leading and next-to-leading terms in the p/M
expansion. Thus, order O

(

kF ~p 2/M2, kF ~p ′2/M2, kF q0/M
)

has been neglected. We have made an exception to the

above rule, and since µZ could be relatively large, we have taken µZFZ
2 |~q |/M to be of order O(0) in the p/M

expansion. With all these ingredients, we find δWµν
RPA, contribution which has to be added to the hadronic tensor,

Wµν , given in Eq. (17) to account for the medium polarization effects,

δWµν
RPA = − 1

2M2

∫ ∞

0

drr2
{

2Θ(q0)

∫

d3p

(2π)3
M

E(~p)

M

E(~p + ~q)
(−π)δ(q0 + E(~p) − E(~p + ~q ))

×
{

Θ(kF (r) − |~p |)Θ(|~p + ~q | − kF (r))δAνµ
RPA(p, q)

}

p0=E(~p)
(25)

The 00, 0z, zz, xx and xy components of the RPA contribution to the NC nucleon tensor, δAνµ
RPA(p, q), are given in

Sect. A 2 of the Appendix. There, the density dependent tensor δAνµ
RPA(p, q) is given in terms of the parameters of the

effective ph(∆h)-ph(∆h) force and U(q, kF ) = UN + U∆, the Lindhard function of Ref. [58], which for simplicity we
evaluate10 in an isospin symmetric nuclear medium of density ρ. The different couplings for N and ∆ are incorporated
in UN and U∆ and then the same interaction strengths Vl and Vt are used for ph and ∆h excitations [41]–[49]. Note
that, backward (crossed term of the Lindhard function) propagating ph and ∆h excitations are also taken into account
within our framework. For positive values of q0 the backward propagating ph excitation has no imaginary part, and
for QE kinematics U∆ is also real.

Finally, we should stress that the f ′
0, f0 and g0 terms of the effective interaction cannot produce ∆h excitations

and therefore, when these terms are involved in the RPA renormalization, only the nucleon Lindhard function (UN )
appears (see Eqs. (A9)).

2. FSI: dressed nucleon propagators in the nuclear medium

Once a ph excitation is produced by the virtual Z0−boson, the nucleon is interacting with the rest of nucleons of
the nucleus, colliding many times, thus inducing the emission of other nucleons. The result of it is a quenching of the

9 This is justified because taking into account the q−dependence leads to minor changes for low and intermediate energies and momenta,
where this effective ph-ph interaction should be used.

10 The functions UN and U∆ are defined in Eqs.(2.9) and (3.4) of Ref. [58], respectively.
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QE peak respect to the simple ph excitation calculation and a spreading of the strength, or widening of the peak.
In our many body scheme we will account for the FSI by using nucleon propagators properly dressed with a realistic
selfenergy in the medium, which depends explicitly on the energy and the momentum [59]. Hence we substitute
the particle nucleon propagator, G(p; ρ), in Eq. (10) by a renormalized nucleon propagator, GFSI(p; ρ), including the
nucleon selfenergy in the medium, Σ(p0, ~p ; ρ),

GFSI(p; ρ) =
1

p0 − Ē(~p ) − Σ(p0, ~p ; ρ)
(26)

with Ē(~p ) = M + ~p 2/2M . This approach led to excellent results in the study of inclusive electron and CC neutrino
scattering from nuclei [34, 44]. Since the model of Ref. [59] is not Lorentz relativistic and it also considers an
isospin symmetric nuclear medium, we will only discuss the FSI effects for nuclei with approximately equal number of
protons and neutrons, and using non-relativistic kinematics for the nucleons. Thus, we have obtained Eq. (26) from
the non-relativistic reduction of G(p; ρ), in Eq. (10), by including the nucleon selfenergy.

To account for FSI effects in an isospin symmetric nuclear medium of density ρ we should make the following
substitution [34, 44]

2Θ(q0)

∫

d3p

(2π)3
Θ(kF (r) − |~p |)Θ(|~p + ~q | − kF (r))(−π)δ(q0 + Ē(~p) − Ē(~p + ~q ))Aνµ(p, q)|p0=Ē(~p)

→ −Θ(q0)

4π2

∫

d3p

∫ µ

µ−q0

dωSh(ω, ~p ; ρ)Sp(q
0 + ω, ~p + ~q ; ρ)Aνµ(p, q)|p0=Ē(~p) , Aµν = Aµν

N , δAµν
RPA (27)

in the expression of the hadronic tensor (Eqs. (17) and (25) ). Sh, Sp are the hole and particle spectral functions
related to nucleon selfenergy Σ by means of

Sp,h(ω, ~p ; ρ) = ∓ 1

π

ImΣ(ω, ~p ; ρ)
[

ω − Ē(~p ) − ReΣ(ω, ~p ; ρ)
]2

+
[

ImΣ(ω, ~p ; ρ)
]2 (28)

with ω ≥ µ or ω ≤ µ for Sp and Sh, respectively. The chemical potential µ is determined by

µ = M +
k2

F

2M
+ ReΣ(µ, kF ) (29)

The d3p integrations have to be done now numerically, and since the imaginary part of the nucleon selfenergy for
the hole states is much smaller than that of the particle states at intermediate nuclear excitation energies, we make
the approximation of setting to zero ImΣ for the hole states. Thus, we take

Sh(ω, ~p ; ρ) = δ(ω − Ê(~p ))Θ(µ − Ê(p)) (30)

where Ê(p) is the energy associated to a momentum ~p obtained self consistently by means of the equation

Ê(~p ) = Ē(~p ) + ReΣ(Ê(~p ), ~p ; ρ) (31)

The same approximation is also used in some of the calculations for the particle spectral function. The effects of this
approximation will be discussed in Sect. IVB.

III. THE MONTE CARLO SIMULATION

A. Kinematics of the outgoing nucleon in the first step

In a previous work [34] and in Sect. II we carried out a thorough evaluation of the CC and NC inclusive neutrino
and antineutrino induced nuclear reactions in the QE region. Thus we have determined, for a fixed incoming neutrino
or antineutrino LAB energy, the inclusive QE cross section d2σ/dΩ′dE′ (Ω′, E′ are the solid angle and energy of the
outgoing lepton). The absorption of the gauge boson (W± or Z0) with four momentum qµ by one nucleon constitutes
the reaction mechanism (1p1h excitation)11, and the corresponding reaction probability is determined by d2σ/dΩ′dE′.

11 This is not entirely correct, since two nucleon absorption modes are also considered, when the FSI effects described in Sect.II C 2 are
taken into account. We will discuss this point later in Subsect. IV B.
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Moreover, within our scheme, we obtain d2σ/dΩ′dE′ after performing an integration over the whole nuclear volume
(see Eqs. (16) and (17) of Ref. [34] and Sect. II, respectively). Thus, for a fixed transferred four momentum qµ, chosen
according to d2σ/dΩ′dE′, we can randomly select the point of the nucleus where the absorption takes place using the
profile d5σ/dΩ′dE′d3r evaluated in Ref. [34] for CC and in Sect. II for NC.

Now, we need on top of that to have the distribution of three–momenta of the outgoing nucleon. This can be done
by not performing the integration over the three momentum, ~p, of the nucleon occupied states in [34] and in Sect. II
(see for instance Eq. (17) for the the NC case), since the outgoing nucleon momentum is ~p + ~q. However, in order
to incorporate the nucleon scattering with other nucleons, we choose the alternative procedure of generating events
probabilistically one by one, with a weight given by d5σ/dΩ′dE′d3r. For each event in a certain position ~r and with a
transferred four momentum qµ we generate a random momentum ~p from the local Fermi sea. The vector ~p+~q gives us
the direction of the nucleon. The energy of the nucleon is then obtained by imposing energy conservation assuming in
this step and throughout all the MC simulation that the nucleons move in a Fermi gas under an attractive potential
equal to the local Fermi energy and therefore

Ẽ′ = Ẽ(~p) + q0 (32)

where Ẽ(~p) =
√

~p2 + M2 − k2
F (r)/2M . This will provides us with the modulus of the outgoing momentum12 ~p ′. If it

happens that |~p ′| < kF (r) (the local Fermi momentum) then the event is Pauli blocked, it is dismissed and another
event is generated. Thus, we have already the configuration of the final state after the first step, namely, one nucleon
produced in the point ~r of the nucleus with momentum ~p ′. With respect to having a proton or a neutron in the final
state, this is trivially done: for the CC case, the outgoing nucleon is a proton (neutron) for neutrino (antineutrino)
induced processes, while for NC, in Sect. II, the reaction probability was already split into a proton and a neutron
induced ones (see for instance Eq. (17))13.

B. Nucleon propagation

The nucleons in the nucleus move under the influence of a complex optical potential. The imaginary part of the
potential is related to the probability of nucleon quasielastic collisions in the nucleus (and extra pion production
at higher energies, which we do not consider here). We consider explicitly these collisions since they generate new
nucleons going outside the nucleus. As with respect to the real part, we use it to determine the classical trajectories
that the nucleons follow in the nucleus between collisions.

As done in Refs. [48, 49] we take as the real part of the nucleon-nucleus potential

V (r) = V∞ − E(r) = − k2
F

2M
= − 1

2M

(

3

2
π2ρ(r)

)2/3

(33)

It represents the interaction of a single nucleon with the average potential due to the rest of the nucleons. This choice
of V (r) means that the total nucleon energy is the difference between its kinetic energy and the Fermi energy, k2

F /2M .
With respect to collisions in our MC simulation we follow each excited nucleon by letting it move a short distance

d such that Pd << 1 (P represents the probability per unit of length for a quasielastic collision ). The new position
(~r ′) and momentum (~p ′) are taken from the Hamiltonian equations as

~r ′ = ~r + δ~r = ~r +
~p

|~p |d

~p ′ = ~p + δ~p ; δ~p = −∂V

∂r

E(p)d

p

~r

|~r | (34)

which follow from the Hamilton equations or equivalently from energy and angular momentum conservation.
Our code selects randomly, according to the reaction probabilities which will be discussed in Subsect. III C, if the

nucleon is scattered or not and, in the case of scattering, what kind of process takes place. If no collision takes
place, we move the nucleon again. When the nucleon leaves the nucleus we stop the process and it is counted as a
contribution to the cross section. If a NN scattering is selected instead, we take a random nucleon from the Fermi

12 Indeed, we have |~p ′|2 = (Ẽ′ + k2
F

(r)/2M)2 − M2.
13 Note that polarization corrections (Eq. (25)) were estimated in isospin symmetric nuclear matter, and thus approximately the RPA

term equally contributes to both the proton and neutron Z0 absorption channels.
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sea and calculate the initial kinematical variables (Pµ and s, full four-momentum of the nucleon-nucleon system in
the nuclear frame and invariant energy, respectively). Then, a cos θN2

c.m. is selected, according to the expression given
in Eq. (37) below and taken from Ref. [48]. This expression gives us the correct probability given by dσNN/dΩc.m.

plus Pauli blocking restrictions. We take also into account Fermi motion and renormalization effects in the angular
dependence. We take them into account by multiplying each event by a weight factor

ξ = λ(N1, N2)σ̂
N1N2ρN2

(35)

where 1/λ(N1, N2) is the probability by unit of length that one nucleon N1 collides with another nucleon N2. In
average, this factor ξ is equal to one. Explicit formulas are given in the next subsection.

Our method assumes that the nucleons propagate semiclassically in the nucleus. The justification of this hypothesis
for reactions induced by real photons is given in Ref. [48], and has also been successfully used in Refs. [46, 50]. In the
next section we give some detail on the evaluation of the equivalent NN cross section in the medium.

C. NN cross sections

We are using the parameterization of the NN elastic cross section given in the Appendix of Ref. [48]. Since for
particles of low momenta, the MC induces large errors, we are not considering collisions of nucleons with kinetic
energies below 30 MeV. This is to say, we do not follow the path through the nuclear medium of nucleons with kinetic
energies below 30 MeV, and we just consider that those nucleons get out of the nucleus without suffering further
collisions, in which eventually they could change charge or loss some more energy.

On the other hand, the reaction probability will change due to the nuclear medium effects (Fermi motion, Pauli
blocking and medium renormalization). Then, according to Ref. [48], the expression for the mean free path (λ) of the
nucleon is given by

1

λ(N1)
= 4

∫

d3p2

(2π)3

[

Θ(kp
F (r) − |~p2|)

Z

A
σ̂N1p(s) + Θ(kn

F (r) − |~p2|)
(A − Z)

A
σ̂N1n(s)

] |~p1 lab|
|~p1|

(36)

with Pµ, the full four-momentum of the NN system in the nuclear frame (s = P 2 = (p1 + p2)
2), N1, the incoming

nucleon and N2, the nucleon in the medium. The factor |~p1 lab|/|~p1| is related to the different flux of particles in
the nuclear frame and in the nucleon frame (~p1 lab is the incoming LAB momentum in the NN system and ~p1, the
momentum in the nuclear system). Furthermore,

σ̂N1N2 =

∫

dΩc.m.
dσN1N2

dΩc.m.
CT(q, ρ)Θ

(

κ − |~P · ~pc.m.|
|~P ||~pc.m.|

)

(37)

where c.m. is the NN center of mass frame and

κ = xΘ(1 − |x|) +
x

|x|Θ(|x| − 1), x =
P 0 p0

c.m. − ǫF
√

s

|~P ||~pc.m.|
(38)

where ~pc.m. is the nucleon momentum in the c.m. frame, ǫF is the Fermi energy (k2
F /2M), and the density dependent

factor CT is defined in Eq. (A9), with q the momentum transfer in the nuclear frame. In these expressions, Θ(κ −
|P̂ . p̂c.m.|) takes into account Pauli blocking and CT(q, ρ), the nuclear medium renormalization.

IV. RESULTS

We compile in Table I the data used for the nuclei studied in this work. As in Ref. [34], nuclear masses and charge
densities are taken from Refs. [60] and [61], respectively. The neutron density is taken with the same form as the
charge density but properly normalized and with a different radius as suggested by Hartree-Fock calculations [62] and
corroborated by pionic atom data [63]. Furthermore, charge densities do not correspond to proton point–like densities
because of the finite size of the nucleon. This is taken into account by following the procedure outlined in Section II
of Ref. [63].

In the case of NC driven processes, the minimum energy transfer, q0, needed for a proton (neutron) emission
reaction corresponds to the proton (neutron) separation energy Qp (Qn). Our Fermi gas model does not account
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Nucleus Rp Rn a∗

p a∗

n Qp(AZ) Qn(AZ) Qp(AZ+1) Qn(AZ−1) Q Q
16O 1.833 1.815 1.544 1.529 12.127 15.663 − 0.536 2.489 14.906 10.931
40Ar 3.47 3.64 0.569 0.569 12.528 9.869 7.582 5.830 0.994 7.991
40Ca 3.51 3.43 0.563 0.563 8.328 15.641 0.539 7.799 13.809 1.822
208Pb 6.624 6.890 0.549 0.549 8.008 9.001 3.707 3.790 2.368 5.512

(*) The parameter a is dimensionless for the MHO density form.

TABLE I: Charge (Rp, ap), neutron matter (Rn, an) density parameters (in fermi units), and Qp(n) proton (neutron) energy

separation, Q− and Q− values for different nuclei in MeV units. For the oxygen we use a modified harmonic oscillator
(MHO) density, ρ(r) = ρ0(1 + a(r/R)2) exp(−(r/R)2), while for the rest of the nuclei, a two-parameter Fermi distribution,
ρ(r) = ρ0/(1 + exp((r − R)/a)), was used.

properly for this minimum energy 14 and we correct it by replacing

q0 → q0 − Qp(AZ) (39)

for the proton emission reaction and similarly for the neutron one. In the case of CC processes, this minimum excitation
energy is Q+Qp(AZ+1)

[

Q + Qn(AZ−1)
]

for neutrino [antineutrino] induced reactions, with Q = M(AZ+1)−M(AZ)
[

Q = M(AZ−1) − M(AZ)
]

.
In what follows, we will present different results for NC induced inclusive and NC and CC nucleon emission reactions

at moderate energy transfers to the nucleus, which illustrate the important role played by the different nuclear effects
considered in this work: Pauli blocking, RPA and FSI effects, and finally the re-scattering of the outgoing nucleon. For
consistency we will always use non-relativistic kinematics to evaluate the contribution of a particle–hole excitation.
Relativistic effects were studied in Ref. [34] and found there to be small at the energy regime studied here.

All differential cross sections shown in this section are computed in the LAB frame.

A. Inclusive NC scattering at low energies

In this section we present results for the inclusive QE NC cross sections for both neutrino and antineutrino beams
in several nuclei concentrating specially on the nuclear medium effects. The results obtained with the same model for
CC processes can be found in Ref. [34].

In Fig. 3 we show the cross section for the processes ν(ν̄)+ A → ν(ν̄) +X at low and intermediate energies. Above
the shown range, pion production could become relevant. We also show for comparison the isospin averaged neutrino
(antineutrino) free nucleon cross section.

We find that nuclear effects produce a strong reduction of the cross section. The simple consideration of Pauli
blocking is already quite effective even at the higher studied energies. The inclusion of the long range RPA correlations
is also quite significant. On the other hand, the magnitude of the reduction is only weakly dependent on the isospin
and the atomic mass showing, as expected, a larger effect for heavier nuclei. The size of the effect is similar to the
one found in Ref. [34] for CC processes although in this case we also explore the isoscalar pieces of the effective ph-ph
interaction responsible of the RPA correlations and the energy thresholds are different.

The addition of FSI (Sect. II C 2) to the calculation containing already Pauli blocking and RPA correlations does
not affect practically the results for the totally integrated cross sections.

We show in Fig. 4 the final neutrino energy spectrum for two typical cases. Very similar results are obtained for
other nuclei and energies. Although this cross section is not experimentally observable it is useful to show how nuclear
effects modify the spectrum and whether they favor some energy transfer. We find that RPA produces a quite smooth
reduction that covers all the energy range, although the effects produced by the RPA correlations are weaker when
the energy transferred to the nucleus is larger, much the same as it is the case for CC processes. The inclusion of FSI
spreads the spectrum allowing for larger energy transfers.

In Fig. 5, we show the ratio of the cross sections induced by neutrino and antineutrinos in oxygen and lead from our
full model and compare to the results obtained in the free case: LDT (Eq. (19)). The effect of the nuclear medium
in the ratio is quite small although it increases with energy and with the nuclear mass. Similar results were found in
Ref. [34] for the CC case.

14 Indeed, in a Fermi model we need zero excitation energy to emit nucleons.
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FIG. 3: (color online). Cross section for the ν(ν̄) + A → ν(ν̄) + X processes as a function of the beam energy. Crosses:
(σν(ν̄)+p→ν(ν̄)+p + σν(ν̄)+n→ν(ν̄)+n)/2. Intermediate band: Cross sections for several nuclei including Pauli blocking. Lower
band: Cross sections for several nuclei with Pauli blocking + RPA correlations. The two solid lines of the lower band correspond
to the full model calculation (including also FSI) for oxygen and lead. The left and right panel correspond to neutrino and
antineutrino beam respectively.
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FIG. 4: (color online). NC neutrino dσ/dEν′ cross section as a function of the energy transfer and for two different incoming
neutrino energies. Predictions from different stages of refinements of the model are shown. Long dashed line: Pauli blocking.
Short dashed line: Pauli blocking + RPA. Dotted line: Pauli + RPA + FSI considering only the real part of the nucleon
self-energy as explained in the text. Solid line: full model.

B. Inclusive (νl, νlN), (νl, l
−N), (ν̄l, ν̄lN) and (ν̄l, l

+N) reactions in nuclei at low energies

In this section we present results for processes, in which the final nucleons are detected for both neutrino and
antineutrino beams in several nuclei. We will also include CC reactions using for this case the model of Ref. [34] in
which we have have implemented the nucleons rescattering as described in Sec. III.

As it is illustrated in Fig. 4, the consideration of the dressing of the nucleon propagators (FSI) produces a quenching
of the QE peak respect to the simple ph excitation calculation and a spreading of the strength, or widening of the
peak. Most of the effect of the FSI comes from the consideration of the real part of the nucleon selfenergy of Eq. (28)
as it is shown in the results obtained taking the limit of vanishing ImΣ (dotted curve in Fig. 4). Thus, we find that
the change in the nucleon dispersion relation is more important than the inclusion of the small nucleon width in the
medium, related to the quasielastic channels, which will account for Z0 absorption by two nucleons. Given the quality
of this approximation for the production of the spectra needed to start the MC simulation of the nucleons rescattering,
and the considerable reduction in time for its evaluation, it has been used for all the MC results presented in this
work.
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FIG. 5: (color online). σν/σν̄ ratio for the ν(ν̄) + A → ν′(ν̄′) + X reaction as a function of the energy for several nuclei. LDT
means free nucleon results. In all other lines the full model is used.

1. CC Nucleon spectra

The nucleon spectra produced by CC processes induced by muon neutrinos and antineutrinos of 500 MeV are
shown in Fig. 6 for argon. Of course neutrinos only interact via CC with neutrons and would emit protons, but
these primary protons interact strongly with the medium and collide with other nucleons which are also ejected. As
a consequence there is a reduction of the flux of high energy protons but a large number of secondary nucleons, many
of them neutrons, of lower energies appear. We should recall that our cascade model does not include the collisions
of nucleons with kinetic energies below 30 MeV. Thus, the results at those low energies are not meaningful and are
shown for illustrative purposes only in Fig.6.

The flux reduction due to the quasielastic NN interaction can be easily accommodated in optical potential calcu-
lations. However in those calculations the nucleons that interact are lost when in the physical process they simply
come off the nucleus with a different energy and angle, and may be charge, and they must be taken into account.

2. NC Nucleon spectra

The energy distributions of nucleons emitted after a NC interaction are shown in Figs. 7 and 8. In Fig. 7, we show
the results for 40Ar at two different energies. In both cases we find the large effect of the rescattering of the nucleons.
For 500 MeV neutrinos the rescattering of the outgoing nucleon produces a depletion of the higher energies side of
the spectrum, but the scattered nucleons clearly enhance the low energies region. For lower neutrino energies, most
of the nucleons coming from nucleon nucleon collisions would show up at energies below the 30 MeV cut.

As expected, the rescattering effect is smaller in lighter nuclei as can be seen in Fig. 8 for oxygen. In all cases the
final spectra of protons and neutrons are very similar. Our results without rescattering can be compared with other
calculations like those of Refs. [22, 32] and other like Refs. [31, 35]. However, in these latter cases, which incorporate
the nucleon final state collisions, via the use of optical potentials the main effect of rescattering is to reduce the cross
section at all energies instead of displacing the strength towards lower energies as we find.

Also interesting is the very similar spectrum shape obtained in shell model [32] and Fermi gas calculations, as the
present one.

Finally, in Fig. 9, we show the effect over the spectrum of the RPA correlations and the consideration of the
real part of the nucleon selfenergy (FSI). We find that the larger reduction due to RPA takes place for the lower
energy nucleons. A similar situation is obtained for higher energy neutrinos. The inclusion of FSI effects produces an
enhancement of the number of high energy protons due to the different nucleon dispersion relation.
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FIG. 6: (color online). Charged current 40Ar(νµ, µ− +N) (upper panels) and 40Ar(ν̄µ, µ+ +N) (lower panels) cross sections as
a function of the kinetic energy of the final nucleon for an incoming neutrino or antineutrino energy of 500 MeV. Left and right
panels correspond to the emission of protons and neutrons respectively. The dashed histogram shows results without nucleon
rescattering and the solid one the full model.

3. Nucleon angular distributions

The angular distribution of nucleons is also affected by the rescattering. In Fig. 10, we show the proton and
neutron spectra in the νµ +40 Ar → µ− + X reaction. For comparison we also show the distribution of protons
without rescattering. After taking into account the rescattering the proton cross section is less forward peaked. Even
flatter is the neutron cross section, because neutrons come only from secondary NN collisions and not from the weak
neutrino–nucleon interaction.

For NC reactions (Fig. 11), the situation is more symmetric and the angular distribution is similar for protons and
neutrons, as was the case for the energy spectra.

4. Energy-Angle distributions

In Fig. 12–15 we show double differential energy-angle cross sections for both charged and neutral currents. Three
of the four panels show a common feature with previous calculations (see i.e. Fig. 1 of Ref. [22] and Fig. 5 of
Ref. [32]), namely, at forward angles there are two peaks, one of them at low energies, that merge into a single one for
larger values of the angle. As it is shown in Ref. [32] the use of the nucleon momentum distributions from shell model
wave functions produces less sharp features at forward angles than the Fermi gas calculation of Ref. [22]. However,
our results are even softer than those of Ref. [32] although our calculation starts with a local Fermi gas momentum
distribution. The reason is clear, the strong effects of rescattering change direction and energy of the nucleons. This
can be seen in the panel showing (Fig. 13) the neutron emission for the CC process νµ+16O→ µ−+n+X . In this case
all neutrons come from nucleon-nucleon collisions and spread over the available phase space without any remarkable
feature except the accumulation at low energies.
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FIG. 7: (color online). Neutral current 40Ar(ν, ν +N) at 500 MeV (upper panels) and 150 MeV (lower panels) cross sections as
a function of the kinetic energy of the final nucleon. Left and right panels correspond to the emission of protons and neutrons
respectively. The dashed histogram shows results without rescattering and the solid one the full model.

5. Proton to neutron ratios

The ratio of proton to neutron QE cross section could be very sensitive to the strange quark axial form factor of
the nucleon, and thus to the gs

A parameter [19, 20, 22, 26, 32]. Our results for this ratio in 16O are shown in Fig. 16.
We do not consider very low energies where shell model effects could be more important and our MC simulation is
unreliable. We find similar results for light nuclei and low energies as in Ref. [20] where RPA correlations were taken
into account or in Ref. [22]. Our model includes as the main additional ingredient the rescattering of the nucleons via a
MC simulation. However also this rescattering produces minor changes for light nuclei, because of the smaller average
density, and for low energies because most secondary nucleons are below our 30 MeV cut. However, the sensitivity to
the collisions of the final nucleons is larger for both heavier nuclei and for larger energies of the neutrinos as shown
in Fig. 17 where it is clear that one sees the importance of the secondary nucleons at the low energies side of the
spectrum.

V. CONCLUSIONS

We have studied the QE contribution to the inclusive (νl, νlN), (νl, l
−N), (ν̄l, ν̄lN) and (ν̄l, l

+N) reactions in nuclei
using a MC simulation method to account for the collisions of the ejected nucleons during their way out of the nucleus.
As input, we have used the reaction probability from the microscopical many body framework developed in Ref. [34]
for CC induced reactions, while for NC we use results from a natural extension, performed also in this work, of the
model described in that reference. Limitations of the DWIA models have been discussed. In particular those models
cannot properly describe individual inclusive neutron and proton spectra and for the ratio of proton (ν, p) to neutron
(ν, n) yields, the sensitivity to the collisions of the final nucleons might become important for both medium and heavy
nuclei and for energies of the neutrinos larger than 150 MeV, as shown in Fig. 17.
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FIG. 8: (color online). Same as Fig.7 for oxygen.
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APPENDIX A: NC NUCLEON TENSOR

1. Impulse Approximation

Taking into account that in Eq. (17) both the particle and the hole nucleons are on the mass shell (p2 = (p + q)2 =
M2, 2p · q + q2 = 0), one finds

Aµν
N (p, q) = aN

1 gµν + aN
2

(

pµpν +
pµqν + pνqµ

2

)

+ iaN
3 ǫµναβpαqβ + aN

4 qµqν (A1)

with, omitting the obvious subindex N = n or p,

a1(q
2) = 8q2

{

(FZ
1 + µZFZ

2 )2 + (GZ
A)2

(

1

4
− M2

q2

)}

a2(q
2) = 32(FZ

1 )2 − 8(µZFZ
2 )2

q2

M2
+ 8(GZ

A)2

a3(q
2) = 16GZ

A(FZ
1 + µZFZ

2 )

a4(q
2) = − 8q2

M2
(µZFZ

2 )2
(

M2

q2
+

1

4

)

− 16FZ
1 µZFZ

2 (A2)
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p cross section for oxygen at Eν = 150 MeV as a function of the kinetic energy of the final proton
for different nuclear models, including or not RPA and FSI effects. In all cases a MC simulation is performed to compute the
rescattering of the outgoing nucleons.
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The cross section for the process νl + N → νl + N is given by

σνν =
G2

32π(s − M2)2

∫ 0

−(s−M2)2/s

dq2
(

q2

{

a1 +
s

2
a2 −

q2

2
a3

}

+ (s − M2)

{

s − M2

2
a2 − q2a3

}

)

(A3)

where s = (2|~k |+M)M is the Mandelstam variable (|~k | is incoming neutrino energy in the LAB frame). The variable

q2 is related to the outgoing neutrino LAB polar angle (θ′) by q2 = (k − k′)2 = −2|~k ||~k′ |(1 − cos θ′).
The cross section for the process ν̄l + N → ν̄l + N is obtained by replacing a3 by −a3.
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2. RPA Corrections

Taking ~q in the z direction and after performing the RPA sum of Fig. 2, we find, neglecting15 corrections of order
O
(

kF ~p 2/M2, kF ~p ′2/M2, kF q0/M
)

δA00
RPA

2M2
= 8

(

E(~p )

M

)2
{

(CN − 1)
[

(FZ
1 )p − (FZ

1 )n
]2

+ (DN − 1)
[

(FZ
1 )p + (FZ

1 )n
]2
}

− 4
~q 2

M2

{

(CN − 1)
[

(FZ
1 )p − (FZ

1 )n
] [

(µZFZ
2 )p − (µZFZ

2 )n
]

+ (DN − 1)
[

(FZ
1 )p + (FZ

1 )n
] [

(µZFZ
2 )p + (µZFZ

2 )n
]

}

(A4)

δA0z
RPA

2M2
=

(

E(~p )

M

2pz + |~q |
M

)

{

4(CN − 1)
[

(FZ
1 )p − (FZ

1 )n
]2

+ 4(DN − 1)
[

(FZ
1 )p + (FZ

1 )n
]2

15 Note that q0/M is of the order |~q |2/M2 and as mentioned in Sect. II C, we have considered µZF Z
2 |~q |/M of order O(0).
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FIG. 13: (color online). Same as Fig.12 for νµ+16O→ µ− + n + X
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FIG. 14: (color online). Same as Fig.12 for ν+16O→ ν + p + X. Incoming neutrino energy 500 MeV
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with the polarization coefficients defined as

CN(ρ) =
1

|1 − c0f ′
0(ρ)UN (q, kF )|2 , CT(ρ) =

1

|1 − U(q, kF )Vt(q)|2
CL(ρ) =

1

|1 − U(q, kF )Vl(q)|2
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FIG. 15: (color online). Same as Fig.12 for ν+16O→ ν + n + X. Incoming neutrino energy 500 MeV
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