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We study charmed baryon resonances which are generated dynamically within a unitary meson-
baryon coupled channel model that treats the heavy pseudoscalar and vector mesons on equal
footing as required by heavy-quark symmetry. It is an extension of recent SU(4) models with t-
channel vector meson exchanges to an SU(8) spin-flavor scheme, but differs considerably from the
SU(4) approach in how the strong breaking of the flavor symmetry is implemented. Some of our
dynamically generated states can be readily assigned to recently observed baryon resonances, while
others do not have a straightforward identification and require the compilation of more data as
well as an extension of the model to d-wave meson-baryon interactions and p-wave coupling in
the neglected s- and u-channel diagrams. Of several novelties, we find that the Λc(2595), which
emerged as a ND quasi-bound state within the SU(4) approaches, becomes predominantly a ND∗

quasi-bound state in the present SU(8) scheme.

PACS numbers: 14.20.Lq,14.40.Lb,11.10.St,12.38.Lg,12.39.Hg

I. INTRODUCTION

In hadron physics establishing whether a resonance has the usual qq̄ or qqq structure or better qualifies as being
dynamically generated through the multiple scattering of their meson and/or baryon components, has kept an active
topic of research. In recent years, the introduction of unitarity constraints in coupled channels methods has led to
extensions of the chiral effective theories that can be applied at much higher energies and in the vicinity of resonances
[1]. In the particular case of baryons, several resonances are firm candidates to be identified with states generated
dynamically from the interaction of mesons of the 0− octet Goldstone bosons with the 1/2+ octet ground state
baryons [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Then interesting predictions such as the
two-pole nature of the Λ(1405) [9, 13, 21, 22, 23, 24, 25] have found experimental confirmation [26, 27], as discussed
in Ref. [28]. Later a number of works has also been devoted to the study of dynamically generated JP = 3/2− states
[29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. Early works considered the interaction of pseudoscalar 0− mesons with
the baryons of the 3/2+ decuplet. The incorporation of vector mesons into the above-mentioned coupled-channel
picture was pursued in studies of axial 1+ meson resonances of Refs. [40, 41], but until very recently those degrees
of freedom have not been considered in the baryon-meson sector. In Ref. [37] the (83, 13)

1 nonet of lowest-lying
vector meson (ρ(770),K(890), K̄(890), ω(780) and φ(1020)) degrees of freedom was incorporated into the Weinberg-
Tomozawa (WT) meson-baryon chiral Lagrangian by using a scheme which relies on the SU(6) spin–flavor symmetry.
The corresponding Bethe-Salpeter (BS) equation successfully reproduces the previous SU(3)–flavor WT results for
the lowest-lying s- and d- wave, negative parity baryon resonances (N(1535), N(1650), Λ(1390), Λ(1405), Λ(1520),
Λ(1690), Λ(1670), Ξ(1620), Ξ(1690), · · · ). It also provides some information on the dynamics of the heavier ones such
as Λ(1800) or Λ(2325) which have sizable NK̄∗ and Λω couplings, respectively [38, 39].

Recently the attention has turned towards studying resonances with charm degrees of freedom, motivated by the
discovery of quite a few new states, as reported by the CLEO, Belle and BaBar Collaborations [42, 43, 44, 45, 46, 47].
At first sight, the physics in the charm C = 1 sector bears a strong resemblance to the phenomenology seen in the

1 Here and below we use the notation µ2J+1, for the SU(3) multiplet µ of spin J .
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K̄N dynamics upon replacing an s quark by a c quark2. This is reinforced by an apparent similarity between the
two I = 0 s-wave Λ(1405) and Λc(2595) resonances. The mass of the former lies in between the πΣ and K̄N channel
thresholds, to which it couples strongly. The Λc(2595) lies below the DN and just slightly above the πΣc thresholds.
This similarity was exploited in the first exploratory work [48] where free space amplitudes were constructed from
a set of separable coupled-channel interactions obtained from chirally motivated Lagrangians upon replacing the s
quark by the c quark. The I = 0 Λc(2595) was generated as a DN s-wave resonant state of binding energy ≈ 200 MeV
with a width of ≈ 3 MeV. While giving the first indication that the Λc(2595) could have a dynamical origin, this work
ignored the strangeness degree of freedom due to its very construction. Therefore, the π and K (Goldstone) mesons
were not treated on an equal footing, and the role of some channels that would appear from the corresponding SU(4)
meson and baryon multiplets, such as DsΛ, DsΣ, KΞc and KΞ′

c, was ignored. A different approach which respected
the proper symmetries, was attempted in Ref. [49]. There, charmed baryon resonances were generated dynamically

from the scattering of Goldstone bosons off the ground-state JP = 1
2

+
charmed baryons. The C = 1, S = I = 0

resonance found at 2650 MeV was identified with the Λc(2595) in spite of the fact that, due to the strong coupling
to the πΣc states, its width came out to be more than twenty times larger than the experimental width of about
4 MeV. The trouble with this model is that, due to its very construction, it does not account for the coupling to
the DN channel which contributes strongly to generating the narrow Λc(2595) according to Ref. [48]. A substantial
improvement came in a recent work [50] in which the above mentioned shortcomings have been overcome by exploiting
the universal vector meson coupling hypothesis to break the SU(4) symmetry in a convenient and well-defined manner.
This is done by a t-channel exchange of vector mesons between pseudoscalar mesons and baryons in such a way that
chiral symmetry is preserved in the light meson sector, while the interaction is still of the WT type. We note that
in the subsequent sections this approach is referred as TVME (t-channel vector meson exchange model). The model
generates a narrow C = 1, I = 0 resonance that is identified with the Λc(2595), together with other resonances in
other strangeness-charm sectors with J = 1/2−. An extension of the model to d-wave J = 3/2− resonances, generated
by the interactions of pseudoscalar mesons with baryons of the J = 3/2+ SU(4) multiplet, was developed in Ref. [51].
Finally, some modifications over the model in Ref. [50], both in the kernel and in the regularization scheme, were
implemented in Ref. [52], obtaining qualitatively similar results to the earlier approaches. In all these works the
zero-range limit in the t-channel exchange of vector mesons is identified as the driving force for the s-wave scattering
of pseudoscalar mesons off the baryon ground states, and is used to carry out a coupled-channel analysis.

A serious limitation of this SU(4) TVME model is that, whereas the pseudoscalar mesons D and Ds are included
in the coupled-channel dynamics, their vector partners D∗ and D∗

s are completely left out. This is not justified from
the point of view of Heavy Quark Symmetry (HQS), which is a proper QCD spin-flavor symmetry [53, 54, 55] when
the quark masses become much larger than the typical confinement scale, ΛQCD.

HQS predicts that all types of spin interactions vanish for infinitely massive quarks: the dynamics is unchanged
under arbitrary transformations in the spin of the heavy quark (Q). The spin-dependent interactions are proportional
to the chromomagnetic moment of the heavy quark, hence are of the order of 1/mQ. The total angular momentum
~J of the hadron is a conserved quantity, and the spin of the heavy quark ~SQ is also conserved in the mQ → ∞ limit.

Consequently, the spin of the light degrees of freedom ~Sl = ~J − ~SQ is conserved in that limit. Thus, heavy hadrons

come in doublets (unless sl = 0, with ~S2
l = sl(sl + 1)) containing states with total spin j± = sl ± 1/2 obtained by

combining the spin of the light degrees of freedom with the spin of the heavy quark sQ = 1/2. These doublets are
degenerated in the mQ → ∞ limit. This is the case for the ground state mesons D and D∗ or Ds and D∗

s which
are composed of a charm quark with sQ = 1/2 and light degrees of freedom with sl = 1/2, forming a multiplet of
hadrons with spin 0 and 1 and negative parity. The entire multiplet of degenerate states should be treated in any
HQS inspired formalism as a single field that transforms linearly under the heavy quark symmetries [54, 55]. For
finite charm quark mass, the pseudoscalar and vector D meson masses differ in just about one pion mass3, even less
for the strange charmed mesons, thus it is reasonable to expect, for instance, that the coupling DN − D∗N might
play an important role, and could well be bigger than that played by some of the other channel couplings considered
in the TVME model, say, the DN − Λcη.

The mass splitting between pseudoscalar and vector mesons is comparatively larger in the light sectors, for example,
between the π and ρ mesons or the K and the K∗. This appears to justify the usual approximation of ignoring vector
degrees of freedom in the SU(3) coupled-channel studies in s-wave meson (81)–meson (81) and meson (81)–baryon
(82, 104) scattering and resonances, within different renormalization schemes. Nevertheless, as already mentioned,

2 Besides kinematical similarities (open and closed channels near the resonance mass ...), the underlying dynamics might be different as
a strange quark is related to chiral symmetry and a charm quark to heavy-quark symmetry, as we will discuss below.

3 One can easily deduce that mD − mD∗ = O
“

1
mD+mD∗

”
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vector mesons have been incorporated in the WT meson-baryon chiral Lagrangian [37, 38, 39, 64] through a scheme
that treats the six states of a light quark (u, d or s with spin up, ↑, or down, ↓) as equivalent, leading to an SU(6)
symmetric scheme. Here we will extend this model to SU(8) spin–flavor symmetry to account also for the charm
quark degree of freedom. Therefore, compared to the TVME approach, our coupled-channel analysis will consider the
additional role of vector mesons (D∗, D∗

s , ρ, K∗,...). Moreover, both models differ on how they implement the strong
breaking of the SU(4) flavor symmetry observed in nature.

We should clarify here that the extension of the WT interaction to vector mesons [37] and to flavor SU(4) is a
model. Chiral symmetry is a symmetry of the light quark sector, i.e. at best for flavor SU(3), but not for SU(4).
Chiral symmetry breaking fixes model independently the strength of the lowest order interaction between Goldstone
bosons and other hadrons (here baryons) - the WT interaction. However, chiral symmetry does not fix the interaction
between vector mesons and baryons. On the other hand, HQS connects vector and pseudoscalar mesons which contain
charm quarks. It does not tell anything about mesons made out of light quarks. Nevertheless, it is clearly appealing
to have a model for four flavors and for pseudoscalar and vector mesons which reduces to the WT interaction in the
sector where Goldstone bosons are involved and which incorporates heavy-quark symmetry in the sector where charm
quarks are involved. The model assumption in the present extension does not appear to be easy to justify, but we
want to try it based on the reasonable outcome of the SU(6) extension in the three-flavor sectors on the one hand,
and formal plausibility of how the SU(4) WT interaction in the charmed PS meson- SU(3) baryon interaction did
come out in the vector meson exchange picture as discussed in the TVME approach, on the other hand. We just want
to fuse the two approaches. Note than in our case, we improve on previous models since we incorporate HQS in the
charm sector.

In this exploratory work, we have studied only non-strange single charmed resonances. Our approach should
work better close to the relevant thresholds, and in particular to describe the lowest lying resonances in each of the
examined IJ (meson–baryon isospin and total angular momentum) sectors. Actually, working near threshold is the
only justification to ignore the contribution of d-wave meson-baryon interactions and of p-wave couplings, through the
neglected s- and u-channel diagrams, which otherwise might play an important role. These contributions have been
also traditionally ignored in the previous successful SU(3) flavor studies of lowest–lying charmless s− and d−wave
resonances [2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39], which we
aim to extend to the charm sector.

The present work is organized as follows. In Sec. II we give the details of our SU(8) extension of the WT meson-
baryon Lagrangian. The basis of states and the general form of the Lagrangian are presented in Sec. II A, while the
symmetry breaking effects are discussed in Sec. II B. The unitarization method and renormalization procedure are
described in Sect. III. Our SU(8) results are discussed in Sec. IV, while Sec. V is devoted to a comparison with results
obtained in a reduced SU(4) model. A summary of our conclusions is presented in Sec. VI.

II. SU(8) EXTENSION OF THE WT MESON-BARYON LAGRANGIAN

A. SU(8) symmetry

Since we assume that the pure SU(4) (flavor) transformations commute with the pure SU(2) (spin) transformations,
it follows that an SU(8) multiplet can be decomposed into SU(4) multiplets each with definite total spin. With
the inclusion of spin there are 64 quark–antiquark (qq̄) states, and the irreducible reduction of the SU(8) group
representation (denoting the SU(4) multiplets of dimensionality n and spin J by n2J+1) reads

8 ⊗ 8
∗ = 63⊕ 1 = (151 ⊕ 153 ⊕ 13)

︸ ︷︷ ︸

63

⊕11 . (1)

Assuming that the lowest bound state is an s-state, and since the relative parity of a fermion–antifermion
pair is odd, the SU(4) 15-plet of pseudoscalar (Ds, D,K, π, η, ηc, K̄, D̄, D̄s) and the 16-plet of vector
(D∗

s , D
∗,K∗, ρ, ω, J/Ψ, K̄∗, D̄∗, D̄∗

s , φ) mesons are placed in the 63 representation. Note that the 63 allows nine
light vector mesons but only eight 0− light mesons. A ninth 0− meson must go into the 1 of SU(8). We use pure
cc̄ wave functions for the charmonium states ηc and J/Ψ, and the usual quark content, η = 1√

6

(
uū+ dd̄− 2ss̄

)
,

η′ = 1√
3

(
uū+ dd̄+ ss̄

)
, ω = 1√

2

(
uū+ dd̄

)
, φ = −ss̄, for the physical isoscalar light mesons. Such a specification

induces some mixing between the isoscalar SU(4) mathematical states to build the physical states. Detailed spin-flavor
wave functions, specifying our conventions are given in Appendix A. Mesons of spin J > 1 can be understood as
states of the qq̄ system with orbital angular momentum L > 0, or molecular-type qqq̄q̄ meson-meson states.
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Baryon S JP I Sπ
light Quark content Mexp. [58]

[MeV]

Λc 0 1
2

+
0 0+ udc 2286.46 ± 0.14

Σc 0 1
2

+
1 1+ llc 2453.6 ± 0.7

Σ∗

c 0 3
2

+
1 1+ llc 2518.0 ± 0.5

Ξc −1 1
2

+ 1
2

0+ lsc 2469.5 ± 1.5

Ξ′

c −1 1
2

+ 1
2

1+ lsc 2577 ± 3

Ξ∗

c −1 3
2

+ 1
2

1+ lsc 2646.3 ± 1.4

Ωc −2 1
2

+
0 1+ ssc 2697.5 ± 2.6

Ω∗

c −2 3
2

+
0 1+ ssc

Ξcc 0 1
2

+ 1
2

1
2

+
ccl

Ξ∗

cc 0 3
2

+ 1
2

1
2

+
ccl

Ωcc −1 1
2

+
0 1

2

+
ccs

Ω∗

cc −1 3
2

+
0 1

2

+
ccs

Ω∗

ccc 0 3
2

+
0 — ccc

TABLE I: Summary of the quantum numbers and experimental masses of the baryons containing heavy quarks. I , and Sπ
light

are the isospin, and the spin parity of the light degrees of freedom and S, JP are strangeness and the spin parity of the baryon
(l denotes a light quark of flavor u or d). Isospin averaged experimental masses are taken from Ref. [58], with errors counting
for the mass differences between the members of the same isomultiplet and the uncertainties quoted in Ref. [58].

In the case of baryons, with the inclusion of the spin, one finds 512 three quark states:

8⊗ 8⊗ 8 = 120⊕ 56⊕ 168⊕ 168 = (2)

(202 ⊕ 20
′
4
)

︸ ︷︷ ︸

120

⊕ (44 ⊕ 202)
︸ ︷︷ ︸

56

⊕2 × (20
′
2
⊕ 204 ⊕ 202 ⊕ 42)

︸ ︷︷ ︸

168

,

where and are the 20 and 20
′ SU(4) representations, respectively. It is natural to assign the lowest–

lying baryons to the 120 of SU(8). This is appropriate because in the light sector it can accommodate an octet of
spin–1/2 baryons and a decuplet of spin–3/2 baryons which are precisely the SU(3)–spin combinations of the low–
lying baryon states (N,Σ,Λ,Ξ and ∆, Σ∗, Ξ∗, Ω). The remaining states in the 202 and 20

′
4

are completed with the
charmed baryons: Λc, Σc, Ξc, Ξ′

c ,Ωc, Ξcc, Ωcc and Σ∗
c , Ξ∗

c , Ω∗
c , Ω∗

cc, Ξ∗
cc, Ωccc, respectively. Quantum numbers of the

charmed baryons are summarized in Table I. The 120 of SU(8) is totally symmetric, which allows the baryon to be
made of three quarks in s-wave (the color wavefunction being antisymmetric).

Here we will focus on the s-wave interaction between the lowest–lying meson (63) and the lowest–lying baryon
(120) SU(8) multiplets at low energies. Note that at higher energies, higher partial waves would become important,
so a suitable treatment of spin-orbit effects in the SU(8) scheme should be considered. Now, assuming that the s-wave
effective meson–baryon Hamiltonian is SU(8) invariant, and since the SU(8) decomposition of the product of the 63

and 120 representations yields

63⊗ 120 = 120⊕ 168⊕ 2520⊕ 4752 , (3)

we conclude that there are only four independent Wigner-Eckart irreducible matrix elements (WEIME’s) each of which
being a function of the meson–baryon Mandelstam variable s. The WEIME’s might be constrained by demanding

that the SU(8) amplitudes for the scattering of the Goldstone JP = 0− mesons of the pion octet off the JP = 1
2

+

baryons of the nucleon octet reduce to those from SU(3) chiral symmetry. At leading order in the chiral expansion,
these latter amplitudes are obtained from the WT Lagrangian which, besides hadron masses, only depends on the
pion weak decay constant f ≃ 90 MeV in the chiral limit.

This procedure is a natural extension of the one derived in Ref. [37] for SU(6) to the spin–flavor SU(8) symmetry
group. If one follows the arguments in this reference, it is clear that not all the SU(3) invariant interactions in the
(81)meson–(82)baryon sector can be extended to an SU(8) invariant interaction. This is easily understood because the
number of independent SU(3) WEIME’s to describe the (81)meson–(82)baryon interaction is six, as follows trivially
from the SU(3) decomposition

8 ⊗ 8 = 1⊕ 8s ⊕ 8a ⊕ 10⊕ 10
∗ ⊕ 27 , (4)
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whereas the SU(8) spin-flavor symmetry requires the knowledge of four WEIME’s, as seen from Eq. (3). However,
Chiral Symmetry (CS) at leading order is much more predictive than SU(3) symmetry, and it predicts the values of
the various SU(3) WEIME’s which otherwise would be totally arbitrary functions of s. Indeed, the WT Lagrangian
is not just SU(3) symmetric but also chiral (SUL(3)⊗ SUR(3)) invariant. Symbolically, up to an overall constant, the
WT interaction is

LWT = Tr([M †,M ][B†, B]) . (5)

This structure, dictated by CS, is most suitable to analyze in the t-channel. The mesons M fall in the SU(3)
representation 8 which is also the adjoint representation. The commutator [M †,M ] indicates a t-channel coupling
to the 8a (antisymmetric) representation, thus

LWT =
(
(M † ⊗M)8a

⊗ (B† ⊗B)8a

)

1
. (6)

Note that from the group point of view there would be as many different t−channel SU(3) singlet Lagrangians as
WEIME’s.

For the SU(8) spin-flavor symmetry, the mesonsM fall in the 63 which is the adjoint representation and the baryons
B are found in the 120, which is fully symmetric, and the group reductions

63⊗ 63 = 1⊕ 63s ⊕ 63a ⊕ 720⊕ 945⊕ 945
∗ ⊕ 1232

120⊗ 120
∗ = 1⊕ 63⊕ 1232⊕ 13104 (7)

lead4 to the total of four different t−channel SU(8) singlet couplings (that can be used to construct s-wave meson-
baryon interactions)

(
(M † ⊗M)1 ⊗ (B† ⊗B)1

)

1
,
(
(M † ⊗M)63a

⊗ (B† ⊗B)63

)

1
,

(
(M † ⊗M)63s

⊗ (B† ⊗B)63

)

1
,
(
(M † ⊗M)1232 ⊗ (B† ⊗B)1232

)

1
, (8)

which match in number to that of the independent WEIME’s expected from the group reduction of Eq. (3). To ensure
that the SU(8) amplitudes will reduce to those deduced from the SU(3) WT Lagrangian in the (81)meson–(82)baryon
subspace, we set all the couplings in Eq. (8) to be zero except for

LSU(8)
WT =

(
(M † ⊗M)63a

⊗ (B† ⊗B)63

)

1
(9)

which is the natural and unique SU(8) extension of the usual SU(3) WT Lagrangian.5 The reduction of this Lagrangian

to the SU(6) sector reproduces the LSU(6)
WT found in Ref. [37]. The corresponding BS approximation, which we will

discuss below, successfully reproduces the previous SU(3)–flavor WT results for the lowest-lying s- and d-wave negative
parity baryon resonances obtained from scattering of the mesons of the pion octet off baryons of the nucleon octet

and delta decuplet [38]. To compute the matrix elements of the SU(6) WT interaction LSU(6)
WT , the SU(6)–multiplet

coupling factors found in [57] were used in [37, 38]. Here, because of the lack of these factors for the SU(8) group, we
use quark model constructions of hadrons with field theoretical methods to express everything in tensor representations
as described in Appendix A. Thus, we get the tree level amplitudes (we use the convention V = −L):

V IJSC
ab (

√
s) = DIJSC

ab

√
s−M

2 f2

(√

E +M

2M

)2

, (10)

where the last factor is due to the spinor normalization convention: ūu = v̄v = 1, as in Refs. [14, 22]. In the above
expression IJSC are the meson–baryon isospin, total angular momentum, strangeness and charm quantum numbers,
M (E) the common mass (CM energy) of the baryons placed in the 120 SU(8) representation, and DIJSC a matrix
in the coupled channel space. For instance in the J = 3/2, I = 2, S = 0, C = 1 sector we consider 5 channels,
Σcρ,∆D,Σ

∗
cπ,∆D

∗, and Σ∗
cρ, without including channels with double charmed baryons since they are much higher

in energy. The D matrices relevant for this work are presented in Tables XV–XXIII of Appendix B. Note that we
truncate the coupled channel space by not including either double charmed baryon entries, or ηc, or J/Ψ mesons,
since in this work we are just interested in the charm C = 1 sector. Double charmed baryons or ηc, or J/Ψ mesons
will contribute to this sector only in conjunction to another charmed hadron, and the threshold of the corresponding
channel would be much higher in energy than those of channels involving a single charmed hadron.

4 The singlet representation 1 only appears in the reduction of the product of one representation by its complex-conjugate. The couplings
of Eq. (8) arise because 1, 63 and 1232 are self-complex conjugate representations.

5 Alternatively, the unique spin-flavor symmetric extension of the WT Lagrangian is derived in [64] for arbitrary number of flavors and
colors assuming only a non-relativistic reduction for the baryons.
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B. SU(8)-flavor symmetry breaking effects

The SU(8) spin-flavor symmetry is strongly broken in nature. So we have taken into account mass breaking effects
by adopting the physical hadron masses both in the tree level interaction of Eq. (10) and in the evaluation of the
kinematical thresholds of different channels.

Next, we have considered spin-flavor symmetry breaking effects due to the difference between the weak non-charmed
and charmed, as well as pseudoscalar and vector meson decay constants. These symmetry breaking effects are sizable
because, for instance, the ratios fD/fπ of fρ/fπ deviate from one, and actually they are of the order of 1.7. The
pseudoscalar meson (P ) decay constants, fP , are defined by

〈0|q̄1γµγ5q2(0)|P (p)〉 = −i
√

2fP p
µ (11)

and vector meson (V ) decay constants, fV , by

〈0|q̄1γµq2(0)|V (p, ǫ)〉 =
√

2mV fV ǫ
µ , (12)

where q̄1, q2 are the quark fields, ǫµ is the polarization vector of the meson, and mV its mass. With the above
definitions, HQS predicts fD(s)

= fD∗

(s)
, up to ΛQCD/mc corrections [55], which guarantees that the normalizations

of the coupling constants in Eqs. (11) and (12) are consistent. For light mesons there exist sizable corrections to the
HQS-type relation fP = fV .

Within our present approach, besides the use of physical hadron masses, we further break the SU(8) symmetry of
Eq. (10) by the replacement: f2 → fafb, depending on the nature of the mesons involved. In Table II we compiled
the values of the decay constants used throughout this work. Whenever possible, we use the experimental values for
the decay constants.

Taking into account all the SU(8) breaking effects stated above, our tree level amplitudes now read

V IJSC
ab (

√
s) = DIJSC

ab

2
√
s−Ma −Mb

4 fafb

√

Ea +Ma

2Ma

√

Eb +Mb

2Mb

, (13)

where Ma (Mb) and Ea (Eb) are, respectively, the mass and the CM energy of the baryon in the a (b) channel. Though
the way these flavor breaking effects have been introduced is intuitive, we should acknowledge here again that this
constitutes a further assumption of our model, and that we can not establish a clear connection to any kind of first
principles, as it is the case for all previous models.

We finish this section by comparing our present scheme with the one in TVME. The latter relies on SU(4) symmetry
to construct the effective interaction between pseudoscalar mesons in the 16-plet with the 202 and 204 plet represen-
tations of JP = 1/2+ and JP = 3/2+ baryons through a t−channel exchange of the 16-plet of vector mesons. Note
that vector mesons do not enter in the s-channel coupled space. Then the universal vector meson coupling hypothesis
provides the global interaction strength among the above SU(4)-multiplets. However, deviations up to 50% from the
universal value might be expected, as acknowledged in Ref. [50] from an analysis of the D∗ → Dπ decay rate. Then,
aided by the KSFR relation, which is consistent with chiral symmetry at very low energy and momentum transfer,
the resultant lowest order meson-baryon interaction in the SU(4) limit is found to take the WT form of Eq. (10) in the
zero range limit [52]6. SU(4) symmetry is broken in the TVME model by using the physical hadron masses, without
adopting different values for meson decay constants. The use of the physical masses for the pseudoscalar mesons and
the baryons (external legs in the coupled channel formalism of the TVME model) is analogous to the mass breaking
effects included in the present scheme upon replacing (

√
s −M) by (2

√
s −Ma −Mb)/2 in Eq. (10). However, the

use of physical masses for the vector mesons in the t-channel in the TVME model leads to an additional symmetry
breaking effect which is different from those induced by the use of different meson decay constants in our scheme. For
instance, let us consider the Σcπ → Σcπ, ND → ND, and Σcπ → ND transitions. Within the TVME model the first
two amplitudes are driven by the t-channel exchange of light vector mesons such as ρ, while the last one is by the
exchange of a charmed D∗ vector meson. Thus, besides different SU(4) coupling coefficients, the last channel obtains
an additional suppression factor of ∼ m2

ρ/m
2
D∗ = 1/6.8 relative to the first two [52]. Within our scheme, these three

channels will scale as 1/f2
π, 1/f2

D and 1/(fDfπ), respectively. Then on top of the matrix elements (DIJSC
ab ) we obtain

suppression factors f2
π/f

2
D ∼ 1/2.9 and fπ/fD ∼ 1/1.7 for the second and third amplitudes, respectively, relative

to the first one. In summary, in the present work diagonal transitions involving charmed mesons are suppressed by

6 A small p−wave contribution of the TVME model was neglected to reduce it to the WT form [52].
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Decay Constant Exp. Value [MeV] Theor. Estimates [MeV]

fπ 92.4 ± 0.1 ± 0.3 [58] −
fK 113.0 ± 1.0 ± 0.3 [58] −
fη ≃ 1.2fπ [58] −
fρ ≃ 153a −

fK∗ ≃ 153b −
fω ≃ 138c −
fφ ≃ 163d −
fD 157.4 ± 11.8 ± 2.2 [58, 65] −
fDs 193.7 ± 9.2 ± 4.9 [66] −

193.0 ± 11.3 ± 4.9 [67] −
200.1 ± 12.0 ± 9.9 [68] −

fD∗ − 165 ± 6 ± 13 [69]e

− 223 ± 18 [70]f

− 164 ± 15 [71]g

fD∗

s
− 180 ± 4 ± 11 [69]h

− 237 ± 18 [70]i

− 231 ± 13 [71]j

Decay Constant Value used in this work

fη′ fη

fDs 193.7 MeV

fD∗ = fD∗

s
fD

aFrom Γ(ρ → e+e−) = 4πα2f2
ρ /3mρ and Γ(τ → ρντ ) = G2 cos2 θCf2

ρ (m2
τ − m2

ρ)2(2m2
ρ + m2

τ )/8πm3
τ .

bFrom Γ(τ → K∗ντ ) = G2 sin2 θCf2
K∗ (m2

τ − m2
K∗ )2(2m2

K∗ + m2
τ )/8πm3

τ .

cFrom Γ(ω → e+e−) = 4πα2f2
ω/27mω .

dFrom Γ(φ → e+e−) = 8πα2f2
φ
/27mφ.

eQuenched LQCD.
fRelativistic constituent quark model.
gNon-relativistic constituent quark model
hQuenched LQCD.
iRelativistic constituent quark model.
jNon-relativistic constituent quark model

TABLE II: Meson decay constants. We use Γ(ρ → e+e−) = 7.04±0.06 KeV, Γ(ω → e+e−) = 0.60±0.02 KeV, Γ(φ → e+e−) =
1.27 ± 0.04 KeV, Γ(τ → ρντ ) = (5.71 ± 0.07) × 10−10 MeV and Γ(τ → K∗ντ ) = (3.06 ± 0.45) × 10−11 MeV from [58]. Besides,
G = 1.1664 × 10−11 MeV−2 and α = 1/137.036 are the Fermi and fine-structure constants, and cos θC = 0.974, the cosine of
the Cabibbo angle.

about a factor of 3 with respect to the TVME SU(4) models [50, 52], while the charm-exchange amplitudes will not
be suppressed by the mass factor ∼ m2

D∗/m2
ρ = 6.8 but only by a factor of about two due to the use of physical values

for the decay constants. Thus, it is clear that the difference in the pattern of SU(4) symmetry breaking in the two
schemes discussed above is even qualitative.

III. BS MESON–BARYON SCATTERING MATRIX

We solve the coupled channel BS equation with the interaction kernel determined by Eq. (13) which incorporates
the SU(8) breaking effects discussed in Subsect. II B. For a given IJSC sector, the solution for the coupled channel
s-wave scattering amplitude T IJSC(

√
s), in the on-shell scheme [5, 8, 9, 22, 56, 59, 60] is,

T IJSC(
√
s) =

1

1 − V IJSC(
√
s)GIJSC(

√
s)
V IJSC(

√
s). (14)
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Here GIJSC(
√
s) is a diagonal matrix consisting of loop functions. The loop function for channel i reads,

GIJSC
ii (

√
s) = i2Mi

∫
d4q

(2π)4
1

(P − q)2 −M2
i + iε

1

q2 −m2
i + iε

, (15)

where Mi and mi are the masses of the baryon and meson in the channel, respectively. This quantity is logarithmi-
cally divergent, hence must be regularized. For example, the regularization may be done by one-subtraction at the
subtraction point

√
s = µIJSC

i such that

GIJSC
ii (

√
s = µIJSC

i ) = 0 , (16)

with index i running in the coupled channel space. The TVME model of Refs. [50, 51] uses the Renormalization
Scheme (RS) of Eq. (16), and we adopt here its choice for the value of the subtraction point µIJSC

i . It is taken to be

independent of the spin J , then set identical within a given sector ISC to
√

m2
th +M2

th, where mth +Mth is the mass
of the lightest hadronic channel. For the SU(6) sector, this RS recovers previous results for the lowest-lying 1/2− and
3/2− baryon resonances appearing in the scattering of the octet of Goldstone bosons off the lowest baryon octet and
decuplet [5, 8, 9, 10, 13, 22, 23, 29, 30], and leads to new predictions for higher energy resonances. According to the
authors of Refs. [50, 51], such a choice guarantees an approximate crossing symmetry although such a claim appears
somewhat dubious because crossing symmetry involves isospin mixtures, thus choosing an alternative subtraction point
might lead to yet another reasonable result. Nevertheless, one should bear in mind an apparent correlation between
the renormalization procedure and/or subtraction point, and the values for the meson decay constants used in the
potential V IJSC . For instance, it should be useful to mention the SU(6) results which are somewhat complementary
to the present approach in the choice of the subtraction points and meson decay constants Ref. [38]. By taking a

different value of the subtraction point for each channel i of a given IJSC sector in the form µIJSC
i =

√

M2
i +m2

i ,
the model gives a good agreement with a common Goldstone boson decay constant value of 90 MeV (pion decay
constant in the chiral limit), instead of using the different values quoted in Table II.

Given these uncertainties, in the present work we allow for slight changes in the choice of the subtraction point by
introducing a parameter α, such that

(
µISC

)2
= α

(
m2

th +M2
th

)
, (17)

which will be fitted to data. In principle, α could have a different value in each IJSC sector. Unfortunately we
have insufficient empirical information. Therefore, we will adjust the value of α to reproduce the position of the well
established Λc(2595) resonance with IJSC = (0, 1/2, 0, 1), then the same value will be used in all other sectors.

The mass and widths of the dynamically generated resonances in each IJSC sector are determined from the positions
of the poles, zR, in the second Riemann sheet of the corresponding scattering amplitudes, namely MR = Re (zR) and
ΓR = −2Im (zR). The coupling constants of each resonance to the various baryon-meson states are obtained from the
residues by fitting the amplitudes to the expression

T IJSC
ij (z) =

gie
iφigje

iφj

(z − zR)
, (18)

for complex energy values z close to the pole, where the complex couplings are written in terms of the absolute
value, gk, and phase, φk. These dimensionless couplings determine the corresponding decaying branching ratios to the
open baryon-meson channels. Since the dynamically generated states may couple differently to their baryon-meson
components, we will examine the ij-channel independent quantity

T̃ IJSC(z) ≡ max
j

∑

i

|T IJSC
ij (z)| , (19)

which allows us to identify all the resonances within a given sector at once.

IV. SU(8) RESULTS

In this work we have focused on the non-strange (S = 0), singly charmed (C = 1) baryon resonances. The
experimental status in this sector is summarized in Table III. In the following tables and figures, we collect results of
resonances up to 3.5 GeV, which is basically the energy of the heaviest channels used in the present approach. Note,
however, that the position and width of dynamical states generated ∼ 500 MeV beyond the lowest threshold for each
IJSC sector must be taken with caution. In reality, they will be strongly influenced by other ingredients not included
in the present model, such as the coupling to three-body meson-meson-baryon states or interactions of higher angular
momentum. This observation applies especially to those states higher than 3 GeV that couple strongly to low lying
baryon-meson channels.
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Resonance I(JP ) Status Mass [MeV] Γ [MeV]

Λc(2595) 0(1/2−) *** 2595.4 ± 0.6 3.6 + 2.0 − 1.3

Λc(2625) 0(3/2−) *** 2628.1 ± 0.6 < 1.9

Λc(2765) ?(??) * 2766.6 ± 2.4 50

or Σc(2765)

Λc(2880) 0(5/2+) *** 2881.9 ± 0.5 5.8 ± 1.9

Λc(2940) 0(??) *** 2939.8 ± 1.6 18 ± 8

Σc(2800)
++ 1(??) *** 2801 + 4 − 6 75 + 22 − 17

Σc(2800)
+ 1(??) *** 2792 + 14 − 5 62 + 60 − 40

Σc(2800)
0 1(??) *** 2802 + 4 − 7 61 + 28 − 18

TABLE III: Summary of experimental data for baryon resonances with charm 1, zero strangeness and negative (or unknown)
parity as compiled in Ref. [58]. The Λc and Σc ground states are omitted.

A. I = 0, J = 1/2

In this sector the following 16 channels are involved:

Σcπ ND Λcη ND∗ ΞcK Λcω Ξ′
cK ΛDs

2591.6 2806.15 2833.91 2947.27 2965.12 3069.03 3072.52 3084.18

ΛD∗
s Σcρ Λcη

′ Σ∗
cρ Λcφ ΞcK

∗ Ξ′
cK

∗ Ξ∗
cK

∗

3227.98 3229.05 3244.24 3293.46 3305.92 3363.33 3470.73 3540.23

where the second line gives the channel thresholds in MeV.
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FIG. 1: The function T̃ ≡ maxj

P

i
|Tij | in the I = 0, J = 1/2 sector calculated along the scattering line within our broken

SU(8) model, for different values of the subtraction point. The stars denote the nominal position of the Λc(2595) resonance.

In Fig. 1 we show our results for T̃ as a function of the C.M. energy
√
s, where we have used the experimentally

known meson decay constants and have chosen fDs
= 193.7 MeV. For η′, D∗ and D∗

s , we have taken fη′ = fη and
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FIG. 2: The function T̃ ≡ maxj

P

i
|Tij | in the I = 0, J = 1/2 sector, calculated within the present broken SU(8) model

with α = 0.9698. Stars show the positions of the resonances obtained, while open cycles denote those of the experimentally
measured resonances, the Λc(2595) in this figure.

TABLE IV: Mass [MeV], width [MeV] and couplings of resonances with S = 0 and C = 1, generated in the I = 0, J = 1/2
sector using our broken SU(8) model. See text for more details. The third column quotes only the values of the most important
couplings, and those shown in bold correspond to channels open for decay.

I = 0, J = 1/2

MR ΓR Couplings to main channels

2595.4 0.58 gΣcπ = 0.36, gND = 3.69, gND∗ = 5.70, gΛDs = 1.42, gΛD∗

s
= 2.94

2610.0 70.9 gΣcπ = 2.25, gND = 1.47, gND∗ = 1.81, gΣcρ = 1.22

2821.5 1.0 gN D = 0.32, gΛcη = 1.2, gΞcK = 1.79, gΛD∗

s
= 1.11, gΣcρ = 1.23, gΣ∗

cρ = 1.15

2871.2 91.2 gN D = 2.0, gΛDs = 1.15, gND∗ = 2.15, gΛD∗

s
= 1.92, gΛcω = 1.01, gΣcρ = 2.56, gΣ∗

c ρ = 0.94

2937.2 71.7 gΛcη = 1.34, gΛDs = 1.4, gND∗ = 1.51, gΛD∗

s
= 3.41, gΣ∗

cρ = 2.23

2954.7 65.4 gΣcπ = 1.02, gΞ′

cK = 1.2, gΛDs = 0.85, gΛcω = 2.46, gΣcρ = 1.16, gΣ∗

c ρ = 0.91

3020.1 47.0 gΞcK = 1.13, gΛDs = 1.07, gΛD∗

s
= 1.46, gΣcρ = 1.51, gΣ∗

cρ = 2.49, gΞ∗

c K∗ = 0.95

3053.3 3.49 gΛcω = 0.11, gΛDs = 1.43, gΞ′

cK = 1.49, gΛcφ = 1.27, gΣ∗

cρ = 1.02

3152.1 94.4 gΛDs
= 1.74, gΛD∗

s
= 2.02, gΛcφ = 2.17, gΞ′

cK∗ = 0.98, gΞcK∗ = 1.38, gΞ∗

cK∗ = 1.16

3244.7 87.4 gΛDs
= 0.72, gΛD∗

s

= 0.74, gΞcK = 0.68, gΞ′

cK∗ = 2.32, gΞ∗

cK∗ = 2.63

3272.6 4.31 gΞ′

c
K = 0.17, gΣcρ = 0.17, gΛDs

= 0.15, gΛcφ = 1.37, gΞcK∗ = 2.26

3315.9 43.4 gΣcρ = 0.47, gΛDs
= 0.62, gΛcφ = 0.66, gΞcK∗ = 1.2, gΞ′

cK∗ = 1.91, gΞ∗

cK∗ = 2.38

fD∗ = fD∗

s
= fD (see Table II). The dotted line shows that a narrow resonance is produced very close to the position

of the nominal Λc(2595) which is denoted by the starred line in the figure. By slightly changing the value of the
subtraction point in the renormalization scheme, viz. setting the scaling factor α to 0.9698 [see Eq. (17)], we can
reproduce the position of the Λc(2595).

There are several other narrow resonances and bumps in Fig. 1, which can be better disentangled by investigating
the behavior of the function T̃ and T in the complex plane. We obtain the poles of T in the second Riemann sheet
and determine the coupling constants to the various baryon-meson channels through the residues of the corresponding
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TABLE V: Positions of poles (in MeV) generated in the J = 1/2, I = 0 sector from uncoupled calculations in the present
broken SU(8) model with α = 0.9698. An asterisk ∗ denotes resonances.

Channel (Mthres) 2600 2700 2800 2900 3000 3100 3200 3300 3400

Σcπ (2592) 2621.6∗

ND (2806) 2775.4

Λcη (2834)

ND∗ (2947) 2687.3

ΞcK (2965) 2947.7

Λcω (3069)

Ξ′

cK (3073) 3042.8

ΛDs (3084)

ΛD∗

s (3228) 3057.3

Σcρ (3229) 2962.6

Λcη
′ (3244)

Σ∗

cρ (3293) 2988.5

Λcφ (3306)

ΞcK
∗ (3363) 3293.3

Ξ′

cK
∗ (3471) 3382.6

Ξ∗

cK∗ (3540) 3440.2

amplitudes, as indicated in Eq. (18). The positions of the poles of T are visualized in Fig. 2 as peaks of T̃ , while
the values of the mass and width of the corresponding resonances, together with the values of the couplings to the
baryon-meson components to which they couple most strongly, are collected in Table IV.

The width of the Λc(2595) resonance turns out to be small: 0.58 MeV, smaller than the experimental width,
Γ = 3.6+2.0

−1.3. However, we have not included here the three-body decay channel Λcππ which already represents almost
one third of the decay events [58]. The narrowness of this resonance is due to the fact that it lies only a few MeV
above its unique two-body decaying channel Σcπ to which it actually couples very weakly, as indicated by the low
value of the corresponding coupling constant in Table IV.

Here a remarkable feature is that there is a second resonance very close to Λc(2595). This is precisely the same
pattern found in the charmless I = 0, S = −1 sector for the Λ(1405) [22].

It is illustrative to compare the coupled channel results with those from an uncoupled calculation as shown in
Table. V. In the lower energy region we find poles at 2622 MeV, 2687 MeV and 2775 MeV, which are, respectively,
bound Σcπ, ND∗ and ND states. Note that the bound states in ND and ND∗ channels are quite close. This
emphasizes once more the importance of including the vector mesons in the description. The effect of the channel
coupling may be easily traced by taking into account the largest coefficients in Table XV, together with the channel
threshold energies. We conclude that the resonance at 2595.4 MeV appears to be basically the remnant of the ND∗

bound state found at 2687 MeV in the uncoupled calculation, but with the important additional binding effects from
the ND channel, to which it couples very strongly, along with some moderate modifications induced by coupling to
ΛDs and ΛD∗

s the latter lying more than 400 MeV away. As emphasized in the next section, we observe here that
the nature of this resonance is substantially different from that found in Refs. [50, 52], where it is identified as a ND
bound state. A wider resonance at 2610 MeV originates from the Σcπ resonance found at 2622 MeV in the uncoupled
calculation, mildly modified by its coupling to ND as well as to some channels involving vector-mesons such as ND∗

and Σcρ. We do not find a clear remnant of the uncoupled ND state at 2775 MeV, apart from the already commented
influence on the properties of the Λc(2595) resonance.

A narrow resonance at 2822 MeV originates mainly from the ΞcK bound state at 2947 MeV, which is substantially
influenced by the coupling to the Λcη channel as well as to a few other channels (ΛD∗

s , Σcρ and Σ∗
cρ) involving

vector mesons. The two other narrow resonances found in this sector, at 3053 MeV and 3273 MeV, can be traced
back, respectively, to the Ξ′

cK bound state at 3043 MeV and the ΞcK
∗ bound state at 3293 MeV of the uncoupled

calculation. The resonance at 3053 MeV shows also a strong coupling to a few other channels, especially to the
neighboring ΛDs state.

Most of the remaining wider resonances show also a stronger coupling to a baryon-meson system for which the
uncoupled calculation produces a bound state. They are simply wider because they also couple significantly to
meson-baryon states lying below their mass. However, we identify two resonances that occur genuinely as a result of
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the coupled channel formalism, since their main baryon-meson component (Λcω for the resonance at 2955 MeV and
Λcφ for the resonance at 3152 MeV) does not have a bound state in the uncoupled calculation.

In order to study possible variations of the result due to input parameters, we have also performed calculations by
adopting the values for the unknown decay constants of the charmed vector mesons from a quenched lattice QCD,
LQCD [69]: fD∗ = 165 MeV, fD∗

s
= 180 MeV. Then the Λc(2595) is reproduced with a slightly smaller scaling factor

(α = 0.9558), but the qualitative features for the positions, widths and couplings of all the other resonances generated
in this sector do not change drastically.

In comparing with data, we look at the possibility of identifying some of our narrow states with a resonance seen
experimentally. Our predictions are limited by the fact that we have implemented neither the coupling to three-
body states nor p-, d- or higher-multipolarity interactions. In the present I = 0, J = 1/2 sector, we have already
identified our first narrow state with the Λc(2595) and have established it as being a quasi-bound ND∗ system. A
resonance at 2880 MeV with a width of Γ ∼ 6 MeV, decaying into Λcππ states with some fraction of resonant decay
through Σcπ states, was reported in [42]. One might identify it with our narrow resonance at 2822 MeV, especially
because if this state were moved to the experimental energy of 2880 MeV, it would appear above the threshold of the
Λcη channel to which it couples significantly. However, the Belle collaboration determined recently the spin of the
Λc(2880) to be J = 5/2 from the Σc(2455)π decay angular distribution, and the parity positive from agreement of
the Γ(Σc(2520)π)/Γ(Σc(2455)π) branching ratio with a prediction of HQS [72, 73, 74, 75]. These assignments do not
match the spin-parity 1/2− of our dynamically generated state.

There is yet another resonance in this sector, the Λc(2940) of width Γ ∼ 18±8 MeV which has been seen in the Dp
invariant mass distributions, but its spin and parity have not been determined [46]. If it were a J = 1/2− state, one
might be tempted to identify it with one of our narrow states. However, none of the resonances obtained by our model
having a width smaller than 50 MeV, except for the lowest-lying one already identified with the Λc(2595), couples
significantly to the ND states from which the invariant mass of the Λc(2940) is reconstructed. Our model does not
give either any resonance in this energy region that couples preferentially to ND∗ states, the threshold of which is
only a few MeV above the Λc(2940) mass. Therefore, we do not expect the Λc(2940) to be a molecular ND∗ system,
as claimed in the literature [76]. We finally note that the pD0 histogram shown in Ref. [46] is not incompatible with
the existence of a very narrow state just above the ND threshold MeV, as the one at 2822 MeV and width 1 MeV
found in the present work, as well as in the dynamical model of Ref. [50].

B. I = 1, J = 1/2

In the I = 1, J = 1/2 sector there are 22 channels involved:

Λcπ Σcπ ND ND∗ ΞcK Σcη Λcρ Ξ′
cK ΣDs ∆D∗ Σcρ

2424.5 2591.6 2806.15 2947.27 2965.12 3001.01 3061.95 3072.52 3161.65 3218.35 3229.05

Σcω Σ∗
cρ Σ∗

cω ΣD∗
s ΞcK

∗ Σcη
′ Ξ′

cK
∗ Σcφ Σ∗D∗

s Σ∗
cφ Ξ∗

cK
∗

3236.13 3293.46 3300.54 3305.45 3363.33 3411.34 3470.73 3473.02 3496.87 3537.43 3540.23

Our results are presented in Fig. 3 and Table VI. First, we find a very narrow resonance at 2554 MeV, which is
basically composed of the ∆D∗ component (somewhat mixed with the ND and Σ∗D∗

s states). Hence, this resonance
would be absent in models not including channels with a vector meson and a 3/2+ baryon. Kinematically it can only
decay to Λcπ, but the corresponding coupling is very weak.

At higher energies and up to 3.4 GeV, our model generates many resonances in this sector, most of them having
rather appreciable widths. Some of these resonances find their analogue within the states obtained by the pioneer
work of Lutz and Kolomeitsev [49], where only the meson-baryon channels composed by an octet Goldstone boson
plus a member of either the anti-triplet or the sextet of open charm ground state baryons were considered. The
resonances at 2612 MeV, 2637 MeV and 2974 MeV, would correspond to the states in Ref. [49] found, respectively, at
2800 MeV (coupling mostly to Λcπ), 2700 MeV (coupling mostly to Σcπ) and 2985 MeV (coupling mostly to Σcη).
The states obtained here appear at a lower mass and show a different width due to their coupling to many of the new
baryon-meson components considered in this work.

From the experimental side, an isotriplet of excited charmed baryons, Σc(2800) has been reported [43], decaying
mainly to Λ+

c π
−, Λ+

c π
0 and Λ+

c π
+ pairs with a large width of around 60 MeV (but with a > 50% error). This

resonance has been tentatively assumed to decay to Λcπ in d-wave with its spin parity assumed as JP = 3/2− relying
on quark models, but angular distributions have not yet been measured. Of the predicted states discussed above
having a moderate width, only the one at 3096 MeV shows a sizable coupling to Λcπ states, but it lies 300 MeV
away of the experimental mass. Then what about identifying the predicted 3035 MeV state as the Σc(2800)? Note
first, that this 3035 MeV state decays significantly to Σcπ pairs. Now if this state were to move to the experimental
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FIG. 3: The same as Fig. 2 for the I = 1, J = 1/2 sector.

position, it would become somewhat narrower, especially because two of the possible decay channels, Σcη and ND∗,
would be closed. Its decay to Λcπ pairs, as observed experimentally, would require an implementation in the present
model of an additional meson-baryon interaction in d-wave or/and p-wave coupling in the neglected s- and u-channel
diagrams. However, according to the sizable coupling to Σcπ states, the identification of our state as Σc(2800) would
be ruled out if the later were not observed in experiments looking at the Λcππ systems. On inspecting the histograms
of Ref. [42], one finds signals around M(Λ+

c π
+π−)−M(Λ+

c ) ∼ 500 MeV, corresponding to the mass of the Σc(2800),
although they are probably too feeble.

It seems unlikely that any of the three states with energies lying between 2800 and 3000 MeV could qualify for the
observed isotriplet, basically because they couple quite significantly to ND states. Hence, if the parameters of our
model would allow us to move one of these states below the ND threshold, it would become significantly narrower
than the experimental width of ∼ 60 MeV. However, on inspecting the histogram of I = 1 D+p pairs, shown in
Ref. [46] to confirm the Λc(2940) as being an isosinglet, one observes a clear enhancement around 2860 MeV of width
∼ 10 MeV, which we could identify with one of the states we see decaying into ND pairs. The most likely candidate
is the state at 2974 MeV because, if it was to be moved to 2860 MeV, its width would be reduced from 37 MeV to a
value of around 10 MeV due to the closing of two out of three decaying channels.

Above 3 GeV we find a few states that couple strongly to some vector meson–baryon channels. We thus expect
them to be absent in the SU(4) models [50, 52]. It may be of interest to note that the relatively narrow resonances
at 3158 and 3346 MeV could be seen from the invariant mass of Σcη and ΣDs states, respectively.

C. I = 2, J = 1/2

In the I = 2, J = 1/2 sector there are 4 channels involved:

Σcπ ∆D∗ Σcρ Σ∗
cρ

2591.6 3218.35 3229.05 3293.46

As seen from the results shown in Table VII, our model generates two narrow structures, at 3172 MeV and 3246
MeV which qualify, respectively, as Σcρ and Σ∗

cρ quasi-bound states.
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TABLE VI: The same as Table IV, for the I = 1, J = 1/2 sector.

I = 1, J = 1/2

MR ΓR Couplings to main channels

2553.6 0.67 gΛcπ = 0.15, gND = 2.28, g∆D∗ = 6.74, gΣ∗D∗

s
= 2.89

2612.2 179.0 gΛcπ = 1.95, gND∗ = 3.78, gΣcρ = 1.27, gΣ∗

c ρ = 1.4

2637.1 79.9 gΣcπ = 1.98, gND = 2.35, gND∗ = 1.69, gΣ∗D∗

s
= 1.24

2822.8 34.8 gN D = 1.55, gΣDs = 1.01, gΞcK = 1.04, gND∗ = 1.41, gΛcρ = 1.37, g∆D∗ = 1.81,gΣ∗

c ρ = 2.27, gΞ∗

cK∗ = 0.94

2868.0 38.6 gN D = 0.76, gND∗ = 2.75, gΣD∗

s
= 1.05, gΛcρ = 1.3, gΣcρ = 1.54, gΣcω = 1.02, g∆D∗ = 1.78

2974.0 37.2 gN D = 0.72, gΣcπ = 0.63, gN D∗ = 0.63, gΣcη = 1.67, gΛcρ = 1.29, gΣcω = 1.13, g∆D∗ = 1.21

3001.9 73.8 gΞcK = 1.42, gΣDs = 1.68, gΣD∗

s
= 4.15, gΣcρ = 1.42, gΣ∗

c ρ = 1.26

3034.9 64.2 gΣcπ = 0.72, gΣcη = 0.67, gN D∗ = 0.76, gΣDs = 1.16, gΣcω = 2.32, gΣ∗D∗

s
= 2.44, gΣ∗

c ρ = 1.16, gΣ∗

c ω = 0.87

3077.7 48.7 gN D∗ = 0.85, gΣcω = 2.40, gΣ∗D∗

s
= 3.20, gΣ∗

cω = 1.43

3095.9 44.0 gΛcπ = 0.39, gΞ′

c
K = 0.88, gN D∗ = 0.45, gΣDs = 1.34, gΣcρ = 1.09, gΣ∗D∗

s
= 2.80, gΣ∗

c ω = 2.36

3147.5 48.8 gΛcρ = 1.02, gΣcρ = 1.62, gΣcω = 0.94, gΣ∗

c ρ = 1.67, gΣ∗

c ω = 1.57

3158.2 8.6 gΣcη = 0.3, gΛcρ = 0.27, gΣDs = 1.54, gΣD∗

s
= 1.51, gΞcK∗ = 1.53

3265.8 36.8 gΣDs
= 0.69, gΣD∗

s
= 1.54, gΣcφ = 1.32, gΞ′

cK∗ = 1.49, gΣ∗

c φ = 1.67, gΞ∗

cK∗ = 1.34

3316.2 20.6 gΞ′

c
K = 0.44, gΣcφ = 1.66, gΞ′

cK∗ = 2.22, gΣ∗D∗

s
= 1.80, gΞ∗

c K∗ = 1.01

3346.1 9.0 gΣDs
= 0.45, gΣcφ = 1.81, gΞcK∗ = 1.12, gΣ∗

c φ = 1.38, gΞ∗

cK∗ = 1.14

3392.8 15.5 gΣ∗

c
ρ = 0.31, gΣ∗

c φ = 2.17, gΞ∗

cK∗ = 1.95
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FIG. 4: The same as Fig. 2 for the I = 2, J = 1/2 sector.

D. I = 0, J = 3/2

Of various J = 3/2 resonance candidates, we first consider those in the I = 0 sector, with 11 coupled channels:

Σ∗
cπ ND∗ Λcω Ξ∗

cK ΛD∗
s Σcρ Σ∗

cρ Λcφ ΞcK
∗ Ξ′

cK
∗ Ξ∗

cK
∗

2656.01 2947.27 3069.03 3142.02 3227.98 3229.05 3293.46 3305.92 3363.33 3470.73 3540.23
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TABLE VII: The same as Table IV, but for the I = 2, J = 1/2 sector.

I = 2, J = 1/2

MR ΓR Couplings to all channels

2936.5 185.0 gΣcπ = 1.62, g∆D∗ = 5.37, gΣcρ = 1.12, gΣ∗

c ρ = 0.66

3171.5 8.26 gΣcπ = 0.33, g∆D∗ = 1.61, gΣcρ = 2.26, gΣ∗

c ρ = 0.76

3246.1 8.09 gΣcπ = 0.18, g∆D∗ = 0.33, gΣcρ = 0.47, gΣ∗

c ρ = 2.39
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FIG. 5: The same as Fig. 2 for the I = 0, J = 3/2 sector. Open cycles denote the positions of the experimentally measured
resonances, Λc(2625) in this case.

The results displayed in Fig. 5 and Table VIII show that, in this sector, our model generates nine resonances, four
of which have a width smaller than 5 MeV.

Experimentally, there is a three star Λc(2625) resonance with JP = 3/2−, which has a very narrow width, Γ < 1.9
MeV, and decays mostly to Λcππ [58]. It has been identified as the counterpart of the Λ(1520) which, in dynamical
models, shows a strong coupling to Σ∗π [29, 30, 31, 38, 39]. In the present S = 0, C = 1 sector, we indeed find a
I = 0, J = 3/2 d-wave Λc resonance at 2660 MeV with its width Γ = 38 MeV, which couples very strongly to the Σ∗

cπ
channel. We may therefore identify this resonance as a strong candidate for the d-wave Λc(2625). A small change
in the subtraction point µIJSC could easily move the resonance down by 40 MeV to the nominal position. By so
doing it should also be possible to reduce the width considerably, hence closer to the experimental value because the
resonance position would get below the threshold of the channel Σ∗

cπ to which this resonance couples strongly. We
note that a similar resonance was found at 2660 MeV in the SU(4) model of Ref. [51]. The novel feature in the recent
approach is that the resonance in question here has non-negligible baryon-vector meson components such as ND∗

and Σ∗
cρ. Other narrow resonances observed in this channel are a state at 3094 MeV coupling strongly to Ξ∗

cK, as
in Ref. [51], but also to the vector-meson channel ΛD∗

s and three narrow resonances which couple mostly to channels
with vector meson components. Out of the resonances obtained in this sector around 3 GeV and beyond, the one
at 2941 MeV could be a candidate for the Λc(2940) of width ∼ 18 MeV and unknown JP , observed recently from
the invariant mass of D0p pairs [46]. Its decay into D0p pairs would imply the additional implementation of p-wave
interactions in our model. The strong coupling of this resonance to ND∗ hints also for a substantial coupling into
p-wave ND states.
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TABLE VIII: The same as Table IV, for the I = 0, J = 3/2 sector.

I = 0, J = 3/2

MR ΓR Couplings to main channels

2659.5 37.8 gΣ∗

c
π = 2.23, gND∗ = 2.11, gΣ∗

c ρ = 1.34

2940.5 2.06 gΣ∗

c
π = 0.21, gND∗ = 2.21, gΣ∗

c ρ = 1.40

2972.8 64.9 gΣ∗

c
π = 1.05, gΛcω = 2.42, gΞ∗

cK = 0.95, gΣ∗

cρ = 1.28

3093.5 3.48 gΛcω = 0.29, gN D∗ = 0.28, gΛD∗

s
= 2.89, gΞ∗

cK = 1.88

3180.5 13.4 gΞ∗

c
K = 0.69, gΛD∗

s
= 2.49, gΛcφ = 1.83, gΞcK∗ = 1.00, gΞ∗

c K∗ = 0.79

3209.8 0.6 gN D∗ = 0.08, gΞ∗

c
K = 0.10, gΣcρ = 1.81, gΣ∗

c ρ = 1.09

3274.1 3.48 gΛD∗

s
= 0.19, gΞ∗

c
K = 0.2, gΛcφ = 1.30, gΞcK∗ = 2.31

3330.4 36.9 gΛD∗

s

= 0.50, gΛcφ = 0.68, gΣ∗

c
ρ = 0.57, gΞcK∗ = 0.85, gΞ′

cK∗ = 1.85, gΞ∗

cK∗ = 2.34

3396.3 4.8 gΛD∗

s

= 0.17, gΛcφ = 0.22, gΣ∗

c
ρ = 0.15, gΞ′

cK∗ = 2.17, gΞ∗

c K∗ = 1.86

E. I = 1, J = 3/2

In the I = 1, J = 3/2 sector one finds 20 channels:

Σ∗
cπ ND∗ Λcρ Σ∗

cη ∆D Ξ∗
cK ∆D∗ Σcρ Σcω Σ∗

cρ

2656.01 2947.27 3061.95 3065.42 3077.23 3142.02 3218.35 3229.05 3236.13 3293.46

Σ∗
cω ΣD∗

s Σ∗Ds ΞcK
∗ Ξ′

cK
∗ Σcφ Σ∗

cη
′ Σ∗D∗

s Σ∗
cφ Ξ∗

cK
∗

3300.54 3305.45 3353.07 3363.33 3470.73 3473.02 3475.75 3496.87 3537.43 3540.23
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FIG. 6: The same as Fig. 2 for the I = 1, J = 3/2 sector.

Our results are presented in Fig. 6 and Table IX. We obtain many resonances and they all couple strongly, without
exception, to channels with vector mesons. A bound state at 2550 MeV, whose main baryon-meson components
contain a charmed meson, lies below the threshold of any possible decay channel. It would develop a narrow decay
width to Λcπ states if we incorporated d-wave interactions. This resonance is the charm sector counterpart of the
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TABLE IX: The same as Table IV, but for the I = 1, J = 3/2 sector.

I = 1, J = 3/2

MR ΓR Couplings to main channels

2549.8 0.0 gND∗ = 2.52, gΣD∗

s
= 2.22, g∆D = 4.23, gΣ∗Ds = 1.48, g∆D∗ = 5.28, gΣ∗D∗

s
= 2.29

2686.9 60.0 gΣ∗

c
π = 1.91, gND∗ = 2.68, gΣD∗

s
= 0.96, gΛcρ = 1.02, gΣ∗D∗

s
= 0.97

2901.6 14.7 gΣ∗

c
π = 0.58, gND∗ = 2.77, gΛcρ = 1.52, g∆D = 1.26, g∆D∗ = 1.05, gΣ∗

cρ = 1.20

3012.1 22.7 gN D∗ = 0.90, gΣD∗

s
= 2.05, gΣ∗

cη = 2.04

3026.5 11.2 gN D∗ = 0.72, gΣcω = 2.10, g∆D = 2.40, g∆D∗ = 2.83

3062.6 25.5 gΣ∗

c
η = 0.61, gΣD∗

s
= 1.67, g∆D∗ = 1.56, gΣ∗D∗

s
= 1.69, gΣ∗

c ω = 1.97

3125.1 4.05 gΣ∗

c
π = 0.17, gΣ∗

c
η = 0.21, gΣD∗

s
= 1.39, gΣ∗Ds = 1.67, gΞ∗

c K = 1.33, gΣ∗D∗

s
= 2.90, gΣ∗

c ω = 0.93

3156.1 36.1 gΛcρ = 0.9, gΣD∗

s
= 1.45, gΣcρ = 1.50, gΣcω = 1.27, gΣ∗

cρ = 1.41, gΣ∗

c ω = 1.39

3179.5 8.89 gΣ∗

c
η = 0.37, gΣD∗

s
= 2.65, gΣcρ = 1.40, gΞcK∗ = 1.71, gΣ∗

cω = 0.85

3196.4 17.3 gΛcρ = 0.56, gΣD∗

s
= 0.96, gΣcρ = 1.17, gΣcω = 0.87, gΞcK∗ = 0.87, gΣ∗

c ρ = 2.16, gΣ∗

c ω = 0.92

3277.2 0.62 gΞ∗

c
K = 0.11, gΣcφ = 0.91, gΞ′

cK∗ = 1.68, gΣ∗Ds = 2.61, gΣ∗D∗

s
= 2.52

3345.4 19.1 gΞ∗

c
K = 0.54, gΞ′

cK∗ = 1.18, gΣ∗D∗

s
= 1.07, gΣ∗

c φ = 1.38, gΞ∗

cK∗ = 2.57

3352.6 6.65 gΣD∗

s

= 0.40, gΞ∗

c
K = 0.32, gΣcφ = 2.26, gΞ′

cK∗ = 1.10, gΞcK∗ = 0.91, gΣ∗

c φ = 1.72, gΞ∗

cK∗ = 0.99

3386.3 7.79 gΞcK∗ = 0.48, gΣcφ = 1.40, gΞ′

cK∗ = 1.00, gΣ∗

c φ = 2.20, gΞ∗

cK∗ = 1.18

hyperonic Σ(1670) resonance, which has also been seen in chiral unitary models [29, 30, 31] coupling strongly to the
∆K̄ channel. Indeed, the charmed bound state found here couples strongly to the corresponding ∆D state in the
charm sector, and even more strongly to its vector partner: ∆D∗. This is precisely the reason for the large binding
of this resonance, compared to that of its strange sector counterpart.

Since the observed I = 1 charmed baryon resonances do not have spin nor parity assignments, most of the arguments
discussed in the I = 1, J = 1/2 section, can also be made here. We might assign the resonance at 2687 MeV, decaying
primarily to Σ∗

cπ, to the bump at 2760 MeV observed from Λcππ states [42]. However, the corresponding width
estimated by scaling our result: Γ2760 = (q2760/q2690)Γ2690, would turn out to be around 120 MeV, much larger than
the experimental value. Then, similarly to our discussion in the I = 1, J = 1/2 sector, the next state at 2901 MeV,
decaying into Σ∗

cπ s-wave pairs, could be a candidate for the Σc(2800), seen in Λcπ pairs [43], if this resonance were
also seen in Λcππ states. The little enhancement in the Λcππ histogram [42] around M(Λ+

c π
+π−) −M(Λ+

c ) ∼ 500
MeV, which is obviously distorted by the excitation of the lower mass resonance at 2760 MeV, might well correspond
roughly to the mass of the Σc(2800).

Our model predicts a few narrow resonances above 3 GeV. Of particular interest are those coupling strongly to
ND∗, since they could be observed in DπN invariant mass distributions and, if sufficiently narrow, these states should
be reflected into the DN invariant mass spectra Although the discussion in Ref. [46] mentions explicitly the absence
of signal in the D∗(2010)+p or D∗(2007)0p mass distributions, the invariant mass distribution of D+p pairs shows
some structures which, unfortunately, are embedded into the statistical error fluctuations. Clearly, more data needs
to be collected in order to see whether some of these structures acquire statistical significance to become new charmed
isotriplet baryons.

F. I = 2, J = 3/2

Here we present our results in the I = 2, J = 3/2 sector, where there are only five channels:

Σ∗
cπ ∆D ∆D∗ Σcρ Σ∗

cρ

2656.01 3077.23 3218.35 3229.05 3293.46

Our results, presented in Fig. 7 and Table X, indicate that the model generates a state at 2911 MeV, with mainly
ND and ND∗ components, which is very wide because it lies above the threshold of Σ∗

cπ states to which it also couples
significantly. We also find a narrow resonance at 3071 MeV, which lies only a few MeV below the ∆D threshold and
coupling more strongly to ∆D∗ states, and a wider resonance at 3196 MeV which qualifies as a Σ∗

cρ quasi-bound
state.
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FIG. 7: The same as Fig. 2 for the I = 2, J = 3/2 sector.

TABLE X: The same as Table IV, but for the I = 2, J = 3/2 sector.

I = 2, J = 3/2

MR ΓR Couplings to all channels

2910.8 158.0 gΣ∗

c
π = 1.67, g∆D = 3.52, g∆D∗ = 3.95, gΣcρ = 0.72, gΣ∗

c ρ = 0.68

3070.8 9.79 gΣ∗

c
π = 0.40, g∆D = 1.48, g∆D∗ = 2.73, gΣcρ = 1.35, gΣ∗

c ρ = 1.18

3195.8 25.7 gΣ∗

c
π = 0.50, g∆D = 0.51, g∆D∗ = 1.07, gΣcρ = 0.97, gΣ∗

cρ = 2.38

G. J = 5/2 (I = 0, 1 and 2)

We finally present our results for the isospin sectors I = 0, 1 and 2 with maximum value of spin J = 5/2. The
states building up the coupled-channel space in this J = 5/2 case are composed of a 3/2+ baryon and a vector meson.
Note that, as seen from the coefficients in Tables XXI, XXII and XXIII, all these cases present the peculiarity that
channels without strange quarks (as Σ∗

cρ or ∆D∗) do not mix with channels having an associated ss̄ pair (as Σ∗
cφ or

Ξ∗
cK

∗). Therefore, in the case I = 0, J = 5/2, since the interaction is strongly attractive in the two channels involved,
namely

Σ∗
cρ Ξ∗

cK
∗

3293.46 3540.23 ,

we obtain two states at 3258 MeV and 3440 MeV that are, respectively, bound Σ∗
cρ and Ξ∗

cK
∗ systems, as seen in

Table XI. Since we do not take into account three-particle channels, these resonances appear as stable bound states.
In the I = 1, J = 5/2 sector there are 6 channels involved:

∆D∗ Σ∗
cρ Σ∗

cω Σ∗D∗
s Σ∗

cφ Ξ∗
cK

∗

3218.35 3293.46 3300.54 3496.87 3537.43 3540.23

Table XII shows that we generate 3 bound states and a narrow resonance. The lower two states couple to the
non-strange baryon-meson channels, while the upper two belong to the associated strangeness sector.

Finally, we present in Table XIII the results for the I = 2, J = 5/2 sector, which involves two channels:



19

TABLE XI: The same as Table IV, but for the I = 0, J = 5/2 sector.

I = 0, J = 5/2

MR ΓR Couplings to main channels

3258.0 0.0 gΣ∗

c ρ = 2.24

3440.2 0.0 gΞ∗

cK∗ = 2.87

TABLE XII: The same as Table IV, but for the I = 1, J = 5/2 sector.

I = 1, J = 5/2

MR ΓR Couplings to main channels

3084.5 0.0 g∆D∗ = 3.99, gΣ∗

cρ = 0.98, gΣ∗

c ω = 1.92

3233.8 0.17 g∆D∗ = 0.14, gΣ∗

c ρ = 2.14, gΣ∗

c ω = 3.14

3276.7 0.0 gΣ∗D∗

s
= 4.32, gΣ∗

c φ = 1.17, gΞ∗

cK∗ = 1.95

3421.9 0.0 gΣ∗D∗

s
= 0.15, gΣ∗

c φ = 2.52, gΞ∗

cK∗ = 1.65

∆D∗ Σ∗
cρ

3218.35 3293.46

TABLE XIII: The same as Table IV, but for the I = 2, J = 5/2 sector.

I = 2, J = 5/2

MR ΓR Couplings to all channels

3126.6 0.0 g∆D∗ = 3.62, gΣ∗

c ρ = 2.0

As seen from the coefficients in Table XXIII, the interaction is zero for ∆D∗ states and repulsive for Σ∗
cρ states. In

spite of this, our model generates a bound state at 3127 MeV, about 90 MeV below the threshold of the ∆D∗ channel
and coupling strongly to it. This bound state is entirely due to the coupling between ∆D∗ and Σ∗

cρ states, facilitated
by the significant value of the mixing coefficient and by the vicinity of the channels involved, whose thresholds are
only 75 MeV apart. We have checked that the bound state disappears if the mixing coefficient is reduced to 2/3 its
actual value.

V. COMPARISON WITH SU(4) MODELS

In this section we would like to compare our results with those obtained within a standard SU(4) model denoted as
TVME in the present work. We will follow the TVME approach, first developed in Ref. [50], but with modifications
implemented in Ref. [52], which we describe briefly in the following. Firstly, the last term of the interaction kernel
used in Ref. [50], namely

V (I,S,C)(
√
s ) =

∑

V ∈[16]

C
(I,S,C)
V

8m2
V

(

2
√
s−M − M̄ + (M̄ −M)

m̄2 −m2

m2
V

)

, (20)

is dropped. This was shown in [52] to be more consistent with the zero range (t→ 0) limit of the TVME employed in
Ref. [50]. In the second place, a common heavy vector meson mass mH and a common light vector meson mass mV

is used in the kernel, with the relation mH ∼ 2mV . In this way, the resulting interaction is of the same form as that
shown in Eq. (13), namely

V IJSC
ab (

√
s) = χcD

IJSC
ab

2
√
s−Ma −Mb

4 f2

√

Ea +Ma

2Ma

√

Eb +Mb

2Mb

, (21)

but with an additional factor χc, which is χc = 1/4 for charm-exchange transitions and χc = 1 otherwise. This factor
accounts approximately for the ratio (mV /mH)2 between the squared masses of uncharmed and charmed vector
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mesons, such as the ρ and D∗, respectively. The additional scalar-isoscalar attractive interaction characterized by a
ΣDN term, implemented in Ref. [52], is not considered here, since it would not affect the qualitative aspects of our
results.

The main difference between the SU(4) models [49, 50, 51, 52] and our SU(8) model, which is a must to be consistent
with heavy-quark symmetry, is that the latter includes the vector meson-baryon channels. Another essential difference
lies in the transition amplitudes between states containing heavy mesons because, according to Eq. (13), they scale
with the inverse of a heavy-meson decay constant for each heavy meson involved, whereas in the SU(4) models the
decay constant is kept fixed for all transitions. Therefore, as discussed at the end of Sect. II B, amplitudes such as
ND → ND or ΛDs → ND are typically a factor 3 smaller than those of the SU(4) models.

TABLE XIV: The same as Table IV, but for the SU(4) model, see more details in the text.

MR ΓR Couplings to all SU(4) channels

I = 0, J = 1/2

2595.4 2.01 gΣcπ = 0.67, gND = 6.03, gΛcη = 0.12, gΞcK = 0.07, gΞ′

cK = 0.17, gΛDs = 3.08, gΛcη′ = 0.29

2625.4 103.0 gΣcπ = 2.30, gND = 1.55, gΛcη = 0.04, gΞcK = 0.03, gΞ′

cK = 0.67, gΛDs = 1.05, gΛcη′ = 0.1

2799.5 0.0 gΣcπ = 0.35 · 10−2, gND = 0.05, gΛcη = 1.47, gΞcK = 2.57, gΞ′

cK = 0.02, gΛDs = 0.26, gΛcη′ = 0.02

3024.8 31.3 gΣcπ = 0.59, gN D = 0.50, gΛcη = 0.16, gΞcK = 0.11, gΞ′

cK = 2.22, gΛDs = 1.48, gΛcη′ = 0.02

I = 1, J = 1/2

2661.2 36.5 gΛcπ = 0.65, gΣcπ = 1.1, gND = 4.87, gΣcη = 0.04, gΞcK = 0.48, gΞ′

cK = 0.45, gΣDs = 3.99, gΣcη′ = 0.35

2694.7 153.0 gΛcπ = 0.34, gΣcπ = 2.35, gND = 1.95, gΣcη = 0.21, gΞcK = 0.31, gΞ′

cK = 1.19, gΣDs = 2.03, gΣcη′ = 0.18

2938.0 291.0 gΛcπ = 1.87, gΣcπ = 0.09, gN D = 0.32, gΣcη = 0.13, gΞcK = 2.46, gΞ′

cK = 0.07, gΣDs = 1.35, gΣcη′ = 0.19

2956.5 29.5 gΛcπ = 0.05, gΣcπ = 0.63, gN D = 0.55, gΣcη = 1.85, gΞcK = 0.26, gΞ′

cK = 1.60, gΣDs = 1.55, gΣcη′ = 0.03

I = 0, J = 3/2

2678.0 82.7 gΣ∗

c
π = 2.23, gΞ∗

cK = 0.61

3118.7 29.6 gΣ∗

c
π = 0.67, gΞ∗

cK = 2.06

I = 1, J = 3/2

2543.5 0.0 gΣ∗

cπ = 0.22, gΣ∗

c η = 0.12, g∆D = 7.21, gΞ∗

cK = 0.07, gΣ∗Ds = 3.27, gΣ∗

c η′ = 0.28

2745.5 155.0 gΣ∗

c
π = 2.2, gΣ∗

cη = 0.22, g∆D = 0.45, gΞ∗

cK = 1.09, gΣ∗Ds = 0.52, gΣ∗

c η′ = 0.06

3042.4 31.2 gΣ∗

c
π = 0.74, gΣ∗

c η = 1.75, g∆D = 0.04, gΞ∗

c K = 1.52, gΣ∗Ds = 0.07, gΣ∗

cη′ = 0.02

The results obtained within the SU(4) approach, Eq. (21), are collected in Table XIV, only for those IJ combinations
which generate resonances. That excludes the I = 2, J = 1/2 sector, which has a repulsive interaction in the only
allowed channel, Σcπ; as well as the two-channel (Σ∗

cπ, ∆D) I = 2, J = 3/2 sector, where the mixing coefficient is
not strong enough to overcome the repulsive Σ∗

cπ interaction. Note that we have slightly modified the subtraction
point with a parameter α = 0.959, see Eq. (17), in order to place the Λ(2595) resonance on the right energy. The
generation of the resonance would have been facilitated if an attractive scalar-isoscalar ΣDN term were included, in
which case the subtraction point would have to be modified by a value of α = 0.979, closer to one.

The main observation in the I = 0, J = 1/2 sector is that the model is able to generate a narrow resonance
around 2600 MeV, which can be readily identified with the Λc(2595). It couples strongly to ND and its nature is
therefore very different from the one obtained in the SU(8) model, which qualifies as being mainly a ND∗ quasibound
state. The reason for the SU(4) model being able to generate the Λc(2595) is that the lack of baryon-meson states
in this sector (namely, those involving a vector meson and/or a decuplet baryon) is somehow compensated by the
enhanced strength in the baryon-meson channels involving a charmed meson. In other words, a resonance that has a
strong ND∗ component in the SU(8) approach may reappear as a ND state in the reduced SU(4) model space due
to the enhanced interaction kernel. We also find relatively narrow resonances at 2799 and 3025 MeV that couple,
respectively, mostly to ΞcK and Ξ′

cK states involving uncharmed meson channels and, therefore, are the analogous
states as those obtained within the SU(8) model at 2821 and 3053 MeV respectively [see Table IV], although the last
state in the SU(4) model couples appreciably to Σcπ and ND, and hence is substantially wider. Logically the SU(4)
model does not produce the resonances that couple strongly to states with light vector mesons in the SU(8) approach.

In the I = 1, J = 1/2 sector, we observe that the SU(4) model obtains a narrow resonance at 2661 MeV which
couples strongly to ND. Since the strength of this amplitude is reduced, the SU(8) model does not find such a type
of resonance, but instead, a very narrow one at 2554 MeV that couples strongly to ∆D∗ and more moderately to
Σ∗D∗

s and ND, see Table VI. So again, while the two resonances do not differ that much in energy, their very nature
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is substantially different. The other relatively narrow resonance at 2957 MeV, coupling mainly to Σcη and Ξ′
cK,

finds its analogue with the one at 2974 MeV obtained in the SU(8) model, although this one has also vector-meson
components of comparable size. The narrow states at 3158 MeV and 3346 MeV, which couple mainly to vector meson
components and decay into Σcη and ΣDs pairs, respectively, are not obtained in the SU(4) approach.

In the I = 0, J = 3/2 sector, the SU(4) model produces resonances at 2678 MeV and 3119 MeV that couple
mainly to Σ∗

cπ and Ξ∗
cK, respectively. The first one is equivalent to that found at 2659 MeV in the SU(8) model, see

Table. VIII. The second one could be identified basically with that appearing at 3094 MeV in the SU(8) model, that
also has stronger vector-meson components. It has been argued in previous works [49, 51] and in the present one,
that the lowest-lying resonance could correspond to the observed three star Λc(2625) of JP = 3/2−, which is quoted
to be the analogous in the charm sector of the Λ(1520) [58]. The SU(8) model produces, apart from the state at 2940
MeV that could be identified with the Λc(2940), a few other narrow resonances beyond 3 GeV that couple strongly
to states containing vector mesons and, therefore, cannot be seen in the SU(4) model.

In the I = 1, J = 3/2 sector, there are three resonances that couple mainly to ∆D, Σ∗
cπ and Σ∗

cη, respectively, and
are the analogies of some of the lower energy states obtained in the SU(8) model, namely those at 2550 MeV, 2687
MeV and 3012 MeV. Note, however, that the resonance at 2550 MeV, which is the counterpart in the charm sector
of the hyperonic Σ(1670) resonance having mainly ∆K̄ components [29, 30, 31], becomes a ∆D∗ resonance in the
SU(8) model, although its coupling to ∆D, ND∗, ΣD∗

s , and Σ∗D∗
s is also significant. The three resonances obtained

here with the simulated SU(4) model are the same as those found in Ref. [51], however with a notable exception for
the width of the state around 3 GeV which is quoted to be very narrow, while we find it to be around 30 MeV, due
basically to a quite sizable coupling to Σ∗

cπ states. Note that, in this sector, the WT coefficient is −2 for the Σ∗
cπ

transition and 0 for the Σ∗
cη, so the sizable coupling of this resonance to this latter channel is necessarily due to the

non-perturbative coupled channels processes involving non-diagonal transitions.
We end this section by noting that the present simulation of the SU(4) model of Ref. [49] reproduces all the

resonances given in Refs. [49, 51] at approximately the same positions. Only the widths of some resonances appear to
be wider here. This is because we are using an interaction kernel that ignores the tensor term of the t-channel vector
meson propagator, more consistent with the limit t→ 0, which is implicit in the contact WT interaction [52].

VI. CONCLUSIONS

In the present work, we have studied charmed baryon resonances within a coupled channels unitary approach that
implements, for the first time, the characteristic features of heavy-quark symmetry, as for instance the fact that D and
D∗ mesons have to be treated on an equal footing. This is accomplished by extending the t-channel vector-exchange
SU(4) models (TVME) used in Refs. [49, 50, 51, 52] to SU(8) spin-flavor symmetry, then by implementing a somewhat
different way of breaking the flavor symmetry. More concretely our tree-level s-wave WT amplitudes are obtained
not only by adopting the physical hadron masses, but also by introducing the physical weak decay constants of the
mesons involved in the transitions. This procedure reduces considerably the strength of diagonal amplitudes involving
a charmed meson, as comparing to SU(4) models.

The present SU(8) model generates dynamically the resonances with negative parity in all the isospin-spin sectors
that one can form from a s-wave interaction between the mesons of the 0−, 1− multiplets with the 1/2+, 3/2+ baryons.
In this work we have focused only on the strangeness and charm quantum numbers appropriate for the ND interaction,
namely S = 0 and C = 1. In the I = 0, J = 1/2 sector, the lowest narrow state obtained can be readily identified
with the Λc(2595) which in our approach may be interpreted as being primarily a ND∗ bound state. We may also
identify our state at 2660 MeV in the I = 0, J = 3/2 sector, which couples strongly to the Σ∗

cπ channel, to be the
three star Λc(2625). The latter is usually referred to as being the charm counterpart of the Λ(1520), which shows
a strong coupling to Σ∗π in dynamical models. Similarly, in the I = 1, J = 3/2 sector we find a resonance at 2550
MeV that couples strongly to ∆D and ∆D∗ states. This appears to be the counterpart of the Σ(1670) hyperon which
couples to ∆K̄ in dynamical models. We also find in this sector a state at 2901 MeV that could be a candidate for
the Σc(2800).

Our results have been compared with those obtained in the SU(4) models [49, 50, 51, 52]. It appears that our
SU(8) approach reproduces all the resonances generated in the SU(4) models which couple strongly to the channels
consisting of a pseudoscalar octet meson and a charmed baryon. They may be identified as chirally excited charmed
baryons. On the other hand, due to the different pattern of flavor symmetry breaking, resonances in the SU(4) model
that couple strongly to baryon-meson states containing a charmed meson and an un-charmed baryon (such as ND and
Y Ds) are, in principle, not necessarily reproduced within our SU(8) approach which has adopted the physical decay
constants, resulting in a reduced interaction in the corresponding transition amplitudes. However, the additional
states implemented by the enlarged model space in SU(8) due to the requirement of heavy-quark symmetry, such
as ND∗ and ∆D∗, compensate largely for the reduced interaction, producing resonances in the same region or even



22

more bound, than those obtained in the SU(4) model, but with a quite different composition. A prime example is
the Λc(2595) in the I = 0, J = 1/2 sector. Within the SU(4) models this resonance is dynamically generated mainly
from ND states and it is then interpreted as a ND quasi-bound state, with a mixture of ΛDs components, which lies
very close to the threshold of its only decaying channel, Σcπ. Instead, the SU(8) model interprets this resonance as
being mainly a ND∗ quasi-bound state, although with sizable ND, ΛDs and ΛD∗

s components.
Our SU(8) approach predicts more states than those obtained within the SU(4) model. Not all of them find a direct

identification with one of the observed resonances in the C = 1, S = 0 sector. We note, however, that many of our
states couple weakly to the baryon-meson pairs from which the resonances are measured. It should also be pointed
that some of our states would become wider or even disappear in a more realistic model containing also three-body
channels and higher multipolarity interactions. We finally note that the experimental spectra show a limited amount
of counts and, in order to disentangle new resonant structures from data, more statistics is clearly needed.
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APPENDIX A: HADRON SPIN-FLAVOR WAVE FUNCTIONS AND TENSOR METHOD

This Appendix is aimed for a detailed account of how to calculate the matrix element DIJSC
ab in the expression for

the WT interaction, Eq. (13). It consists of defining the hadronic wave functions from the quark model and the tensor
representation of the SU(8) operators and wave functons.

1. Wavefunctions for the ground state hadrons

Pseudoscalar mesons:

|π〉 = − 1√
2

(

Q†
u↑Q

†
d̄↓ −Q†

u↓Q
†
d̄↑

)

|0〉 ,

|K〉 =
1√
2

(

Q†
u↑Q

†
s̄↓ −Q†

u↓Q
†
s̄↑

)

|0〉 ,

|K̄〉 = − 1√
2

(

Q†
s↑Q

†
d̄↓ −Q†

s↓Q
†
d̄↑

)

|0〉 ,

|D〉 = − 1√
2

(

Q†
c↑Q

†
d̄↓ −Q†

c↓Q
†
d̄↑

)

|0〉 ,

|Ds〉 =
1√
2

(

Q†
c↑Q

†
s̄↓ −Q†

c↓Q
†
s̄↑

)

|0〉 ,

|D̄〉 = − 1√
2

(

Q†
u↑Q

†
c̄↓ −Q†

u↓Q
†
c̄↑

)

|0〉 ,

|D̄s〉 = − 1√
2

(

Q†
s↑Q

†
c̄↓ −Q†

s↓Q
†
c̄↑

)

|0〉 ,

|η〉 =
1√
12

(

Q†
u↑Q

†
ū↓ −Q†

u↓Q
†
ū↑ +Q†

d↑Q
†
d̄↓ −Q†

d↓Q
†
d̄↑ − 2Q†

s↑Q
†
s̄↓ + 2Q†

s↓Q
†
s̄↑

)

|0〉 ,

|η′〉 =
1√
6

(

Q†
u↑Q

†
ū↓ −Q†

u↓Q
†
ū↑ +Q†

d↑Q
†
d̄↓ −Q†

d↓Q
†
d̄↑ +Q†

s↑Q
†
s̄↓ −Q†

s↓Q
†
s̄↑

)

|0〉 ,

|ηc〉 =
1√
2

(

Q†
c↑Q

†
c̄↓ −Q†

c↓Q
†
c̄↑

)

|0〉 . (A1)
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Vector mesons:

|ρ〉 = −Q†
u↑Q

†
d̄↑|0〉 ,

|K∗〉 = Q†
u↑Q

†
s̄↑|0〉 ,

|K̄∗〉 = −Q†
s↑Q

†
d̄↑|0〉 ,

|D∗〉 = −Q†
c↑Q

†
d̄↑|0〉 ,

|D∗
s〉 = Q†

c↑Q
†
s̄↑|0〉 ,

|D̄∗〉 = −Q†
u↑Q

†
c̄↑|0〉 ,

|D̄∗
s〉 = −Q†

s↑Q
†
c̄↑|0〉 ,

|ω〉 =
1√
2

(

Q†
u↑Q

†
ū↑ +Q†

d↑Q
†
d̄↑

)

|0〉 ,

|φ〉 = −Q†
s↑Q

†
s̄↑|0〉 ,

|ψ〉 = Q†
c↑Q

†
c̄↑|0〉 . (A2)

Spin 1/2 baryons:

|Λ〉 =
1√
2

(

Q†
u↑Q

†
d↓Q

†
s↑ −Q†

u↓Q
†
d↑Q

†
s↑

)

|0〉 ,

|N〉 =
1√
3

(

Q†
u↑Q

†
u↑Q

†
d↓ −Q†

u↑Q
†
u↓Q

†
d↑

)

|0〉 ,

|Σ〉 =
1√
3

(

Q†
u↑Q

†
u↑Q

†
s↓ −Q†

u↑Q
†
u↓Q

†
s↑

)

|0〉 ,

|Ξ〉 =
1√
3

(

Q†
u↑Q

†
s↓Q

†
s↑ −Q†

u↓Q
†
s↑Q

†
s↑

)

|0〉 ,

|Σc〉 =
1√
3

(

Q†
u↑Q

†
u↑Q

†
c↓ −Q†

u↑Q
†
u↓Q

†
c↑

)

|0〉 ,

|Ξ′
c〉 =

1√
6

(

2Q†
u↑Q

†
s↑Q

†
c↓ −Q†

u↑Q
†
s↓Q

†
c↑ −Q†

u↓Q
†
s↑Q

†
c↑

)

|0〉 ,

|Ωc〉 =
1√
3

(

Q†
s↑Q

†
s↑Q

†
c↓ −Q†

s↑Q
†
s↓Q

†
c↑

)

|0〉 ,

|Ξc〉 =
1√
2

(

Q†
u↑Q

†
s↓Q

†
c↑ −Q†

u↓Q
†
s↑Q

†
c↑

)

|0〉 ,

|Λc〉 =
1√
2

(

Q†
u↑Q

†
d↓Q

†
c↑ −Q†

u↓Q
†
d↑Q

†
c↑

)

|0〉 ,

|Ξcc〉 =
1√
3

(

Q†
u↑Q

†
c↓Q

†
c↑ −Q†

u↓Q
†
c↑Q

†
c↑

)

|0〉 ,

|Ωcc〉 =
1√
3

(

Q†
s↑Q

†
c↓Q

†
c↑ −Q†

s↓Q
†
c↑Q

†
c↑

)

|0〉 . (A3)
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Spin 3/2 baryons:

|∆〉 =
1√
6
Q†

u↑Q
†
u↑Q

†
u↑|0〉 ,

|Σ∗〉 =
1√
2
Q†

u↑Q
†
u↑Q

†
s↑|0〉 ,

|Ξ∗〉 =
1√
2
Q†

u↑Q
†
s↑Q

†
s↑|0〉 ,

|Ω〉 =
1√
6
Q†

s↑Q
†
s↑Q

†
s↑|0〉 ,

|Σ∗
c〉 =

1√
2
Q†

u↑Q
†
u↑Q

†
c↑|0〉 ,

|Ξ∗
c〉 = Q†

u↑Q
†
s↑Q

†
c↑|0〉 ,

|Ω∗
c〉 =

1√
2
Q†

s↑Q
†
s↑Q

†
c↑|0〉 ,

|Ξ∗
cc〉 =

1√
2
Q†

u↑Q
†
c↑Q

†
c↑|0〉 ,

|Ω∗
cc〉 =

1√
2
Q†

s↑Q
†
c↑Q

†
c↑|0〉 ,

|Ωccc〉 =
1√
6
Q†

c↑Q
†
c↑Q

†
c↑|0〉 . (A4)

[Notes]:

• Each state represents a member of a spin and isospin multiplet. The wavefunctions made explicit are those with
the highest value of I3 and J3 in the multiplet.

• Q†
u↑ creates a u quark with spin up, Q†

d̄↓ creates a quark d̄ with spin down, and so on. As usual, color takes care

of the fermionic statistics, so the quark operators are bosonic. The basis {| ↑〉, | ↓〉} is of the standard SU(2) by
which step operators J± have non-negative matrix elements. Also standard are {|u〉, |d〉}, {|d〉, |s〉}, {|s〉, |c〉},
and {−|d̄〉, |ū〉}, {−|s̄〉, |d̄〉}, {−|c̄〉, |s̄〉}.7 This means that the flavor-SU(4) step operators act as

E12|u〉 = |d〉, E23|d〉 = |s〉, E34|s〉 = |c〉,
E12|d̄〉 = −|ū〉, E23|s̄〉 = −|d̄〉, E34|c̄〉 = −|s̄〉. (A5)

• No special choice of relative phases has been made between different SU(4) multiplets. The relative phases
of the hadronic states in an SU(4) multiplet are taken such that E12, E23 and E34 have non-negative matrix
elements. Exceptions are the neutral mesons η, η′, ηc, ψ, ω and φ.

• The pseudoscalar meson η is (up to a sign) the isoscalar meson of the SU(3) octet and η′ the SU(3) singlet. ηc

is purely cc̄. In the spin 1 sector, ψ is purely cc̄ whereas φ and ω have been rotated in the SU(3) sector so that
φ is purely ss̄ (ideal mixing).

2. Tensor representation for matrix elements

Having identified the group structure of the extended WT interaction, the calculation of matrix elements can be
done using standard group theoretical techniques. Methods based on computing SU(n) Clebsch-Gordan coefficients
(e.g. [57]), extracting isoscalar factors (in SU(3) [63], and then SU(3)-scalar factors in SU(4), etc) are useful for an
explicit hand calculations for small groups but become more involved as the groups get larger. Instead, we follow a
different route here. A tensor representation spanned by quark operators is used. This method only requires to know

7 This is the convention used in [61, 62] for arbitrary SU(n). Note that the convention in [63] for SU(3) is, instead, {|u〉, |d〉}, {|u〉, |s〉},
{−|d̄〉, |ū〉}, {−|s̄〉, |ū〉}.
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Kronecker deltas and Wick contractions. Although it may not be practical for hand calculations, it is conceptually
simple so that it is easy enough to automatize the calculation for larger groups.

Following [64] the WT Hamiltonian with spin-flavor symmetry takes the form

− LWT = HWT = − i

4f2
: [Φ, ∂0Φ]ijB†

iℓmBjℓm : (A6)

where Bijk is the baryon field, Φi
j the meson field, and the SU(8) way of labeling the spin-flavor indices goes for

i, j, etc. from 1 to 8 for four flavors. Bijk is completely symmetric under permutation of indices. There is no
universally accepted convention for the normalization. Here we choose that Bijk is normalized in a standard manner
for a fermionic field when the indices i, j, k are all different. Upon extracting the kinematical factors (

√
s−M)/(2f2),

the spin-flavor dependence is all contained in the matrices DIJ
ab . These are the matrix elements of the operator (see

[64])

G =: (M i
kM

†k
j −M †i

kM
k

j)B
†
iℓmB

jℓm : (A7)

where Bijk and B†
ijk denote the baryon annihilation and creation operators, normalized as

[Bijk, B†
i′j′k′ ] = δi

i′δ
j
j′δ

k
k′ + δi

j′δ
j
i′δ

k
k′ + · · · (3! permutations) . (A8)

Likewise M i
j and M †j

i = (M i
j)

† denote the meson annihilation and creation operators, normalized as

[M i
j ,M

†j′

i′ ] = δi
i′δ

j
j′ . (A9)

These characterizations automatically guarantee that the normalization and spin-flavor transformation properties
of the states 〈0|Bijk and 〈0|M i

j coincide with those of 〈0|QiQjQk and 〈0|QiQ̄j, respectively. Here Qi and Q̄i are the
SU(8) labeled annihilation operators of quarks and antiquarks, respectively. They transform as

Qi → U i
jQ

j , Q̄i → (U i
j)

∗Q̄j = Q̄j(U
−1)j

i, U ∈ SU(8) (A10)

and have standard normalization

[Qi, Q†
j ] = δi

j , [Q̄i, Q̄
†j ] = δj

i . (A11)

The correspondence between the SU(8) and the explicit spin-SU(4) flavor representations are the following: since

Q̄i transforms as Q†
i , the conventions in subsection A1 imply the identifications (up to a global sign)

Qi = (Qu↑, Qd↑, Qs↑, Qc↑, Qu↓, Qd↓, Qs↓, Qc↓) ,

Q̄i = (Qū↓, Qd̄↓, Qs̄↓, Qc̄↓,−Qū↑,−Qd̄↑,−Qs̄↑,−Qc̄↑) . (A12)

That is Q1 = Qu↑, Q̄6 = −Qd̄↑, Q̄
†6 = −Q†

d̄↑, etc. The correct book keeping between an explicit flavor-spin index and

the SU(8) one (running from 1 to 8) needs to be maintained to apply the Kronecker deltas in (A8) and (A9). Using
these identifications together with

Q†
iQ

†
jQ

†
k → B†

ijk ,

Q̄†iQ†
j → M †i

j , (A13)

the mesonic and baryonic wavefunctions can be rewritten in terms of the operators M †i
j and B†

ijk. For instance,

|π〉 = − 1√
2

(
M †2

1 +M †6
5

)
|0〉 ,

|N〉 =
1√
3

(

B†
116 −B†

152

)

|0〉 , (A14)

(once again for the highest weights in the spin-isospin multiplet). It is straightforward now to obtain the matrix
elements 〈MB|G|M ′B′〉 using the commutation relations, or equivalently Wick’s theorem. A non-trivial confirmation
of the calculation is to see that the matrices DIJSC

ab so obtained have the correct eigenvalues 6, 0,−2,−16,−22 (the 0
being the consequence of the inclusion of the SU(8) singlet among the mesons). Another important point to check is
that all the matrix elements computed are (up to a sign) square roots of rational numbers. While this is not surprising
for matrix elements of SU(n) with standard bases, it is found to be the case also for the neutral vector mesons with
ideal mixing.
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APPENDIX B: COEFFICIENTS OF THE s-WAVE TREE LEVEL AMPLITUDES

This Appendix gives the coefficients DIJSC
ab of the s-wave tree level Baryon-Meson8 amplitudes of Eq. (10) for the

various IJSC sectors, in the particular case of S = 0 and C = 1.

8 We say Baryon-Meson amplitudes to stress that the given DIJSC matrix elements corresponds to the state of the two colliding hadrons
coupled in this order: Baryon-Meson. Change of phases in the matrix elements can be derived of using other order.
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TABLE XV: I = 0, J = 1/2, S = 0, C = 1. Baryon-Meson states with more than one c quark have not been included.

Σcπ ND Λcη ND∗ ΞcK Λcω Ξ′

cK ΛDs ΛD∗

s Σcρ Λcη
′ Σ∗

cρ Λcφ ΞcK
∗ Ξ′

cK
∗ Ξ∗

cK∗

Σcπ −4
q

3
2

0 −
q

1
2

0 0 −
√

3 0 0 −
q

64
3

0
q

32
3

0 −
√

3 −2
√

2

ND
q

3
2

−3
q

1
2

−
√

27 0
q

9
2

0 −
√

3 −3 −
q

1
2

1 2 0 0 0 0

Λcη 0
q

1
2

0
q

3
2

−
√

3 0 0 −
q

2
3

−
√

2 0 0 0 0 0 −
√

3 −
√

6

ND∗ −
q

1
2

−
√

27
q

3
2

−9 0 −
q

3
2

0 −3 −
√

27
q

25
6

√
3

q

4
3

0 0 0 0

ΞcK 0 0 −
√

3 0 −2 0 0
q

1
2

q

3
2

−
√

3 0 −
√

6 0 0 0 0

Λcω 0
q

9
2

0 −
q

3
2

0 0 −1 0 0 −4 0
√

8 0 −1 −
q

4
3

q

2
3

Ξ′

cK −
√

3 0 0 0 0 −1 −2
q

3
2

−
q

1
2

−2 0
√

2 −
√

2 0 −
q

16
3

q

8
3

ΛDs 0 −
√

3 −
q

2
3

−3
q

1
2

0
q

3
2

−1 −
√

3 0
q

1
3

0 −
√

3
q

3
2

−
q

1
2

2

ΛD∗

s 0 −3 −
√

2 −
√

27
q

3
2

0 −
q

1
2

−
√

3 −3 0 1 0 1 −
q

1
2

q

25
6

q

4
3

Σcρ −
q

64
3

−
q

1
2

0
q

25
6

−
√

3 −4 −2 0 0 − 20
3

0 −
q

8
9

0 −2 −
q

49
3

−
q

2
3

Λcη
′ 0 1 0

√
3 0 0 0

q

1
3

1 0 0 0 0 0 0 0

Σ∗

cρ
q

32
3

2 0
q

4
3

−
√

6
√

8
√

2 0 0 −
q

8
9

0 − 22
3

0
√

2 −
q

2
3

−
q

64
3

Λcφ 0 0 0 0 0 0 −
√

2 −
√

3 1 0 0 0 0 −
√

2
q

8
3

−
q

4
3

ΞcK
∗ −

√
3 0 0 0 0 −1 0

q

3
2

−
q

1
2

−2 0
√

2 −
√

2 −2 −
q

16
3

q

8
3

Ξ′

cK
∗ −2 0 −

√
3 0 0 −

q

4
3

−
q

16
3

−
q

1
2

q

25
6

−
q

49
3

0 −
q

2
3

q

8
3

−
q

16
3

−2 0

Ξ∗

cK∗
√

2 0 −
√

6 0 0
q

2
3

q

8
3

2
q

4
3

−
q

2
3

0 −
q

64
3

−
q

4
3

q

8
3

0 −2
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TABLE XVI: I = 1, J = 1/2, S = 0, C = 1. Baryon-Meson states with more than one c quark have not been included.

Λcπ Σcπ ND ND∗ ΞcK Σcη Λcρ Ξ′

cK ΣDs ∆D∗ Σcρ Σcω Σ∗

cρ Σ∗

cω ΣD∗

s ΞcK
∗ Σcη

′ Ξ′

cK
∗ Σcφ Σ∗D∗

s Σ∗

cφ Ξ∗

cK∗

Λcπ 0 0
q

3
2

q

9
2

1 0 0 0 0 0
√

8 0 4 0 0 0 0 1 0 0 0
√

2

Σcπ 0 −2 1 −
q

1
3

0 0
√

8 −
√

2 0
q

8
3

−
q

16
3

0
q

8
3

0 0 −
√

2 0 −
q

8
3

0 0 0
q

4
3

ND
q

3
2

1 −1
q

1
3

0 −
q

1
6

q

9
2

0 1
q

32
3

−
q

1
3

q

1
6

q

8
3

−
q

4
3

−
q

1
3

0 −
q

1
3

0 0
q

8
3

0 0

ND∗

q

9
2

−
q

1
3

q

1
3

− 1
3

0
q

1
18

−
q

3
2

0 −
q

1
3

−
q

32
9

5
3

−
q

25
18

q

8
9

− 2
3

1
3

0 1
3

0 0 −
q

8
9

0 0

ΞcK 1 0 0 0 0 0 0 0
q

3
2

0 −
√

2 −1 −2 −
√

2
q

9
2

0 0 −2 −
√

2 0 −2 −
√

8

Σcη 0 0 −
q

1
6

q

1
18

0 0 0 −
√

3 −
q

2
3

4
3

0 0 0 0
q

2
9

−
√

3 0 −2 0 − 4
3

0
√

2

Λcρ 0
√

8
q

9
2

−
q

3
2

0 0 0 1 0 0 0
q

16
3

0 −
q

8
3

0 1 0
q

4
3

0 0 0 −
q

2
3

Ξ′

cK 0 −
√

2 0 0 0 −
√

3 1 0 −
q

1
2

0 −
q

8
3

−
q

4
3

q

4
3

q

2
3

q

1
6

−2 0 0 −
q

8
3

q

16
3

q

4
3

0

ΣDs 0 0 1 −
q

1
3

q

3
2

−
q

2
3

0 −
q

1
2

−1 −
q

32
3

0 0 0 0
q

1
3

q

9
2

q

1
3

q

1
6

q

1
3

−
q

8
3

−
q

8
3

−
q

4
3

∆D∗ 0
q

8
3

q

32
3

−
q

32
9

0 4
3

0 0 −
q

32
3

− 32
3

q

8
9

4
3

− 2
3

−
q

8
9

q

32
9

0
q

32
9

0 0 − 16
3

0 0

Σcρ
√

8 −
q

16
3

−
q

1
3

5
3

−
√

2 0 0 −
q

8
3

0
q

8
9

− 14
3

−
q

128
9

−
q

8
9

− 4
3

0 −
q

8
3

0 −
q

98
9

0 0 0 − 2
3

Σcω 0 0
q

1
6

−
q

25
18

−1 0
q

16
3

−
q

4
3

0 4
3

−
q

128
9

− 8
3

− 4
3

−
q

8
9

0 −
q

4
3

0 − 7
3

0 0 0 −
q

2
9

Σ∗

cρ 4
q

8
3

q

8
3

q

8
9

−2 0 0
q

4
3

0 − 2
3

−
q

8
9

− 4
3

− 16
3

−
q

200
9

0
q

4
3

0 − 2
3

0 0 0 −
q

128
9

Σ∗

cω 0 0 −
q

4
3

− 2
3

−
√

2 0 −
q

8
3

q

2
3

0 −
q

8
9

− 4
3

−
q

8
9

−
q

200
9

− 10
3

0
q

2
3

0 −
q

2
9

0 0 0 − 8
3

ΣD∗

s 0 0 −
q

1
3

1
3

q

9
2

q

2
9

0
q

1
6

q

1
3

q

32
9

0 0 0 0 − 1
3

−
q

3
2

− 1
3

−
q

25
18

− 5
3

q

8
9

−
q

8
9

− 2
3

ΞcK
∗ 0 −

√
2 0 0 0 −

√
3 1 −2

q

9
2

0 −
q

8
3

−
q

4
3

q

4
3

q

2
3

−
q

3
2

0 0 0
q

8
3

0 −
q

4
3

0

Σcη
′ 0 0 −

q

1
3

1
3

0 0 0 0
q

1
3

q

32
9

0 0 0 0 − 1
3

0 0 0 0
q

8
9

0 0

Ξ′

cK
∗ 1 −

q

8
3

0 0 −2 −2
q

4
3

0
q

1
6

0 −
q

98
9

− 7
3

− 2
3

−
q

2
9

−
q

25
18

0 0 − 8
3

q

2
9

4
3

2
3

−
q

8
9

Σcφ 0 0 0 0 −
√

2 0 0 −
q

8
3

q

1
3

0 0 0 0 0 − 5
3

q

8
3

0
q

2
9

0 −
q

8
9

0 2
3

Σ∗D∗

s 0 0
q

8
3

−
q

8
9

0 − 4
3

0
q

16
3

−
q

8
3

− 16
3

0 0 0 0
q

8
9

0
q

8
9

4
3

−
q

8
9

− 8
3

2
3

−
q

8
9

Σ∗

cφ 0 0 0 0 −2 0 0
q

4
3

−
q

8
3

0 0 0 0 0 −
q

8
9

−
q

4
3

0 2
3

0 2
3

0
q

8
9

Ξ∗

cK∗
√

2
q

4
3

0 0 −
√

8
√

2 −
q

2
3

0 −
q

4
3

0 − 2
3

−
q

2
9

−
q

128
9

− 8
3

− 2
3

0 0 −
q

8
9

2
3

−
q

8
9

q

8
9

− 10
3



2
9

TABLE XVII: I = 2, J = 1/2, S = 0, C = 1. Baryon-Meson states with more than one c quark have not been included.

Σcπ ∆D∗ Σcρ Σ∗

cρ

Σcπ 2
√

8
q

16
3

−
q

8
3

∆D∗
√

8 0
q

8
3

−
q

4
3

Σcρ
q

16
3

q

8
3

− 2
3

−
q

8
9

Σ∗

cρ −
q

8
3

−
q

4
3

−
q

8
9

− 4
3



3
0

TABLE XVIII: I = 0, J = 3/2, S = 0, C = 1. Baryon-Meson states with more than one c quark have not been included.

Σ∗

cπ ND∗ Λcω Ξ∗

cK ΛD∗

s Σcρ Σ∗

cρ Λcφ ΞcK
∗ Ξ′

cK
∗ Ξ∗

cK∗

Σ∗

cπ −4 −
√

2 0 −
√

3 0 −
q

16
3

−
q

80
3

0
√

3 −1 −
√

5

ND∗ −
√

2 0
√

6 0 0
q

2
3

q

10
3

0 0 0 0

Λcω 0
√

6 0 1 0 2
√

20 0 −1
q

1
3

q

5
3

Ξ∗

cK −
√

3 0 1 −2 −
√

2 −1 −
√

5
√

2 0 −
q

4
3

−
q

20
3

ΛD∗

s 0 0 0 −
√

2 0 0 0 −2
√

2
q

2
3

q

10
3

Σcρ −
q

16
3

q

2
3

2 −1 0 − 8
3

−
q

20
9

0 1 −
q

1
3

−
q

5
3

Σ∗

cρ −
q

80
3

q

10
3

√
20 −

√
5 0 −

q

20
9

− 16
3

0
√

5 −
q

5
3

−
q

25
3

Λcφ 0 0 0
√

2 −2 0 0 0 −
√

2 −
q

2
3

−
q

10
3

ΞcK
∗

√
3 0 −1 0

√
2 1

√
5 −

√
2 −2

q

4
3

q

20
3

Ξ′

cK
∗ −1 0

q

1
3

−
q

4
3

q

2
3

−
q

1
3

−
q

5
3

−
q

2
3

q

4
3

−2 0

Ξ∗

cK∗ −
√

5 0
q

5
3

−
q

20
3

q

10
3

−
q

5
3

−
q

25
3

−
q

10
3

q

20
3

0 −2
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TABLE XIX: I = 1, J = 3/2, S = 0, C = 1. Baryon-Meson states with more than one c quark have not been included.

Σ∗

cπ ND∗ Λcρ Σ∗

cη ∆D Ξ∗

cK ∆D∗ Σcρ Σcω Σ∗

cρ Σ∗

cω ΣD∗

s Σ∗Ds ΞcK
∗ Ξ′

cK
∗ Σcφ Σ∗

cη′ Σ∗D∗

s Σ∗

cφ Ξ∗

cK∗

Σ∗

cπ −2 −
q

4
3

−
√

8 0 1 −
√

2
q

5
3

−
q

4
3

0 −
q

20
3

0 0 0
√

2 −
q

2
3

0 0 0 0 −
q

10
3

ND∗ −
q

4
3

− 4
3

√
6

q

2
9

−
q

16
3

0 −
q

80
9

2
3

−
q

2
9

q

20
9

−
q

10
9

4
3

−
q

4
3

0 0 0 2
3

−
q

20
9

0 0

Λcρ −
√

8
√

6 0 0 0 −1 0 0 −
q

4
3

0 −
q

20
3

0 0 1 −
q

1
3

0 0 0 0 −
q

5
3

Σ∗

cη 0
q

2
9

0 0
q

2
3

−
√

3
q

10
9

0 0 0 0
q

8
9

−
q

2
3

√
3 −1 0 0 −

q

10
9

0 −
√

5

∆D 1 −
q

16
3

0
q

2
3

−4 0 −
q

80
3

−
q

4
3

−
q

8
3

q

5
3

q

10
3

q

16
3

−2 0 0 0
q

4
3

−
q

20
3

0 0

Ξ∗

cK −
√

2 0 −1 −
√

3 0 0 0 −
q

2
3

−
q

1
3

−
q

10
3

−
q

5
3

q

2
3

√
2 2 0 −

q

2
3

0
q

10
3

−
q

10
3

0

∆D∗

q

5
3

−
q

80
9

0
q

10
9

−
q

80
3

0 − 20
3

q

20
9

q

40
9

1
3

q

2
9

q

80
9

−
q

20
3

0 0 0
q

20
9

− 10
3

0 0

Σcρ −
q

4
3

2
3

0 0 −
q

4
3

−
q

2
3

q

20
9

− 2
3

q

32
9

−
q

20
9

−
q

40
9

0 0
q

2
3

−
q

2
9

0 0 0 0 −
q

10
9

Σcω 0 −
q

2
9

−
q

4
3

0 −
q

8
3

−
q

1
3

q

40
9

q

32
9

4
3

−
q

40
9

−
q

20
9

0 0
q

1
3

− 1
3

0 0 0 0 −
q

5
9

Σ∗

cρ −
q

20
3

q

20
9

0 0
q

5
3

−
q

10
3

1
3

−
q

20
9

−
q

40
9

− 10
3

−
q

32
9

0 0
q

10
3

−
q

10
9

0 0 0 0 −
q

50
9

Σ∗

cω 0 −
q

10
9

−
q

20
3

0
q

10
3

−
q

5
3

q

2
9

−
q

40
9

−
q

20
9

−
q

32
9

− 4
3

0 0
q

5
3

−
q

5
9

0 0 0 0 − 5
3

ΣD∗

s 0 4
3

0
q

8
9

q

16
3

q

2
3

q

80
9

0 0 0 0 − 4
3

q

4
3

√
6 −

q

2
9

− 2
3

− 2
3

q

20
9

−
q

20
9

−
q

10
9

Σ∗Ds 0 −
q

4
3

0 −
q

2
3

−2
√

2 −
q

20
3

0 0 0 0
q

4
3

−1 0 −
q

8
3

q

4
3

q

1
3

−
q

5
3

−
q

5
3

q

10
3

ΞcK
∗

√
2 0 1

√
3 0 2 0

q

2
3

q

1
3

q

10
3

q

5
3

√
6 0 0 0 −

q

2
3

0 0 −
q

10
3

0

Ξ′

cK
∗ −

q

2
3

0 −
q

1
3

−1 0 0 0 −
q

2
9

− 1
3

−
q

10
9

−
q

5
9

−
q

2
9

−
q

8
3

0 4
3

−
q

50
9

0
q

40
9

q

10
9

−
q

20
9

Σcφ 0 0 0 0 0 −
q

2
3

0 0 0 0 0 − 2
3

q

4
3

−
q

2
3

−
q

50
9

0 0 −
q

20
9

0
q

10
9

Σ∗

cη′ 0 2
3

0 0
q

4
3

0
q

20
9

0 0 0 0 − 2
3

q

1
3

0 0 0 0
q

5
9

0 0

Σ∗D∗

s 0 −
q

20
9

0 −
q

10
9

−
q

20
3

q

10
3

− 10
3

0 0 0 0
q

20
9

−
q

5
3

0
q

40
9

−
q

20
9

q

5
9

− 5
3

− 1
3

q

2
9

Σ∗

cφ 0 0 0 0 0 −
q

10
3

0 0 0 0 0 −
q

20
9

−
q

5
3

−
q

10
3

q

10
9

0 0 − 1
3

0 −
q

2
9

Ξ∗

cK∗ −
q

10
3

0 −
q

5
3

−
√

5 0 0 0 −
q

10
9

−
q

5
9

−
q

50
9

− 5
3

−
q

10
9

q

10
3

0 −
q

20
9

q

10
9

0
q

2
9

−
q

2
9

− 4
3
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2

TABLE XX: I = 2, J = 3/2, S = 0, C = 1. Baryon-Meson states with more than one c quark have not been included.

Σ∗

cπ ∆D ∆D∗ Σcρ Σ∗

cρ

Σ∗

cπ 2
√

3
√

5
q

4
3

q

20
3

∆D
√

3 0 0 −2
√

5

∆D∗
√

5 0 0
q

20
3

q

1
3

Σcρ
q

4
3

−2
q

20
3

10
3

−
q

20
9

Σ∗

cρ
q

20
3

√
5

q

1
3

−
q

20
9

2
3



3
3

TABLE XXI: I = 0, J = 5/2, S = 0, C = 1. Baryon-Meson states with more than one c quark have not been included.

Σ∗

cρ Ξ∗

cK∗

Σ∗

cρ −2 0

Ξ∗

cK∗ 0 −2



3
4

TABLE XXII: I = 1, J = 5/2, S = 0, C = 1. Baryon-Meson states with more than one c quark have not been included.

∆D∗ Σ∗

cρ Σ∗

cω Σ∗D∗

s Σ∗

cφ Ξ∗

cK∗

∆D∗ 0 2
√

8 0 0 0

Σ∗

cρ 2 0
√

8 0 0 0

Σ∗

cω
√

8
√

8 2 0 0 0

Σ∗D∗

s 0 0 0 0 −2
√

8

Σ∗

cφ 0 0 0 −2 0 −
√

8

Ξ∗

cK∗ 0 0 0
√

8 −
√

8 2



3
5

TABLE XXIII: I = 2, J = 5/2, S = 0, C = 1. Baryon-Meson states with more than one c quark have not been included.

∆D∗ Σ∗

cρ

∆D∗ 0
√

12

Σ∗

cρ
√

12 4
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