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Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, Spain

3Departamento de F́ısica Atómica, Molecular y Nuclear,
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Following a model based on the SU(8) symmetry that treats heavy pseudo-scalars and heavy
vector mesons on an equal footing, as required by heavy quark symmetry, we study the interaction
of baryons and mesons in coupled channels within an unitary approach that generates dynami-
cally poles in the scattering T -matrix. We concentrate in the exotic channels with negative charm
quantum number for which there is the experimental claim of one state.

PACS numbers:

I. INTRODUCTION

To understand the structure of mesons and baryons has been an active topic of research in recent years. One reason
for that is the numerous observations of states that do not fit the usual interpretation of mesons as qq̄ or baryons as
qqq states. Moreover the prospect of many new experiments (like FAIR at GSI or the LHC) opens the possibility that
even more resonances are to be observed in the next years. Among the newly observed states many new charmed
baryon resonances have been found in the last few years [1–5]. There has been in the past claims for narrow baryon
states which would be made of hidden charm [6, 7] and also a claim of an exotic anti-charmed baryon [8].
From the theoretical point of view there has been a lot of success in describing many baryon resonances as dynam-

ically generated states in coupled channels. For instance in [9, 10] a rich spectrum of charmed baryons is generated
dynamically and accommodates many of the experimentally observed states. Moreover, predictions are made in [11]

for the spectrum of hidden charm, anti-charmed, charmed and C = 2 JP = 1
2

−
baryons. In all these cases, the states

are dynamically generated from the interaction of pseudo-scalar mesons with ground state JP = 1
2

+
baryons. In [12]

the interaction of the pseudo-scalar mesons with the ground state JP = 3
2

+
baryons is studied, also giving rise to

many dynamically generated resonances. All these works consider for the interaction Lagrangians based on chiral and
SU(4) flavor symmetry and the KSFR relation. The dynamics behind the interaction is assumed to be the exchange
of vector mesons in the Weinberg-Tomozawa term, while the flavor symmetry is broken by using physical hadron
masses. The interaction of D̄N has been throughly studied in [13] also assuming vector meson exchanges and SU(4)
constrains.
In this work we study the possibility of generating dynamically exotic resonances with negative charm quantum

number. We follow an approach [14] consistent with Heavy Quark Symmetry (HQS). HQS predicts that all types of
spin interactions vanish for infinitely massive quarks: the dynamics is unchanged under arbitrary transformations in
the spin of the heavy quark. As a consequence, the scheme of Ref. [14] takes on an equal footing the heavy vector
and pseudo-scalar mesons.
We briefly present in the next section the theoretical framework used in the model. In Sec. III we present and

discuss on the dynamically generated spectrum and in Sec. IV we summarize our conclusions. Finally, there is an
appendix where we collect the different coupled channel matrices used in this work.

II. FRAMEWORK

We follow here the SU(8) spin flavor scheme of reference [14]. This model is an extension of models based on SU(4)
flavor symmetry with t-channel vector meson exchanges to an SU(8) spin-flavor scheme. Previously used models based
on SU(4) symmetry suffer from the limitation that they do not include heavy pseudo-scalar and heavy vector mesons
on an equal footing. This is not justified from the point of view of HQS, which is the proper spin-flavor symmetry of
QCD if one takes the limit of infinitely heavy quark masses.
In SU(8), the lowest lying baryons are represented by a 120-plet. To properly identify the spin-1/2 and spin-3/2
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baryons with the states of this multiplet, let us first decompose the 120-plet into its inner SU(2)⊗ SU(4) structure:

120 → 202 ⊕ 20′4. (1)

The two 20-plets (202) of SU(4) can now accommodate the spin-1/2 baryons while the four 20′-plets represent the
spin-3/2 baryons. On the other hand the lowest lying mesons in SU(8) are represented by a 63-plet that decomposes
itself in SU(2)⊗ SU(4) as:

63 → 151 ⊕ 153 ⊕ 13. (2)

Note, however that the low lying mesons are constructed by the product of an 8-plet of quarks with its conjugate:

8⊗ 8̄ = 63⊕ 1. (3)

This extra 1 is assigned as the extra pseudo-scalar needed to form the η, η′ and ηc mesons.
There are four possibilities to construct mesonic and baryonic hadronic currents that can couple to a singlet in

order to construct a Lagrangian invariant under SU(8) rotations, but only one of these possibilities reproduces the
SU(3) Weinberg-Tomozawa Lagrangian for the light mesons and baryons [14]:

LSU(8)
WT ∝ ((M † ⊗M)63a ⊗ (B† ⊗B)63)1. (4)

The reduction of this Lagrangian to SU(6) reproduces the Weinberg-Tomozawa Lagrangian used in [15–17].
The model has two main flavor symmetry breaking sources, first by the use of physical masses for all the mesons

and baryons and second by the use of different meson decay constants. The values for the decay constants of the
mesons we use are:

fDs
= 193.7 MeV, fD = fD∗ = fD∗

s

= 157.4 MeV. (5)

All meson-baryon pairs with the same CSIJ quantum numbers (Charm, Strangeness, Isospin and total angular
momentum) span a coupled channel space. The s-wave tree level amplitudes between two channels for each CSIJ
sector is given by:

V CSIJ
ij = ξCSIJ

ij

2
√
s−Mi −Mj

4fifj

×
√

Ei +Mi

2Mi

√

Ej +Mj

2Mj

, (6)

where
√
s is the center of mass energy of the system, Mi is the mass of the baryon in the ith-channel, Ei is the

energy of the C.M. baryon in the ith-channel, fi is the decay constant of the meson in the ith-channel and ξCSIJ
ij are

coefficients coming from the SU(8) group structure of the couplings. Tables for the ξ coefficients can be found in the
appendix.
We use this matrix V as kernel to calculate the T -matrix:

TCSIJ = (1− V CSIJGCSIJ)−1V CSIJ , (7)

where GCSIJ is a diagonal matrix containing the two particle propagators for each channel. Explicit expressions for
the loop functions can be found in the appendix of [18] for the different possible Riemann sheets.
The loop function diverges logarithmically and therefore must be regularized. We choose to regularize it by a

subtraction constant such that [11, 12]

GCSIJ
ii (

√
s = µCSIJ) = 0, (8)

and we choose µCSIJ to be
√

m2
th +M2

th where mth and Mth are respectively the masses of the meson and baryon in
the lowest threshold in the sector CSIJ .
With all these ingredients we look now for poles of the T -matrix. Poles on the first Riemann sheet below threshold

are interpreted as bound states. Poles appearing in the second Riemann sheet of open channels are interpreted as
resonances and poles on the second Riemann sheet, over the real axis but for closed channels are interpreted as virtual
states. Poles appearing in different positions than the ones mentioned can not be associated with physical states and
are, therefore, artifacts that we call non-physical states.
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For bound states and resonances the real part of the pole position is associated with its mass and the imaginary
part of the poles interpreted as resonances is associated with one half of its width. Other information that one can
extract from the poles of the T -matrix are the couplings of the states to their coupled channels. Close to a pole the
T -matrix can be written as:

TCSIJ
ij (z) =

gigj
z − zpole

, (9)

where zpole is the pole position in the
√
s plane and the gk is the dimensionless coupling of the resonance to channel

k. So, by calculating the residues of the T -matrix at some pole, one obtains the product of the couplings gigj.

III. RESULTS

First we analyze the underlying SU(3) structure of the interaction. The JP = 1
2

+
20-plet of baryons is composed

by four SU(3) multiplets: an octet with C = 0, which is identified with the low lying octet of baryons to which the
proton and the neutron belong, an anti-triplet, a sextet and a triplet. The anti-triplet and the sextet have C = 1
quantum number. The anti-triplet is made by a S = 0 isospin singlet (Λc) and an S = −1 doublet (Ξc) while the
sextet is composed by an S = −2 singlet (Ωc), a S = −1 doublet (Ξ′

c) and an S = 0 triplet (Σc). Finally there is the
triplet with C = 2 to which a S = −1 singlet (Ωcc) and an S = 0 doublet (Ξcc) belong.

20SU(4) →





3cc
3̄c ⊕ 6c

8





SU(3)

. (10)

The JP = 3
2

+
20′-plet of baryons is composed also by four SU(3) multiplets: a decuplet with C = 0 to which the low

lying I = 3
2 ∆ belongs, a sextet with C = 1, a triplet with C = 2 and a singlet with C = 3.

20′SU(4) →







1∗ccc
3∗cc
6∗c
10∗







SU(3)

. (11)

The ∗ in a baryon multiplet indicates it is a JP = 3
2

+
baryon, and we use a bar to denote the conjugate representations.

The pseudo-scalar and vector mesons have similar structure, they belong to 15-plets of SU(4). These 15-plets break
down into four SU(3) multiplets namely, a triplet, an octet, a singlet and an anti-triplet. The octets have null charm
quantum number and are identified with the low lying pseudo-scalar and vector mesons (π, K, η, ρ, K∗ and ω). We
use pure c̄c wave functions for lowest charmonium states ηc and J/ψ and mix with the physical η, η′ and ω, φ mesons,
respectively, to build the charmless singlet present in the SU(4) 15 plet. The anti-triplets are identified with the D
doublets and the Ds. The triplets are the antiparticles of the anti-triplets.

15SU(4) →





3̄c
8⊕ 1
3c̄





SU(3)

. (12)

To differentiate the pseudo-scalars and the vector mesons we write a ∗ after the number indicating the vector multiplet.
The only way to have meson baryon systems with C = −1 is to couple a C = 0 baryon with a C = −1 meson.

Considering the angular momentum of the particles we have the following options1:

• For J = 1
2

8⊗ 3c̄ = 3⊕ 6̄⊕ 15

8⊗ 3∗c̄ = 3⊕ 6̄⊕ 15

10∗ ⊗ 3∗c̄ = 15⊕ 15′

1 The baryon multiplet comes first in the irrep products.
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• For J = 3
2

8⊗ 3∗c̄ = 3⊕ 6̄⊕ 15

10∗ ⊗ 3c̄ = 15⊕ 15′

10∗ ⊗ 3∗c̄ = 15⊕ 15′

• For J = 5
2

10∗ ⊗ 3∗c̄ = 15⊕ 15′

The study of the eigenvalues of the ξ matrices in Eq. (6) for the different sectors indicates whether a given multiplet
is attractive or repulsive and therefore in which sectors and how many poles one expects to generate [19, 20]. For
J = 1

2 the two triplets, one 6̄-plet, two 15-plets and the 15′-plet are attractive. In the J = 3
2 sector the triplet, the

6̄-plet, two 15-plets and one 15′-plet are attractive and in the J = 5
2 only the 15-plet is attractive.

In order to track down each pole to a definite SU(3) multiplet we start from an SU(3) symmetric scheme by setting
the masses of all particles belonging to the same SU(3) multiplet to a common value. In this SU(3) limit we use
the following values for the masses of the mesons, which are approximately the average value of the mass2 in each
multiplet, m3c̄=1.9 GeV and m3∗

c̄

=2.05 GeV and for the baryons, m8=1 GeV and m10∗=1.4 GeV.
To gradually break SU(3) symmetry we write the mass of the hadrons as a function of a parameter x such that

m(x) = m̄+ x(mphys − m̄), (13)

where m̄ is the mass of the hadron in the SU(3) limit and mphys is the physical mass of the particle. In this way, we
vary x between 0 and 1, 0 being the SU(3) limit and 1 the real world. We also change fDs

to gradually approach the
value of fD when restoring the SU(3) symmetry.

We show in Tables I, II and III the pole positions we find for the JP = 1
2

−
, JP = 3

2

−
and JP = 5

2

−
sectors,

respectively. We also show in the tables the two channels to which each resonance has the strongest couplings, those
should be the most important components in the wave function of each resonance [21].
Some of the resonances are bound by energies of the order of 200-300 MeV in relation to the thresholds of their

main channels. Our approach is based in the Weinberg-Tomozawa term of Eq. (4). This Lagrangian is roughly the
first order term in a low momentum expansion. The deeper the bound states are, the more relevant higher absolute
values of the momentum (because of phase space) become. Therefore, we expect theoretical uncertainties affecting to
our results for such states would be bigger, since higher order Lagrangians should give sizable corrections.
On the other hand some of the states which we obtain are bound by 150 MeV or less. Our results for such states

are expected to be more precise, and we will focus on these states in the next subsections.

A. The JP = 1

2

−

states

The JP = 1
2

−
states are shown in Table I. With exception of the resonance in the S = 0, I = 2 sector, all of the

resonances coming from the 15′-plet are too bound for our model to give precise numerical predictions. This happens
also for the resonances coming from one of the 15-plets. This is due to the fact that for these 15 and 15′ multiplets,
the poles are generated from the interaction between the 10∗ (baryon decuplet) with the 3∗ (anti-charmed vector
mesons). And this is different from the other 15-plet that in the SU(3) limit appears for

√
s = (2945.7− i36.4) MeV,

where the poles come basically from the coupling 8 ⊗ 3∗ (JP = 1
2

+
baryon decuplet with the vector meson triplet).

So, the two 15-plets have different structures.
Lighter and less bound resonances are the ones belonging to the two triplets and to the anti-sextet. Among these

resonances we call the attention to the S = 0, I = 0 member of the sextet, generated by the ND̄ and ND̄∗ coupled

2 For the physical masses of the mesons we use, mD=1.867 GeV, mDs
=1.968 GeV, mD∗=2.0085 GeV and mD∗

s

=2.112 GeV and for the

physical masses of the baryons we use, mN=0.939 GeV, mΛ=1.116 GeV, mΣ=1.193 GeV, mΞ=1.318 GeV, m∆=1.210 GeV, mΣ∗=

1.385 GeV, mΞ∗=1.533 GeV and mΩ=1.672 GeV.
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TABLE I: Pole positions in the JP = 1

2

−

sector. In the column SU(3) Irrep / pole, we show the pole position in the SU(3)
symmetric limit. The (*) indicates a non-physical pole (placed in the second Riemann sheet below threshold). The column
Main Channels shows the channels to which the resonance couples more strongly and in the B1 & B2 column, we show the
energy difference between the threshold of each of these channels and the resonance mass.

SU(3) Irrep S I Re(
√
s) Im(

√
s) Main B1 & B2

Pole [MeV] [MeV] [MeV] Channels [MeV]

0 2 3125.7 0 ∆D̄∗ 93

15′ −1 3/2 3208.5 −0.5 Σ∗D̄∗, ∆D̄∗

s 185 & 113

−2 1 3309.9 −0.3 Ξ∗D̄∗, Σ∗D̄∗

s 231 & 187

3242.7 −3 1/2 3402.0 −0.2 Ξ∗D̄∗

s , ΩD̄
∗ 243 & 278

−4 0 3543.2 0 ΩD̄∗

s 241

0 1 2872.6 −45.6 ND̄∗, ∆D̄∗ 75 & 346

15 −1 1/2 2995.8 −3.6 ΣD̄, ΛD̄∗ 65 & 129

3/2 3048.7 0 ΣD̄∗, ΣD̄ 153 & 12

2945.7 −2 0 3109.0 −12.0 ΛD̄∗

s , ΞD
∗ 119 & 76

-i 36.4 1 3160.9 0 ΞD̄∗, ΣD̄s 166 & <1

−3 1/2 3267.2 0 ΞD̄∗

s , ΞD̄s 163 & 19

0 1 3002.0 −52.4 ∆D̄∗, ND̄ 216 & −195

15 −1 1/2 3104.1 −27.5 Σ∗D̄∗, ΛD̄∗ 289 & 20

3/2 3135.0 −5.3 ∆D̄∗

s , ΣD̄
∗ 187 & 66

3124.5 −2 0 3216.4 −21.2 Ξ∗D̄∗, ΞD̄∗ 325 & 110

-i 57.8 1 3239.2 −12.4 Σ∗D̄∗

s , Ξ
∗D̄∗ 258 & 302

−3 1/2 3337.0 −16.6 ΩD̄∗, Ξ∗D̄∗

s 343 & 308

0 0 2805.0 0 ND̄, ND̄∗ 1 & 142

6̄ −1 1/2 2971.7 −3.1 ND̄∗

s , ΛD̄ 79 & 12

−2 1 3126.0 0 ΞD̄, ΣD̄∗

s 59 & 179
2890.2

3 −1 1/2 2861.0(*) −74.2 ND̄s, ΛD̄
∗ 46 & 263

−2 0 3080.1 0 ΞD̄, ΛD̄s 105 & 4
2868.9

3 −1 1/2 3049.3 −8.2 ΣD̄∗, ND̄∗

s 152 & 2

−2 0 3169.2 −6.7 ΞD̄∗, ΛD̄∗

s 157 & 59
2994.0

channel dynamics. This state is bound by only 1 MeV, and it is one of our more interesting predictions. Moreover, it
appears as a consequence of treating heavy pseudo-scalars and heavy vector mesons on an equal footing, as required
by HQS. Indeed, if one looks at the coupled channel matrix, ξij , in Table XXXI, one finds the diagonal ND̄ → ND̄
entry is zero, which means that no interaction in this sector would be generated if the ND̄∗ channel is not considered,
as it was the case in Ref. [11]. However, the inclusion of this latter channel gives rise to an attractive eigenvalue

(λ = −2) for the eigenvector:
√
3
2 |ND̄〉+ 1

2 |ND̄∗〉, which originates the bound state reported in Table I.

The breaking of the SU(3) symmetry through the parameter x of Eq. (13) makes the S = −1, I = 1
2 pole, which

is member of the lightest of the triplets, first approach the ND̄s threshold up to x=0.55 but, instead of crossing it
at some point and becoming a resonance able to decay into this channel, it turns into a virtual state. That is, it
moves into the second Riemann sheet, and stays below threshold moving away from it over the real axis. However,
for values of x bigger than 0.868, it starts acquiring an imaginary part and can no longer be interpreted as a physical
state. This behaviour is shown in Fig. 1, where we present a plot of the path that this pole describes while breaking
the SU(3) symmetry.
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TABLE II: Same as Table I for the JP = 3

2

−

sector.

SU(3) Irrep S I Re(
√
s) Im(

√
s) Main B1 & B2

Pole [MeV] [MeV] [MeV] Channels [MeV]

0 2 3061.1 0 ∆D̄∗, ∆D̄ 157 & 16

15′ −1 3/2 3189.7 −5.6 Σ∗D̄∗, Σ∗D̄ 204 & 63

−2 1 3326.5 −0.1 Ξ∗D̄∗, Σ∗D̄s 215 & 26

3221.5 −3 1/2 3433.8 <0.1 ΩD̄∗, ΞD̄∗

s 247 & 4

−4 0 3533.4 0 ΩD̄∗

s , ΩD̄s 251 & 107

0 1 2978.6 −16.0 ∆D̄, ND̄∗ 99 & −31

15 −1 1/2 3116.6 −0.6 ΣD̄∗, Σ∗D̄ 84 & 136

3/2 3151.8 0 ∆D̄s, Σ
∗D̄ 26 & 101

3115.6 −2 0 3224.1 0 Ξ∗D̄, ΞD̄∗ 176 & 102

-i 29.3 1 3260.9 0 Ξ∗D̄, Ξ∗D̄∗ 140 & 281

−3 1/2 3346.3 0 ΞD̄∗

s , ΩD̄ 84 & 193

0 1 3066.8 −16.8 ∆D̄∗, ND̄∗ 152 & −119

15 −1 1/2 3190.2 −9.3 Σ∗D̄∗, Σ∗D̄ 203 & 62

3/2 3175.8 0 ∆D̄∗

s , Σ
∗D̄ 146 & 77

3216.4 −2 0 3296.1 −4.6 Ξ∗D̄∗, Ξ∗D̄ 245 & 104

-i 11.8 1 3295.9 0 Σ∗D̄∗

s , Ξ
∗D̄ 201 & 105

−3 1/2 3397.3 0 Ξ∗D̄∗

s , ΩD̄
∗ 248 & 283

0 0 2922.1 0 ND̄∗ 25

6̄ −1 1/2 3029.7 0 ND̄∗

s , ΛD̄
∗ 21 & 95

−2 1 3206.2 0 ΣD̄∗

s , ΞD̄
∗ 99 & 120

3008.1

3 −1 1/2 3097.5 −1.8 ΣD̄∗, Σ∗D̄ 104 & 155

−2 0 3181.6 0 ΞD̄∗, ΛD̄∗

s 145 & 46
3008.1

This pole and its S = −2 companion had already been predicted in [11]. In that work only the interaction of

pseudo-scalars and JP = 1
2

+
baryons were considered and the states obtained there turn out to be much more bound

(binding energies of about 130-250 MeV) than in the present approach. In this case, vector meson degrees of freedom
play a minor role, and the origin of the discrepancy now should be traced back to our pattern of SU(4) flavour
breaking, which makes our interaction weaker in this sector by a factor (fπ/fD)

2 than that used in [11]. For the
sextet there is also predictions of pentaquarks based in the Skyrme model in [22]. The masses of the states in that
paper are 100 MeV lower than the ones we find with our approach. We also show in Tables IV, V and VI the couplings
of the members of the anti-sextet and the two triplets to the different channels that appear in their dynamics.

B. The JP = 3

2

−

states

The JP = 3
2

−
states are shown in Table II. The situation here is similar to the case of the JP = 1

2

−
states. The

states in the 15′-plet and the 15-plets are strongly bound while the poles in the anti-sextet and the triplet turn out
to be less bound. In any case one should notice that one of the members of the heaviest 15-plet is a candidate for the
claimed anti-charmed pentaquark in [8]. The pentaquark was claimed to be seen in D∗−p and D∗+p̄ spectrum with
a mass m = 3099 MeV. There is, though, controversy about the existence of this state since other experiments failed
to confirm it [24]. The S = 0, I = 1 pole at position

√
s = (3066.8− i16.8) MeV is basically a bound state of ∆D̄∗

and has sizable couplings to ∆D̄ and ND̄∗. The ND̄∗ channel is open and is responsible for the ∼ 30 MeV width of
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TABLE III: Same as Table I for the JP = 5

2

−

sector.

SU(3) Irrep S I Re(
√
s) Im(

√
s) Main B1 & B2

Pole [MeV] [MeV] [MeV] Channels [MeV]

0 1 3125.7 0 ∆D̄∗ 93

15 −1 1/2 3252.4 0 Σ∗D̄∗ 141

3/2 3224.6 0 ∆D̄∗

s , Σ
∗D̄∗ 97 & 169

3298.2 −2 0 3444.4 0 Ξ∗D̄∗ 201

1 3349.0 0 Ξ∗D̄∗, Σ∗D̄∗

s 192 & 148

−3 1/2 3455.7 0 ΩD̄∗, Ξ∗D̄∗

s 225 & 189

-80

-60

-40

-20

 0

 2840  2860  2880  2900  2920

Im
(E

) 
[M

eV
]

Re(E) [MeV]

x=0.0 x=0.55
x=0.868

x=1.0

1st Rieman Sheet
2nd Rieman Sheet

FIG. 1: Path followed by the JP = 1

2

−

, S = −1, I = 1

2
pole marked with an ∗ in Table I while changing the x parameter

between 0 and 1. Around x = 0.55 the pole goes from the first to the second Riemann sheet and around x = 0.868 it starts
moving away from the real axis.

the resonance. The state claimed in [8] has been observed in the decay mode

ΘC̄ → ND̄∗ → ND̄π, (14)

where the D̄∗ has been identified from its decay first to a soft pion with a D̄0 meson and the subsequent decay of
the D̄0 to a K−π+. Our dynamically generated state has other two possible decay channels induced by its coupling
to channels involving the ∆(1232) resonance, which is not a stable particle. Thus, the anti-charmed resonance can

TABLE IV: Couplings of the poles belonging to the anti-sextet of Table I.

S = 0, I = 0 S = −1, I = 1/2 S = −2, I = 1

Channel |gi|

ND̄ 1.5
ND̄∗ 1.4

Channel |gi|

ND̄s 0.7
ΛD̄ 2.0
ND̄∗

s 2.5
ΣD̄ 1.2
ΛD̄∗ 0.5
ΣD̄∗ 0.8
Σ∗D̄∗ 1.0

Channel |gi|

ΣD̄s 1.1
ΞD̄ 2.7
ΣD̄∗

s 2.6
ΞD̄∗ 0.3
Σ∗D̄∗

s 0.7
Ξ∗D̄∗ 0.6
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TABLE V: Couplings of the physical pole belonging to the lightest of the triplets of Table I.

S = −2, I = 0

Channel |gi|

ΛD̄s 1.4
ΞD̄ 2.8
ΛD̄∗

s 0.1
ΞD̄∗ <0.1
Ξ∗D̄∗ <0.1

TABLE VI: Couplings of the poles belonging to the heaviest of the triplets of Table I.

S = −1, I = 1/2 S = −2, I = 0

Channel |gi|

ND̄s 0.5
ΛD̄ 0.9
ND̄∗

s 1.8
ΣD̄ 0.1
ΛD̄∗ 1.2
ΣD̄∗ 3.2
Σ∗D̄∗ 1.7

Channel |gi|

ΛD̄s 0.9
ΞD̄ 0.6
ΛD̄∗

s 2.0
ΞD̄∗ 4.1
Ξ∗D̄∗ 1.6

decay to D̄ or D̄∗ plus a virtual ∆, which subsequently would decay into a πN pair. To take this possibility into
account, we follow the prescription used in [23, 25] and convolute the loop function of the channels with the ∆ with
the spectral function of this resonance:

G̃(
√
s,m,M∆) =

1

N

∫ (m∆+2Γ∆)2

(m∆−2Γ∆)2
dM̃2S(M̃2,m∆,Γ∆)

× G(
√
s,m, M̃) (15)

N =

∫ (m∆+2Γ∆)2

(m∆−2Γ∆)2
dM̃2S(M̃2,m∆,Γ∆)

S(M̃2,m∆,Γ∆) = − 1

π
Im

(

1

M̃2 −m2
∆ + im∆Γ∆

)

. (16)

We have also changed the subtraction point in order to get the mass of this resonance closer to the claimed value
of 3100 MeV. We did that by increasing 10% the value of the subtraction point. The new pole position, taking into
account the 120 MeV width of the ∆ and the slightly changed subtraction point µ is

√
s = (3098.2 − i38.0) MeV.

We note though that our resonance has a much bigger width (∼ 70 MeV) than the one observed experimentally
(12± 3 MeV). However, our dynamically generated state has now another two decay mechanisms apart from the one
in Eq. (14), namely

ΘC̄ → ∆D̄ → NπD̄ (17)

ΘC̄ → ∆D̄∗ → NπD̄π. (18)

The decay in Eq. (17) has the same particles in the final state that in Eq. (14), with the difference that the pion in
one case is coming from the decay of the D∗ and therefore has low momentum, while in the other channel it comes
from a ∆ and may have higher momentum. The experimental search made in [8] looked only for pions in order to
reconstruct a D∗ and may have missed the other events where the pion comes from a ∆.
Observing the Table II, one actually sees that there are other poles with S = 0 that can decay to ND̄∗, but their

masses do not agree well with that of the observed experimental state. On the other hand, we see also that some other
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TABLE VII: New pole positions for the resonances affected by the consideration of the ∆ and Σ∗ widths.

SU(3) Irrep S I Re(
√
s) Im(

√
s)

Pole [MeV] [MeV] [MeV]

15′ 0 2 3114.9 −13.8

JP = 1/2− −1 3/2 3206.6 −2.4

15′ 0 2 3055.7 −19.1

JP = 3/2− −1 3/2 3187.2 −16.9

−2 1 3324.1 −2.5
15 0 1 2964.0 −26.0

JP = 3/2− −1 3/2 3156.1 −19.6

15 0 1 3062.4 −26.8

JP = 3/2− −1 3/2 3168.7 −3.9

15 0 1 3114.9 −13.8

JP = 5/2− −1 3/2 3216.0 −9.9

states from the table may be affected by the consideration of the ∆ or Σ∗ widths. We show in Table VII, the new pole
positions of the resonances sizable affected by considering the widths of the ∆ (Γ∆ =120 MeV) and Σ∗ (ΓΣ∗=35 MeV).

For JP = 1
2

−
and JP = 5

2

−
only two states are notably affected in each case but in the case of JP = 3

2

−
many more

states become broader because of the consideration of the decay of its unstable components. We can also compare
here our states with previous predictions from [22]. In that paper, with the Skyrme model, a 15-plet of pentaquarks
was found. The masses of the pentaquark states are between 100 and 200 MeV lower than the masses of the states
belonging to the lighter 15-plet that we generate dynamically. Predictions for a negative charmed 15-plet had also

been made in [12]. In that paper only the interaction of pseudo-scalar mesons with the ground state of JP = 3
2

+

baryons have been considered, while in the present work also the vector mesons and the JP = 1
2

+
baryons are taken

into account. The results obtained in that paper are to be compared with the light 15-plet obtained in the present
work, since this multiplet is mainly coming from the 10∗ ⊗ 3, as can be seen from Table VIII where the couplings
of the states to the different channels are given. Also here the states obtained with the SU(8) model are 100-200
MeV heavier (less bound) than in the previous work [12], which did not considered the heavy quark symmetry. Part
of this difference comes here again because our interactions are weaker than those used in this latter reference by a
factor of the order of (fπ/fD)

2. The couplings of the resonances can be also compared in both works. The strength
of the couplings in the present approach are mostly in the channels coming from the 10∗ ⊗ 3 interaction but there is
a sizeable mixing with states coming from the 10∗ ⊗ 3∗ or 8⊗ 3∗ in some sectors. Moreover, since our states are less
bound, the total amount of strength in the couplings is smaller [21] than in [12].
We also compile in Tables IX and X the couplings of the resonances belonging to the anti-sextet and the triplet

from Table II. The poles of the anti-sextet are placed relatively close to threshold, where the current approach might
be more appropriate, and their dynamics is mostly controlled by channels involving vector meson degrees of freedom
not considered up to now. On the other hand, they are sufficiently bound (tens of MeV) to expect their existence to
be guarantied under reasonable changes of the employed renormalization scheme or of the pattern of SU(8) symmetry
breaking. Finally, in Table XI we present the couplings of the poles belonging to the heaviest 15-plet of Table II.

C. The JP = 5

2

−

states

The JP = 5
2

−
states found within our approach are shown in Table III. There is only one possible combination

of multiplets with quantum numbers JP = 5
2

−
which is the 10∗ ⊗ 3∗. From this interaction there is one attractive

15-plet. Most of the states in this sectors are bound by more than 100 MeV. Those are novel predictions from the
present approach. We display in Table XII the couplings of the generated resonances to the different channels.
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TABLE VIII: Couplings of the poles belonging to the lightest 15-plet of Table II.

S = 0, I = 1 S = −1, I = 1/2 S = −1, I = 3/2

Channel |gi|

ND̄∗ 1.8
∆D̄ 4.1
∆D̄∗ 1.6

Channel |gi|

ND̄∗

s 0.3
ΛD̄∗ 0.6
ΣD̄∗ 3.0
Σ∗D̄ 2.8
Σ∗D̄∗ 0.6

Channel |gi|

∆D̄s 2.2
ΣD̄∗ 1.6
Σ∗D̄ 1.9
∆D̄∗

s 0.3
Σ∗D̄∗ 1.2

S = −2, I = 0 S = −2, I = 1 S = −3, I = 1/2

Channel |gi|

ΛD̄∗

s 0.6
ΞD̄∗ 2.3
Ξ∗D̄ 3.5
Ξ∗D̄∗ 0.8

Channel |gi|

ΣD̄∗

s 1.1
ΞD̄∗ 1.3
Σ∗D̄s 1.6
Ξ∗D̄ 2.9
Σ∗D̄∗

s 0.4
Ξ∗D̄∗ 1.9

Channel |gi|

ΞD̄∗

s 1.9
Ξ∗D̄s 1.1
ΩD̄ 3.5
Ξ∗D̄∗

s 0.6
ΩD̄∗ 1.5

TABLE IX: Couplings of the poles belonging to the anti-sextet of Table II.

S = 0, I = 0 S = −1, I = 1/2 S = −2, I = 1

Channel |gi|

ND̄∗ 3.4

Channel |gi|

ND̄∗

s 2.9
ΛD̄∗ 2.0
ΣD̄∗ 0.3
Σ∗D̄ 0.5
Σ∗D̄∗ 0.4

Channel |gi|

ΣD̄∗

s 3.2
ΞD̄∗ 3.0
Σ∗D̄s <0.1
Ξ∗D̄ <0.1
Σ∗D̄∗

s <0.1
Ξ∗D̄∗ <0.1

IV. CONCLUSIONS

In this work we have analyzed the spectrum of dynamically generated resonances from the interaction of non-
charmed baryons with negative charmed mesons. In order to construct the interaction we followed a model based on
the SU(8) symmetry that respects the heavy quark symmetry of the strong interactions in the charm sector. The
large spin–flavor symmetry is actually broken by the use of physical masses for the hadrons and the decay constant
of the D mesons, fD and fDs

, instead of fπ in the vertices.
Within the present approach we find a very rich spectrum of exotic baryons with negative charm quantum number.

Such states cannot be constructed in the usual interpretation for the baryons whose structure should be made of three

quarks. With JP = 1
2

−
we find 6 SU(3) multiplets of resonances, namely a 15′-plet, two 15-plets, an anti-sextet and

two triplets. For JP = 3
2

−
our model generates 5 SU(3) multiplets, a 15′-plet, two 15-plets, an anti-sextet and a

triplet. Finally for JP = 5
2

−
the model generates a single 15-plet.

The results of the present approach were compared with previous works. The SU(8) model generates the multiplets
that had already been predicted in [11, 12, 22], and the states obtained here are around 100-200 MeV heavier than
the exotic states obtained in previous works. In addition, the model generates new multiplets on top of the ones
predicted before. This is a consequence of the inclusion of many more channels, as required to enforce the heavy
quark symmetry in the charm sector.
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TABLE X: Couplings of the poles belonging to the triplet of Table II.

S = −1, I = 1/2 S = −2, I = 0

Channel |gi|

ND̄∗

s 0.5
ΛD̄∗ 1.8
ΣD̄∗ 2.8
Σ∗D̄ 2.1
Σ∗D̄∗ 0.9

Channel |gi|

ΛD̄∗

s 2.5
ΞD̄∗ 3.2
Ξ∗D̄ 1.1
Ξ∗D̄∗ 0.7

TABLE XI: Couplings of the poles belonging to the heaviest 15-plet of Table II.

S = 0, I = 1 S = −1, I = 1/2 S = −1, I = 3/2

Channel |gi|

ND̄∗ 1.3
∆D̄ 1.2
∆D̄∗ 4.4

Channel |gi|

ND̄∗

s 0.6
ΛD̄∗ 0.8
ΣD̄∗ 0.5
Σ∗D̄ 1.5
Σ∗D̄∗ 4.3

Channel |gi|

∆D̄s 0.1
ΣD̄∗ 1.0
Σ∗D̄ 1.7
∆D̄∗

s 3.9
Σ∗D̄∗ 0.6

S = −2, I = 0 S = −2, I = 1 S = −3, I = 1/2

Channel |gi|

ΛD̄∗

s 0.7
ΞD̄∗ 0.8
Ξ∗D̄ 1.6
Ξ∗D̄∗ 4.3

Channel |gi|

ΣD̄∗

s 0.7
ΞD̄∗ 0.9
Σ∗D̄s 0.4
Ξ∗D̄ 1.4
Σ∗D̄∗

s 4.0
Ξ∗D̄∗ 1.0

Channel |gi|

ΞD̄∗

s 1.2
Ξ∗D̄s 0.4
ΩD̄ 1.4
Ξ∗D̄∗

s 3.4
ΩD̄∗ 2.6

TABLE XII: Couplings of the poles belonging to the 15-plet of Table III.

S = 0, I = 1 S = −1, I = 1/2 S = −1, I = 3/2

Channel |gi|

∆D̄∗ 4.2

Channel |gi|

Σ∗D̄∗ 4.5

Channel |gi|

∆D̄∗

s 3.8
Σ∗D̄∗ 2.3

S = −2, I = 0 S = −2, I = 1 S = −3, I = 1/2

Channel |gi|

Ξ∗D̄∗ 4.8

Channel |gi|

Σ∗D̄∗

s 3.3
Ξ∗D̄∗ 3.3

Channel |gi|

Ξ∗D̄∗

s 2.4
ΩD̄∗ 4.1
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There has been one experimental claim for an anti-charmed baryon in [8]. One of the dynamically generated states
found within the present approach could be a candidate for the anti-charmed baryon experimentally claimed in [8],
although with a larger width. In this case, we have also shown that there could be other decay channels competing
with the one analyzed in [8].
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Appendix A: The ξCSIJ
ij matrices for C = −1

TABLE XIII: C = −1, S = −4, I = 0, J = 1/2.

ΩD̄∗

s

ΩD̄∗

s −2

TABLE XIV: C = −1, S = −4, I = 0, J = 3/2.

ΩD̄s ΩD̄∗

s

ΩD̄s 3
√
15

ΩD̄∗

s

√
15 1

TABLE XV: C = −1, S = −4, I = 0, J = 5/2.

ΩD̄∗

s

ΩD̄∗

s 6
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TABLE XVI: C = −1, S = −3, I = 1/2, J = 1/2.

ΞD̄s ΞD̄∗

s Ξ∗D̄∗

s ΩD̄∗

ΞD̄s 2
√

16

3

√

8

3
−
√
8

ΞD̄∗

s

√

16

3
− 2

3

√

8

9
−
√

8

3

Ξ∗D̄∗

s

√

8

3

√

8

9
− 4

3
−
√

4

3

ΩD̄∗ −
√
8 −

√

8

3
−
√

4

3
0

TABLE XVII: C = −1, S = −3, I = 1/2, J = 3/2.

ΞD̄∗

s Ξ∗D̄s ΩD̄ Ξ∗D̄∗

s ΩD̄∗

ΞD̄∗

s
10

3
−
√

4

3
2

√

20

9
−
√

20

3

Ξ∗D̄s −
√

4

3
2

√
3

√

20

3

√
5

ΩD̄ 2
√
3 0

√
5 0

Ξ∗D̄∗

s

√

20

9

√

20

3

√
5 2

3

√

1

3

ΩD̄∗ −
√

20

3

√
5 0

√

1

3
0

TABLE XVIII: C = −1, S = −3, I = 1/2, J = 5/2.

Ξ∗D̄∗

s ΩD̄∗

Ξ∗D̄∗

s 4
√
12

ΩD̄∗
√
12 0

TABLE XIX: C = −1, S = −2, I = 0, J = 1/2.

ΛD̄s ΞD̄ ΛD̄∗

s ΞD̄∗ Ξ∗D̄∗

ΛD̄s 1
√
3

√
3 1

√
8

ΞD̄
√
3 −1 1

√

1

3

√

8

3

ΛD̄∗

s

√
3 1 −1

√

1

3

√

8

3

ΞD̄∗ 1
√

1

3

√

1

3
− 5

3

√

8

9

Ξ∗D̄∗
√
8

√

8

3

√

8

3

√

8

9

2

3

TABLE XX: C = −1, S = −2, I = 0, J = 3/2.

ΛD̄∗

s ΞD̄∗ Ξ∗D̄ Ξ∗D̄∗

ΛD̄∗

s 2
√

16

3
−2

√

20

3

ΞD̄∗

√

16

3
− 2

3
−
√

4

3

√

20

9

Ξ∗D̄ −2 −
√

4

3
−1 −

√

5

3

Ξ∗D̄∗

√

20

3

√

20

9
−
√

5

3
− 1

3

TABLE XXI: C = −1, S = −2, I = 0, J = 5/2.

Ξ∗D̄∗

Ξ∗D̄∗ −2
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TABLE XXII: C = −1, S = −2, I = 1, J = 1/2.

ΣD̄s ΞD̄ ΣD̄∗

s ΞD̄∗ Σ∗D̄∗

s Ξ∗D̄∗

ΣD̄s 1 1 −
√

1

3

√

25

3

√

8

3
−
√

8

3

ΞD̄ 1 1
√

25

3
−
√

1

3

√

8

3
−
√

8

3

ΣD̄∗

s −
√

1

3

√

25

3

5

3
− 7

3

√

8

9
−
√

8

9

ΞD̄∗

√

25

3
−
√

1

3
− 7

3

5

3

√

8

9
−
√

8

9

Σ∗D̄∗

s

√

8

3

√

8

3

√

8

9

√

8

9
− 2

3
− 4

3

Ξ∗D̄∗ −
√

8

3
−
√

8

3
−
√

8

9
−
√

8

9
− 4

3
− 2

3

TABLE XXIII: C = −1, S = −2, I = 1, J = 3/2.

ΣD̄∗

s ΞD̄∗ Σ∗D̄s Ξ∗D̄ Σ∗D̄∗

s Ξ∗D̄∗

ΣD̄∗

s
2

3

8

3
−
√

4

3

√

4

3

√

20

9
−
√

20

9

ΞD̄∗ 8

3

2

3
−
√

4

3

√

4

3

√

20

9
−
√

20

9

Σ∗D̄s −
√

4

3
−
√

4

3
1 2

√

5

3

√

20

3

Ξ∗D̄
√

4

3

√

4

3
2 1

√

20

3

√

5

3

Σ∗D̄∗

s

√

20

9

√

20

9

√

5

3

√

20

3

1

3

2

3

Ξ∗D̄∗ −
√

20

9
−
√

20

9

√

20

3

√

5

3

2

3

1

3

TABLE XXIV: C = −1, S = −2, I = 1, J = 5/2.

Σ∗D̄∗

s Ξ∗D̄∗

Σ∗D̄∗

s 2 4
Ξ∗D̄∗ 4 2

TABLE XXV: C = −1, S = −1, I = 1/2, J = 1/2.

ND̄s ΛD̄ ND̄∗

s ΣD̄ ΛD̄∗ ΣD̄∗ Σ∗D̄∗

ND̄s 0
√

3

2
0

√

3

2

√

9

2
−
√

1

2
2

ΛD̄
√

3

2
1

√

9

2
0 0

√
3

√
6

ND̄∗

s 0
√

9

2
0 −

√

1

2
−
√

3

2

√

25

6

√

4

3

ΣD̄
√

3

2
0 −

√

1

2
−1

√
3 −

√

4

3

√

2

3

ΛD̄∗

√

9

2
0 −

√

3

2

√
3 1 −2

√
2

ΣD̄∗ −
√

1

2

√
3

√

25

6
−
√

4

3
−2 1

3

√

2

9

Σ∗D̄∗ 2
√
6

√

4

3

√

2

3

√
2

√

2

9

2

3
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TABLE XXVI: C = −1, S = −1, I = 1/2, J = 3/2.

ND̄∗

s ΛD̄∗ ΣD̄∗ Σ∗D̄ Σ∗D̄∗

ND̄∗

s 0
√
6

√

2

3
−
√
2

√

10

3

ΛD̄∗
√
6 1 1 −

√
3

√
5

ΣD̄∗

√

2

3
1 − 5

3
−
√

1

3

√

5

9

Σ∗D̄ −
√
2 −

√
3 −

√

1

3
−1 −

√

5

3

Σ∗D̄∗

√

10

3

√
5

√

5

9
−
√

5

3
− 1

3

TABLE XXVII: C = −1, S = −1, I = 1/2, J = 5/2.

Σ∗D̄∗

Σ∗D̄∗ −2

TABLE XXVIII: C = −1, S = −1, I = 3/2, J = 1/2.

ΣD̄ ΣD̄∗ ∆D̄∗

s Σ∗D̄∗

ΣD̄ 2
√

16

3

√
8 −

√

8

3

ΣD̄∗

√

16

3
− 2

3

√

8

3
−
√

8

9

∆D̄∗

s

√
8

√

8

3
0 −

√

4

3

Σ∗D̄∗ −
√

8

3
−
√

8

9
−
√

4

3
− 4

3

TABLE XXIX: C = −1, S = −1, I = 3/2, J = 3/2.

∆D̄s ΣD̄∗ Σ∗D̄ ∆D̄∗

s Σ∗D̄∗

∆D̄s 0 −2
√
3 0

√
5

ΣD̄∗ −2 10

3

√

4

3

√

20

3
−
√

20

9

Σ∗D̄
√
3

√

4

3
2

√
5

√

20

3

∆D̄∗

s 0
√

20

3

√
5 0

√

1

3

Σ∗D̄∗
√
5 −

√

20

9

√

20

3

√

1

3

2

3

TABLE XXX: C = −1, S = −1, I = 3/2, J = 5/2.

∆D̄∗

s Σ∗D̄∗

∆D̄∗

s 0
√
12

Σ∗D̄∗
√
12 4

TABLE XXXI: C = −1, S = 0, I = 0, J = 1/2.

ND̄ ND̄∗

ND̄ 0 −
√
12

ND̄∗ −
√
12 4

TABLE XXXII: C = −1, S = 0, I = 0, J = 3/2.

ND̄∗

ND̄∗ −2
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TABLE XXXIII: C = −1, S = 0, I = 1, J = 1/2.

ND̄ ND̄∗ ∆D̄∗

ND̄ 2
√

16

3

√

32

3

ND̄∗

√

16

3
− 2

3

√

32

9

∆D̄∗

√

32

3

√

32

9

2

3

TABLE XXXIV: C = −1, S = 0, I = 1, J = 3/2.

ND̄∗ ∆D̄ ∆D̄∗

ND̄∗ 10

3
−
√

16

3

√

80

9

∆D̄ −
√

16

3
−1 −

√

5

3

∆D̄∗

√

80

9
−
√

5

3
− 1

3

TABLE XXXV: C = −1, S = 0, I = 1, J = 5/2.

∆D̄∗

∆D̄∗ −2

TABLE XXXVI: C = −1, S = 0, I = 2, J = 1/2.

∆D̄∗

∆D̄∗ −2

TABLE XXXVII: C = −1, S = 0, I = 2, J = 3/2.

∆D̄ ∆D̄∗

∆D̄ 3
√
15

∆D̄∗
√
15 1

TABLE XXXVIII: C = −1, S = 0, I = 2, J = 5/2.

∆D̄∗

∆D̄∗ 6
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