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Abstract

We have determined the spectra of neutrons and protons following the decay

of Λ hypernuclei through the one- and two-nucleon induced mechanisms. The

momentum distributions of the primary nucleons are calculated and a Monte

Carlo simulation is used to account for final state interactions. From the

spectra we calculate the number of neutrons (Nn) and protons (Np) per Λ

decay and show how the measurement of these quantities, particularly Np,

can lead to a determination of Γn/Γp, the ratio of neutron to proton induced

Λ decay. We also show that the consideration of the two-nucleon induced

channel has a repercussion in the results, widening the band of allowed values

of Γn/Γp with respect to what is obtained neglecting this channel.
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I. INTRODUCTION

The apparent discrepancy between the ratio of the Λn→ nn and Λp→ np cross sections

predicted by the one pion exchange model (OPE) [1–3] and experiments looking at neutrons

and protons from the decay of Λ hypernuclei [4–6], has stimulated much theoretical work,

refining the OPE model with the addition of the exchange of other mesons [2,7], using

correlated two pion exchange [8,9], or considering quark degrees of freedom [10,11]. In spite

of these efforts, no theoretical approach leads, without ambiguities, to values of Γn/Γp of

the order of unity, as claimed by experiment, compared to values of the order of 0.1 that

one obtains in the OPE model. Before proceeding further one should, however, notice that

the experimental errors are very large [5,6].

Some hopes for the understanding of the large fraction of neutrons observed in the

experiment were raised in Ref. [12], where the two-nucleon (2N) induced Λ decay was studied.

Indeed, in this latter mechanism a near on-shell pion is produced in the ΛNπ vertex and

the pion is then absorbed mostly by a neutron-proton pair. Hence, one has the reaction

Λnp→ nnp and two neutrons and one proton are emitted in this process, while in the one-

nucleon (1N) induced Λ decay processes (Λp→ np, Λn→ nn), a np or nn pair is produced.

Thus, even if the Λn → nn process was suppressed, as in the OPE model, one could still

have a large fraction of neutrons produced if one had a sizable Λ decay width through the

2N induced channel.

The idea of Ref. [12] was reanalyzed and the calculations improved in Ref. [13] with the

surprising result that the consideration of the 2N induced channel, in connection with the

measured number of neutrons and protons, led to ratios of Γn/Γp even larger than those

extracted before and in worse agreement with the OPE results. These conclusions, however,

were based on the assumption that all the emitted particles were detected.

On the other hand, it was pointed out that, in case only two particles from the ΛNN →

NNN reaction were detected, the analysis of the data with the consideration of the 2N

induced Λ decay channel would lead to smaller values of Γn/Γp [14].
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These findings indicate that the values obtained for Γn/Γp are sensitive to the detection

thresholds for nucleons and, hence, a precise determination of Γn/Γp requires a theoretical

calculation of the nucleon spectra coming from the different mechanisms. Furthermore, a

precise comparison with the experimental spectra requires also to address the problem of

the final state interactions of the nucleons on their way out of the nucleus.

The aim of the present paper is to evaluate the energy spectra for protons and neutrons,

coming from the different mechanisms, as functions of Γn/Γp, which will be treated as an

unknown. Hence, comparison of the experimental neutron and proton spectra with the

theoretical predictions, or even just the number of neutrons and protons emitted per Λ

decay, would allow to determine the ratio Γn/Γp.

II. DETERMINATION OF THE INITIAL NUCLEON SPECTRA

In order to determine the neutron and proton spectra we use the formalism of Refs.

[13,15] for the 1N and 2N induced Λ decay, which uses the local density approximation to

evaluate the width of finite Λ hypernuclei starting from the self-energy of a Λ particle in

infinite nuclear matter.

The mesonic Λ decay can also be treated in this way [15], but the sensitivity to the

nuclear and pion wave functions makes the finite nucleus treatment more accurate [16–19].

In any case, there is no need to consider the nucleons emitted in the mesonic decay since

their energy is around 5 MeV, which lies below any of the ordinary detection thresholds. One

may still wonder about secondary nucleons coming from pionic Λ decay at some point in the

nucleus with a subsequent absorption of this pion on its way out of the nucleus. However,

the pions produced in the pionic Λ decay have an energy of around 20—30 MeV and they

are weakly absorbed in the nucleus. Moreover, due to Pauli blocking, these pions will be

mainly produced at the surface and, consequently, they will be even less absorbed. From

the analogous (γ, π) reaction in 12C we can see that less than 10% of the 25 MeV primary

produced pions are later on absorbed (compare σabs and σdir abs of Fig. 8 in Ref. [20]). Since
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the mesonic width is Γm = 0.3ΓΛ for 12
Λ C, where ΓΛ is the free Λ width, then the fraction

of reabsorbed pions would be about 3% of ΓΛ or, equivalently, less than 2% of the total Λ

width in 12
Λ C [5]. This is a negligible amount and would be further reduced in heavier nuclei

since Γm decreases very fast with the mass of the hypernucleus.

The preceding discussion allows us to consider only the nucleons coming from the 1N and

2N induced Λ decay. The local density formalism of Refs. [13,15] is particularly suited to

treat the final state interaction of the nucleons since these are produced at a certain point in

the nucleus and with a certain momentum. Then we can follow these nucleons by means of

a Monte Carlo computer simulation which takes into account quasielastic nucleon collisions,

pion production, etc. The accuracy of this procedure to deal with nucleon propagation in

the nucleus was established in Ref. [21], by comparing some results with the corresponding

full Quantum Mechanical ones.

Recalling the results of [13,15] we write the decay width of a hypernucleus as

Γ =
∫

d3kρ̃(k)Γ(k) , (1)

with

Γ(k) =
∫

d3r|ψΛ(r)|2Γ(k, ρ(r)) ,

where ψΛ(r) is the Λ wave function in the nucleus and ρ(r) the nuclear density. The former

equations show that Γ(k) is evaluated by means of the local density approximation and Γ is

then obtained by weighing Γ(k) with the momentum distribution of the Λ in nucleus, ρ̃(k).

The weighing over k is more important in the evaluation of the mesonic decay width for

heavy nuclei but has little relevance in the nonmesonic decay width which we study here,

since Γ(k) is rather smoothly dependent on k for this channel. However, keeping the k

dependence becomes again relevant for the distribution of momenta of the emitted nucleons.

The nuclear matter width, Γ(k, ρ), is evaluated from the Λ self-energy via the equation

Γ = −2ImΣ (2)

where Σ accounts for the diagrams of Figs. 1 and 2. As shown in Refs. [13,15] the resulting

width is
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Γ(k, ρ) = −6(Gµ2)2
∫

d3q

(2π)3
[1 − n(k − q)]θ(k0 −E(k − q) − VN)

× Imα(q)|q0=k0
−E(k−q)−VN

(3)

with

α(q) =



S2 +

(

P

µ

)2

q2



F 2(q)D0(q)

+
S̃2(q)Π

∗

(q)

1 − VL(q)Π
∗

(q)
+

P̃ 2
L(q)Π

∗

(q)

1 − VL(q)Π
∗

(q)
+ 2

P̃ 2
T (q)Π

∗

(q)

1 − VT (q)Π
∗

(q)
, (4)

where α(q) is related to the dressed pion propagator and accounts for the effect of short

range NN and ΛN correlations. The explicit expressions for S̃, P̃L, P̃T are defined in Eqs.

(20), (23), and (24) of Ref. [15] (denoted there by C ′, B′, A′ respectively). In Eqs. (3) and

(4), the quantities E(p) and VN stand for the nucleon energy,
√

p2 +M2, and potential

energy, respectively, F (q) is the πNN form factor, n(p) the nucleon occupation number of

a noninteracting Fermi system of density ρ, D0(q) the free pion propagator, and VL (VT ) the

longitudinal (transverse) part of the spin-isospin ph interaction. The function Π
∗

, related

to the pion self-energy through

Π∗(q) =
f 2

µ2
q2F 2(q)Π

∗

(q) , (5)

is given by

Π
∗

= Π
∗

1p1h + Π
∗

∆h + Π
∗

2p2h , (6)

and accounts for particle-hole (1p1h), delta-hole (∆h) and two particle-two hole (2p2h)

excitation. Furthermore, Π
∗

1p1h = UN and Π
∗

∆h = U∆ are the ordinary Lindhard functions

for 1p1h and ∆h excitation [22], with the normalization of the appendix of Ref. [3]. On the

other hand, Π
∗

2p2h is constructed in Ref. [13] from data of p-wave pion absorption in pionic

atoms, extrapolated for pions off shell by means of the phase space for real 2p2h excitation.

In Eq. (3) we have Imα(q) which, as one can see from Eq. (4), contains the free pion

propagator and other terms which renormalize the pion in the medium. As noted in Ref.
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[13], the sum of the longitudinal terms from Imα(q) in Eq. (4) leads to a peak around the

position of the renormalized pion in the medium, with a width given by

Γπ(q) = − 1

ω̃(q)
ImΠ(ω̃(q), q) , (7)

where Π is the pion proper self-energy and ω̃(q) the renormalized pion energy in the medium.

The proper self-energy Π is related to Π
∗

by means of

Π(q0, q) =
Π∗(q0, q)

1 − f2

µ2 g′(q)Π
∗

(q0, q)
(8)

with g′ the Landau-Migdal parameter (smoothly q dependent). For the pions emitted in the

Λ decay, ImΠ in Eq. (8) is actually ImΠ2p2h, since there is no strength from ImΠ1p1h at

the pion pole and furthermore ImU∆ is practically zero there. One must then be cautious

interpreting the strength coming from ImΠ
∗

2p2h as due to 2p2h excitation, since part of it

belongs to the excitation of the renormalized pion, which contributes to the mesonic channel.

In heavy nuclei, where the pionic decay mode is practically forbidden by Pauli blocking, this

association is clear, but in light and medium nuclei, where there is still a certain fraction of

mesonic decay, one must do the separation of the mesonic and 2p2h channels. On the other

hand, the 1p1h channel offers no problems because it does not mix with the pion pole term.

Thus, the strength coming from Eq. (3), obtained by substituting in Imα(q)

Im
Π

∗

(q)

1 − VL,T (q)Π
∗

(q)
→ ImΠ

∗

1p1h(q)

|1 − VL,T (q)Π
∗

(q)|2
(9)

and omitting the D0(q) term, corresponds to 1p1h excitation.

In Ref. [13] the strength of the 2p2h excitation was obtained by subtracting from the

whole width, calculated with the full Imα(q), the contribution of the mesonic and the 1p1h

excitation channels. The mesonic channel was calculated with the zero width approximation

at the position of the renormalized pion pole and the 1p1h excitation channel was obtained

with the procedure indicated in Eq. (9).

In the present work we have adopted a more practical procedure which leads to the same

results. The strength around the renormalized pion pole has been omitted by cutting Imα(q)
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between ω̃ − λΓπ and ω̃ + λΓπ, with λ = 0.8, a value that has been adjusted to reproduce

the same 2p2h width as that obtained in Ref. [13]. This eliminates the contribution of the

mesonic channel and leaves only those of the 1p1h and the 2p2h excitation channels. After

this cut is done, the part of Γ in Eq. (3) proportional to ImΠ
∗

1p1h, through Eq. (9), and

the analogous one proportional to ImΠ
∗

2p2h are now associated to the 1N induced and 2N

induced Λ decay, respectively.

The evaluation of the final nucleon momenta proceeds in two steps. First, we determine

the distribution of momenta after the Λ decay (primary step). Next, we consider the final

state interactions of the nucleons via a Monte Carlo simulation, which will be discussed in

the next section.

In order to determine the primary nucleon momenta let us look at the structure of the

integrals involved in the evaluation of Γ

Γi =
∫

d3k
∫

d3r
∫

d3q . . . ImΠ
∗

i (q
0 = k0 − E(k − q) − VN , q) , (10)

with the index i standing for 1p1h or 2p2h, or alternatively, 1N and 2N induced mechanisms.

On the other hand, we have from Fig. 3a

ImΠ
∗

1p1h(q
0, q) ∝

∫

d3p n(p)[1 − n(p + q)]δ(q0 + E(p ) −E(p + q)) , (11)

which can be further simplified eliminating the δ function. Furthermore, from Fig. 3b we

have

ImΠ
∗

2p2h(q
0, q) ∝

∫

d4k′ ImUN(
q

2
+ k′, ρ)ImUN(

q

2
− k′, ρ)

× θ(
q0

2
+ k′ 0)θ(

q0

2
− k′ 0) , (12)

which can be further simplified as shown in Ref. [13].

In the 1p1h mechanism, a change of variables in Eq. (11) can be performed leaving the

momentum of the emitted nucleon, p + q, as integration variable. In the 2p2h case, each

of the Lindhard functions appearing in Eq. (12) involves an integration over an internal

hole momentum, ph1
and ph2

, respectively. As for the previous case, a change of integration
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variables in terms of the two emitted nucleon momenta (q/2+k′+ph1
and q/2−k′+ph2

) can

be made. Then, one can perform the integrations using the Monte Carlo method, since the

integrands are smooth once the pion peak is removed. Each configuration point generated

by the Monte Carlo technique corresponds to a set of momenta for the outgoing primary

nucleons.

In the evaluation of the 1p1h and 2p2h induced Λ decay widths we have followed Ref.

[13] and the 1p1h induced channel is evaluated using the OPE model. This could give a

poor description of the Γn/Γp ratio, but so far, the different attempts to improve on this

ratio discussed in the Introduction share one feature in common, which is that the decay

rate is barely changed with respect to that obtained with the OPE model. Hence, we keep

the probability obtained by the OPE model for the 1p1h channel fixed, and take the ratio

Γn/Γp as a variable. For the same reason, we also keep the nucleon momentum distribution

provided by the OPE model. A pure phase space calculation gives a very similar shape for

the momentum distributions.

III. MONTE CARLO SIMULATION

In this section we show how the charge selection and the propagation of the nucleons is

done with the Monte Carlo simulation. We follow closely the steps developed in the study of

inclusive pionic reactions [23], in (γ, π) reactions in nuclei [20] and in (γ,N), (γ,NN), (γ,Nπ)

photonuclear reactions [21].

In the first place a random number is generated which decides whether we have a 1N

induced event or a 2N induced one, according to their respective probabilities. Next we

determine the momenta of the primary nucleons emitted in the decay process. This is done

by generating random configurations which are weighted by their corresponding probability

according to the model described in the previous section. This gives us the momenta of

nucleon 1 and nucleon 2 in Fig. 4, for the 1N induced mechanism, and nucleons 1, 2, 3 in

Fig. 5 for the 2N induced mechanisms.
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Next we determine the charge of the particles. In Figs. 4 and 5 we show diagrammatically

the neutron and protons which would come out from the 1p1h and 2p2h mechanisms. In

the case of the 1N induced process we generate a random number which decides whether

we have Λn→ nn or Λp→ np, according to the probability Γn/Γp, which we keep as a free

parameter in the theory. In the case of Λn→ nn, each neutron is given one of the momenta

corresponding to nucleon 1 and nucleon 2 in Fig. 4a. In the case of Λp → np (Fig. 4b) we

associate also random, with equal probability, the n and p to nucleons 1 and 2 and viceversa.

With all these random decissions one has now an event corresponding to a pair of nucleons,

pn or nn, with some definite momenta.

If the event was a 2N induced one (Fig. 5), then we decide by means of a random number

whether one has the mechanism of Fig. 5a or the one of Fig. 5b, taking into account that

the one of Fig. 5b has a probability twice as large as the mechanism of Fig. 5a. In the

case of the mechanism of Fig. 5a one still has to do a further decission, which is whether to

place pn in numbers 2,3 or viceversa. This is also decided random giving the same weight

to the two possibilities (as would come out in a model of absorption dominated by the ∆

excitation in the πN vertex [24]). However, in this case this last step has no consequences

since the distribution of nucleons 2 and 3 is symmetrical from Eq. (12).

With the former steps we have selected a configuration for a primary event. One of the

variables in the Monte Carlo integration is r, the vector position in the nucleus where the Λ

decay takes place. Hence, each event in the Monte Carlo integration determines the point

at which the primary nucleons are produced and this allows us to follow the fate of these

nucleons on their way out of the nucleus. This is done by allowing the nucleons to undergo

collisions with other nucleons of the nucleus according to NN cross sections, modified by

Pauli blocking and polarization phenomena. The method is detailed in Ref. [21], where a

useful parametrization of the cross sections borrowed from Ref. [25] is also shown.

In the Monte Carlo simulation the nucleons emitted in the decay are allowed to move

through the nucleus under the influence of a local potential given by the Thomas Fermi

model, VN(r) = −kF (r)2/2M . As the nucleons move out of the nucleus they collide with
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the nucleons of the local Fermi sea. In the collisions the nucleons change energy, direction

and, eventually, charge since the differencial cross sections used for pn collisions allow con-

figurations in which a fast proton colliding with a neutron of the Fermi sea gives rise to a

fast neutron and a slowly moving proton. In each collision, a nucleon from the Fermi sea is

excited above the local Fermi momentum and the propagation of this secondary unbound

nucleon, which has an energy larger than its mass, must also be followed. Eventually, each

primary nucleon may produce several nucleons that leave the nucleus. At the end, we know

the energy and direction of each one of the emitted protons and neutrons, be primary or

secondary nucleons.

IV. RESULTS AND DISCUSSION

In Fig. 6 we show the spectrum of neutrons and protons coming from the 1N and 2N

induced mechanisms in the decay of 12
Λ C, assuming a value Γn/Γp = 1. Hence, as can be

inferred from Fig. 4 for the 1N induced mechanisms, one expects three times more neutrons

than protons at each energy if one neglects the effect of final state interaction and charge

exchange. By comparing the dotted line (neutrons) with the dashed line (protons), we

can see that this is approximately the case, except at low energies where mostly secondary

nucleons show up. The kinetic energy peaks around 70 MeV and there is a broad peak

which reflects the Fermi motion of the nucleons and the Λ momentum distribution. In the

same figure, the spectrum of neutrons (dash-dotted line) and protons (solid line) coming

from the 2N induced mechanism is also shown. In this case, the distribution is rather flat,

since three particles are involved in the initial and final state and both Fermi motion and

the final phase space collaborate in producing the broadening of the spectrum. At large

energies we find that there are about four times more neutrons than protons. This indicates

that the nucleons appearing at this high energy region are mainly those generated from the

absorption of the virtual pion (nucleons 2 and 3 in Figs. 5a and 5b). In fact, if only the

two nucleons coming from the absorption of the virtual pion contributed to this part of the
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spectrum, we would have found five times more neutrons than protons. However, although

the nucleons coming from de Λ vertex are in general slow, there is a tail at large energies

which lowers the ratio. On the other hand, we also observe in Fig. 6 a peak with about

the same number of neutrons as protons at low energies around 10 MeV. These nucleons

come mostly from the Λ decay vertex and from final state interaction effects. We should

note, however, that at energies around and below 20 MeV our spectra are not realistic.

The semiclassical Monte Carlo procedure becomes progressively less reliable at low energies

and other phenomena like evaporation etc., not considered by us, would come into play.

However, this is of minor importance here since ordinary experimental detection thresholds

are higher than this energy.

The effect of final state interactions (FSI) can be seen by comparing the solid lines with

the dashed lines in Fig. 7. We observe that FSI affect mostly the nucleon distributions at

energies below 40 MeV. Only a small fraction of the neutrons and protons at large energies is

removed due to FSI, whereas, at energies below 40 MeV, strength from both the degradation

of the primary nucleons and the emission of secondary nucleons is collected.

As a complementary information we show in Fig. 8 the spectrum of protons from the 1N

(dotted line) and 2N (dashed line) induced mechanisms, calculated with a value Γn/Γp = 0.1.

The solid line is the total proton spectrum. The features of the spectra are similar to those

in Fig. 6 although the number of protons or neutrons per Λ decay emitted in one case or

the other is obviously rather different. For this reason we discuss below these magnitudes

as functions of Γn/Γp.

In the first place, we show in Figs. 9 and 10 the ratio of the number of emitted neu-

trons to that of emitted protons per Λ decay, Nn/Np, as a function of Γn/Γp, omitting FSI

and assuming, respectively, that all particles are observed or that a threshold cut of 40

MeV is applied in the detection energy. The idea behind these curves is to facilitate the

determination of the ratio Γn/Γp from the measured Nn/Np ratio.

We observe that the resulting Nn/Np ratio increases with the value of Γn/Γp, but the

results depend on whether we consider only the 1N induced mechanism (dashed line) or we
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include also the 2N induced one (solid line). In Fig. 9 we observe that, for a value of Γn/Γp =

0.5, the ratio Nn/Np is the same whether one considers the 1N induced mechanism only or

both mechanisms. However, given an experimental value of Nn/Np, the corresponding value

of Γn/Γp including the 2N induced decay is bigger than the one obtained considering only

the 1N induced mechanism if Γn/Γp > 0.5. The situation is reversed if Γn/Γp < 0.5. This

is exactly the result obtained analytically in Ref. [13]. However, if a cut of 40 MeV in

the detection energy is applied, as can be seen in Fig. 10, the point where the two curves

cross appears at larger values of Γn/Γp (in the figure at Γn/Γp = 1.3). As follows from the

discussions above in connection with Fig. 6, a cut of 40 MeV would eliminate mostly the

peak corresponding to the nucleons emitted from the Λ vertex. Therefore, the results in Fig.

10 follow the tendency indicated in Ref. [14], where it is shown that, if the nucleon from the

Λ vertex is not observed, the two lines in the figure would cross at a value of Γn/Γp = 2.

In Fig. 11 we show results including FSI and taking threshold energy cuts of 0, 30 and

40 MeV. The last two cases allow to compare our results with the measurements of Ref.

[5]. The numbers found there, corrected as indicated in Ref. [13,26], were NTOT
n = N0Nn =

3400 ± 1100, NTOT
p = N0Np = 1270 ± 180, for Ecut = 30 MeV and NTOT

n = 2530 ± 1050,

NTOT
p = 1112±130, for Ecut = 40 MeV, where N0 is the total number of decay events. From

the results shown in Fig. 11 we can deduce that the band of allowed values of NTOT
n /NTOT

p =

Nn/Np corresponds to values of Γn/Γp in the range 0.15—2.0 for Ecut = 30 MeV and 0.0—

1.65 for Ecut = 40 MeV. It is important to note that these results are even compatible with

the OPE predictions. We should also point out that the inclusion of the 2N induced channel

enlarges the band of allowed values at both ends, with respect to the results which would be

obtained omitting this channel. One can also see that the effect of the 2N induced channel

becomes smaller for higher threshold detection energies, as can be easily understood from

the fact that the average energy of the nucleons in the 2N induced channel is smaller than

in the 1N induced one.

The information contained in Fig. 11 indicates that it is rather difficult to extract

Γn/Γp from the ratio of neutrons to protons Nn/Np unless this ratio is determined with high
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precission. The fact that the relative error of the ratio Nn/Np is the sum of the relative

errors in Nn and Np, together with the fact that usually neutrons are measured with little

precission, makes the uncertainty of this magnitude very large and leads to large errors in

Γn/Γp.

It is clear from the former considerations that the separate number of protons and neu-

trons per Λ decay would provide more information. The gain is twofold: on the one hand

the individual relative errors of Nn and Np are smaller than for their ratio. On the other

hand, one has two pieces of information which will provide two independent bands of allowed

values of Γn/Γp. The intersection of the two bands will give the final allowed region. This

procedure should give rise to more precise determinations of Γn/Γp in the future. For this

purpose we present our predictions in Figs. 12 and 13.

In Fig. 12, we show the number of neutrons per Λ decay event, Nn, as a function of

Γn/Γp. From top to bottom the results correspond to detection energy cuts of 0, 30 and

40 MeV. The dashed lines correspond to considering only the 1N induced decay, while the

solid line includes also the 2N induced one. The number of protons per Λ decay event, Np,

is shown, as a function of Γn/Γp, in Fig. 13 with the same meaning as in Fig. 12.

The potential of these two figures to determine Γn/Γp can be shown with the following

example: From Figs. 12 and 13 we see that for Γn/Γp = 0.5 and Ecut = 30 MeV we obtain

Nn = 1.28 and Np = 0.62. Assume now a 10% error in the values of Nn and Np. From

Fig. 12 one obtains the range Γn/Γp = 0.175—1.0, while Fig. 13 gives the range Γn/Γp =

0.35—0.75. On the other hand, if only the ratio Nn/Np from Fig. 11 were used, the range of

values would be Γn/Γp = 0.2—0.75. We can therefore see that Np is more selective than Nn

in order to determine Γn/Γp and also more selective than the ratio Nn/Np. However, in this

particular example we can see that the ratio Nn/Np is more selective than the number Nn

itself. The fact that Nn increases as Γn/Γp increases, while Np decreases, makes the ratio

Nn/Np a steeper function of Γn/Γp than any of the numbers Nn or Np and helps in getting

smaller errors for Γn/Γp. However, one has the handicap that one must sum the relative

errors of Nn and Np.
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With other values and other errors we could have different situations in which the mea-

surements of Nn could give additional information to the one provided by Np, but the former

example indicates that the measurement of Np is probably the most crutial magnitude in

order to determine Γn/Γp.

Unfortunately the experiment of Ref. [5] does not provide the number of decay events

corresponding to the total number of neutrons and protons measured and therefore, only the

ratio can be used in our analysis. On the other hand, the work of Ref. [6] contains a spectrum

of protons but it is conditioned by several cuts, efficiencies and geometries of the detectors,

and does not allow the extraction of Np nor can it be compared to the spectrum which we

have calculated. However, the determination of Np is one of the aims of the collaboration

in Ref. [27] in the near future. As hinted by our observation above, the determination of

Np alone can provide as much information as the combined measurement of Nn and Np. As

we have shown, precise measurements of Np with different cuts, which can be done if the

spectrum of protons is also known, would provide reliable values for Γn/Γp.

V. CONCLUSIONS

We have evaluated the spectrum of neutrons and protons following the decay of Λ hyper-

nuclei. For this purpose we calculated the momentum distribution of the nucleons coming

from the one nucleon induced and two nucleon induced Λ decay. Final state interaction

of the nucleons was also considered using a Monte Carlo computer simulation technique,

successfully applied to other physical processes. By integrating over the energy spectrum

we can also obtain the number of neutrons and protons for any energy cut in the nucleon

detectors. We have seen that the measurement of Nn and Np, the number of neutrons and

protons per Λ decay, can be used to determine the ratio Γn/Γn reliably. We observed that

the value of Np was more selective in determining the value of Γn/Γp than Nn or the ratio

Nn/Np, and this should serve as a guideline for future experiments.

The two nucleon induced Λ decay channel was found relevant in the analysis. Even if
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the fraction of this decay channel is only 30% of the free Λ width, or 20% of the total Λ

width in the nucleus [13], it has some repercussion in the determination of Γn/Γp and, as

a consequence, enlarges the error band for Γn/Γp, obtained from given values of Nn/Np,

with respect to a determination omitting this channel in the analysis. Even then, the ratio

Γn/Γp can be determined reliably provided one can measure Np and Nn (particularly Np)

with sufficient precission.

The analysis done here, and the figures presented, will allow a direct determination of

Γn/Γp from future measurement of Nn and Np, which in view of the results obtained here

should be encouraged.
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FIGURES

FIG. 1. Λ self-energy diagrams for the one nucleon induced channel from Refs. [13,15]. The

dotted line cuts the states which are placed on shell in the evaluation of Im Σ.
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FIG. 2. Λ self-energy diagram for the 2N induced Λ decay mechanism from Ref. [13].
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FIG. 3. Diagrams employed in the evaluation of Im Π
∗

1p1h (a) and Im Π
∗

2p2h (b).
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FIG. 4. Feynman diagrams for the transition ΛN → NN : neutron induced Λ decay (a) and

proton induced Λ decay (b).
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FIG. 5. Feynman diagrams for the two nucleon induced Λ decay through virtual π0 absorption

(a) and virtual π− absorption (b).
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FIG. 6. Spectra of neutrons and protons in the decay of 12
Λ C. Dashed line: protons from the 1N

induced mechanism. Dotted line: neutrons from the 1N induced mechanism. Solid line: protons

from the 2N induced mechanism. Dash-dotted line: neutrons from the 2N induced mechanism.

The results have been obtained for a value Γn/Γp = 1.
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FIG. 7. Effect of the final state interactions in the spectrum of nucleons emitted in the 1N

induced decay. Dashed line: results without FSI. Solid line: results including FSI.
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FIG. 8. Proton spectrum obtained for a value Γn/Γp = 0.1. Dotted line: 1N induced mecha-

nism. Dashed line: 2N induced mechanism. Solid line: Total.
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FIG. 9. Nn/Np as a function of Γn/Γp with no cut in the detection energy and no final state

interactions. Dashed line: 1N induced mechanism. Solid line: 1N + 2N induced mechanisms.
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FIG. 10. Same as Fig. 9, but with a detection threshold of 40 MeV and no final state

interactions.
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FIG. 11. Nn/Np as a function of Γn/Γp including final state interaction effects and applying

energy cuts of 0, 30 and 40 MeV. Dashed line: 1N induced mechanism. Solid line: 1N + 2N

induced mechanisms.
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FIG. 12. Number of neutrons per Λ decay as a function of Γn/Γp. Dashed lines: 1N induced

mechanism. Solid lines: 1N + 2N induced mechanism. Final state interactions are considered and,

from top to bottom, the results include energy cuts of 0, 30 and 40 MeV, respectively.
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FIG. 13. Same as Fig. 12 for the number of protons per Λ decay.
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