
ar
X

iv
:n

uc
l-

th
/9

71
20

47
v2

  3
1 

A
ug

 1
99

8
Chiral nonperturbative approach to the isoscalar
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Abstract

The s-wave isoscalar amplitude for ππ scattering in a nuclear medium
is evaluated using a nonperturbative unitary coupled channels method
and the standard chiral Lagrangians. The method has proved success-
ful to describe the ππ properties in the scalar isoscalar channel up to
1.2 GeV giving rise to poles in the t matrix for the f0(980) and the σ.
The extension of the method to the nuclear medium implies not only
the renormalization of the pions in the medium, but also the introduc-
tion of interaction terms related to contact terms in the πN → ππN

interaction. Off shell effects are also shown to be important leading
to cancellations which reduce the coupled channel integral equations
to a set of algebraic equations. As the density increases we find a re-
duction of strength below the σ region and a certain accumulation of
strength at energies around pion threshold. Our results, based on chiral
Lagrangians, provide similar results to those obtained with phenomeno-
logical models which impose minimal chiral constraints.
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1 Introduction.

The ππ interaction in a nuclear medium in the J = T = 0 channel (σ channel)
has stimulated much theoretical work lately. It was realized that the attractive
p-wave interaction of the pions with the nucleus led to a shift of strength of the
ππ system to low energies and eventually produced a bound state of the two
pions around 2mπ − 10 MeV [1]. This state would behave like a ππ Cooper
pair in the medium, with repercussions in several observable magnitudes in
nuclear reactions [1]. The possibility that such effects could have already been
observed in some unexpected enhancement in the (π, 2π) reaction in nuclei [2]
was also noticed there. More recent experiments where the enhancement is
seen in the π+π− channel but not in the π+π+ channel [3] have added more
attraction to that conjecture.

Yet, it was early realized that constraints of chiral symmetry might affect
those conclusions [1]. In order to investigate the influence of chiral constraints
in ππ scattering in the nuclear medium two different models for the ππ in-
teraction were used in [4]. One of them from [5] did not satisfy the chiral
constraints, while another one from [6] produced an amplitude behaving like
mπ in the limit of small pion masses. The conclusion of [4] was that, although
in the chirally constrained model the building up of ππ strength at low energies
was attenuated, it was still important within the approximations done in their
calculations. The latter ones used some approximations, amongst others, the
use of only ∆h excitation with zero ∆ width to build up the π nuclear inter-
action. Warnings were also given that results might depend on the off shell
extrapolation of the ππ scattering matrix.

Further refinements were done in [7], where the width of the ∆ and coupling
to 1p 1h and 2p 2h components were considered. The coupling of pions to the
ph continuum led to a dramatic re-shaping of the ππ strength distribution,
but the qualitative conclusions about the accumulated strength at low energies
remained.

In ref. [8] the importance of the coupling to the ph components was re-
confirmed and the use of more accurate models for the ππ interaction, as the
Jülich model based on meson exchange [9], did not change the conclusions
on the enhanced ππ strength at low energies. However, the use of a linear
and nonlinear models for the ππ interaction, satisfying the chiral constraints
at small energies, led to quite different conclusions and showed practically no
enhancement of the ππ strength at low energies. The same conclusions were
reached using the Jülich model with a subtracted dispersion relation so as to
satisfy the chiral constraints. The latter model employed the Blakenbecler-
Sugar equation in which the 2π intermediate states were placed on-shell. The
conclusion of this paper was that the imposition of chiral constraints in the
ππ amplitude prevented the pairing instabilities shown by the other models
not satisfying those constraints.

In a further paper [10] the authors showed, however, that the imposition
of the chiral constraints by themselves did not prevent the pairing instabilities
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and uncertainties remained related to the off-shell extrapolation of the ππ

amplitude and the possible ways to implement the minimal chiral constraints.
The situation, as noted in [10] is rather ambiguous, but the studies done have
certainly put the finger in the questions that should be properly addressed:
chiral symmetry, off-shell extrapolations, unitarity, etc.

After the above discussions it looks quite intuitive to think that the use of
chiral Lagrangians, and chiral perturbation theory, where the ππ interaction
at low energies has been thoroughly studied [11], should be the appropriate
framework to look at this problem. However, the scalar sector shows additional
problems. The J = T = 0 f0(980) resonance does not show up in chiral
perturbation theory, and even the σ pole does not show up in this perturbative
approach. Since one is dealing here with the shift of the ”σ strength” to lower
energies it looks most advisable to start with a theory where the σ shows up
neatly in the ππ interaction. Fortunately, two recent independent approaches
using the Gasser and Leutwyler chiral Lagrangians, which implement unitarity
in an exact way, have succeeded in reproducing the low energy ππ phase shifts
while at the same time generating a ”σ” pole in the ππ T matrix in the II
sheet of the complex plane [12, 13].

In ref. [12] the method of the inverse amplitude of [14] was used where
elastic unitarity in the ππ channel is imposed. The method obtains good
results for the low energy ππ interaction in all channels. It, however, fails to
obtain the f0(980) and a0(980) resonances in the scalar T = 0 and T = 1
channels respectively, but the σ pole in J = T = 0 is obtained.

In ref. [13] unitarity in coupled channels is built from the beginning with
ππ and KK̄ in the scalar, isoscalar sector and πη, KK̄ for J = 0, T = 1. The
phase shifts and inelasticities are well reproduced up to about 1.2 GeV. The
σ and f0(980) resonances appear as poles in the J = T = 0 channel and the
a0(980) appears as a pole in J = 0, T = 1. The coupling of channels was found
essential to produce the f0(980) and a0(980) resonances, while the σ pole was
not much affected by the coupling of the pions to KK̄. This would make the
approaches of [12] and [13] similar at energies around the σ pole and, indeed,
the results in that region are practically equal. This has been made more
explicit in a recent paper where the two methods discussed above are unified
into a more general scheme [15]. A different perspective of this method is also
given in [16].

The existence of these chiral nonperturbative methods offers unique op-
portunities to tackle the problem of the scalar isoscalar ππ interaction in the
nuclear medium and this is the purpose of the present work. We follow here
the approach of ref. [13], where one of the problems pointed above, the off shell
extrapolation, was worked out with detail. This, together with the automatic
implementation of chiral symmetry and its breaking, given by the Gasser and
Leutwyler chiral Lagrangians, allows us to face the problems mentioned above
from a different perspective, where chiral symmetry, off shell extrapolation,
etc., are directly associated to the structure of the chiral Lagrangians.

In constructing the ππ amplitude in the medium we will show that chiral
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symmetry introduces new terms which do not appear in the approaches dis-
cussed above and which lead to cancellations of other terms coming from the
off shell extrapolation of the ππ amplitude.

The results show some enhancement of the ππ strength at low energies,
similar to what is found in different approaches, particularly those imposing
the minimal chiral constraints. The work serves to establish closer links with
chiral dynamics and justify certain prescriptions proposed in the past.

2 Non perturbative chiral approach to ππ scat-

tering in the isoscalar isovector channel.

We briefly summarize here the ingredients of ref. [13] which will be used here.
The approach uses the coupled channels Lippmann Schwinger (LS) equation,
although with relativistic meson propagators (equivalent to Bethe Salpeter
equations). We take the states |1 >= (KK̄, T = 0 >, |2 >= |ππ, T = 0 > and
the LS equations read as

Tij = Vij + VilGllTlj (1)

where Vij , the potential or Kernel of the LS equations, is obtained from the
lowest order chiral Lagrangians [11].

L2 =
1

12f 2
< (∂µΦΦ − Φ∂µΦ)2 + MΦ4 > (2)

where the symbol <> indicates the trace in flavour space of the SU(3) matri-
ces, f is the pion decay constant and Φ, M are SU(3) matrices given by

Φ ≡ ~λ√
2
~φ =















1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 − 2√
6
η8















,

M =







m2
π 0 0

0 m2
π 0

0 0 2m2
K − m2

π





 .

(3)

In the mass matrix, M , we have taken the isospin limit (mu = md).
The elements of Vij in the s-wave and T = 0 needed here are given in [13]

by
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T = 0
V11 = − < KK̄|L2|KK̄ >= − 1

4f2 (3s + 4m2
K −∑

i p
2
i )

V21 = − < ππ|L2|KK̄ >= − 1
3
√

12f2
(9

2
s + 3m2

K + 3m2
π − 3

2

∑

i p
2
i )

V22 = − < ππ|L2|ππ >= − 1
9f2 (9s + 15m2

π

2
− 3

∑

i p
2
i )

(4)

In eq. (1) the term V GT stands for the integral

V GT =
∫

d4q

(2π)4
V (k1, k2, q)G(P, q)T (q; k′

1, k
′
2) (5)

where k1, k2(k
′
1, k

′
2) are the initial (final) momenta of the mesons, P = k1+k2 =

k′
1 + k′

2 is the total momentum of the meson-meson system and q is the loop
variable in the diagrams implicit in eq. (1) which are depicted in fig. 1.

G(P, q) is now the product of the two meson propagators

Gii = i
1

q2 − m2
1i + iǫ

1

(P − q)2 − m2
2i + iǫ

(6)

The on shell values of Vij from eq. (4) are obtained substituting p2
i = m2

i .
The off shell extrapolation is then given by

Voff = Von + β
∑

i

(p2
i − m2

i ) (7)

This peculiar off shell dependence has a practical consequence which con-
verts the integral LS equations into ordinary algebraic equations. This is
discussed in detail in ref. [13] but can be envisaged here quickly in the fol-
lowing way. Take a one loop diagram in the series of fig. 1 which will involve
V 2

off . This latter quantity can be written as

V 2 = V 2
on + 2βVon

∑

i

(p2
i − m2

i ) + β2
∑

ij

(p2
i − m2

i )(p
2
j − m2

j) . (8)

Take the second term of the right hand side of eq. (8). The term p2 − m2

just kills one of the propagators in G of eq. (6). The remaining quantity can
be easily integrated and gives a term of the type Vonq

2
max, where qmax is the

cut off in the three momentum. The interesting thing to observe is that this
term has the structure of the tree level term in the series, Von, and hence is
incorporated in the potential by means of a renormalization of the coupling f .

The use of the physical value of f incorporates effectively that term which,
hence, must not be included in the calculation. Similarly the third term in
eq. (8) can be reabsorbed in the coupling and the masses of the particles [13].
The practical consequence of this is that only the on-shell part of Vij must be
kept in the loop integral and, since they do not depend on q, they factorize
outside the integral. The procedure can be repeated to higher order loops and
thus the coupled LS equations become ordinary algebraic equations given by
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Tik = Vik + VijGjjTjk (9)

where

Gjj = i

∫

d4q

(2π)4

1

q2 − m2
1j + iǫ

1

(P − q)2 − m2
2j + iG

and hence, in matrix form

T = [1 − V G]−1V (10)

3 ππ scattering in the nuclear medium.

We will follow the previous approaches and will renormalize the pion propa-
gators in G. In our coupled channel approach we should also renormalize the
kaons, but given the fact found in [13] that the KK̄ system does not affect
much the low energy ππ regime, we shall keep the KK̄ state in our coupled
channel approach but without renormalization.

The pions are renormalized by allowing them to excite ph and ∆h (the
∆ with a finite width). At the level of one loop our renormalized amplitude
would now contain the diagrams of fig. 2. Now let us take for instance the
diagram of fig. 2b, cut it by a vertical line that cuts simultaneously the ph and
the lower pion line, and keep the part of the diagram to the left of this vertical
line. We obtain the diagram of fig. 3a. This diagram can be interpreted as one
term contributing to the πN → ππN amplitude. However, even before chiral
perturbation theory established an elegant and practical way to implement
chiral symmetry and its breaking, it was already known that chiral symmetry
required an extra term, shown in fig. 3b, which was readily obtained from a
set of chiral Lagrangians [17]. Actually, one of the powerful consequences of
chiral symmetry is that it establishes a relationship between amplitudes with
different number of meson as external particles.

The set of the chiral Lagrangians is not unique and unitary transformations
or redefinition of fields are possible [18]. The interesting thing is that, while
each one of the terms in fig. 3 depends on the choice of Lagrangians, the sum
of the two is independent of it. This is the case of the πN → ππN amplitude
as well as any related observable magnitude. An example of it is found in the
evaluation of the contribution of the nuclear virtual pion cloud to the pion
selfenergy in the nuclear medium [19].

Chiral perturbation theory has allowed us to obtain the pion pole term
of fig. 3a and the contact term of fig. 3b in an easier way than done in the
past and also has allowed the possibility to extend these ideas to the octet of
pseudoscalar mesons. As an example, the pion pole term and contact term
for the KK̄πNN vertex were evaluated in [20], where the contribution of the
virtual pion cloud to K+ nucleus scattering was investigated.
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The contribution of the diagrams of fig. 3a, 3b is the starting point of
all models for the πN → ππN reaction [18, 21, 22, 23, 24] as well as in the
KN → KπN reaction [25].

The requirements of chiral symmetry force us to include the contact term
together with the pion pole term, and some cancellations appear that make
the physical amplitudes respect the chiral limits, even in the presence of the
nuclear medium. Indeed, in ref. [20] an exact cancellation was found between
the contributions related to the pion pole and contact terms, while in ref. [19]
the contribution was finite but vanished in the limit of mπ → 0.

The former discussion has shown us that in addition to the terms depicted
in fig. 2 we must add the terms depicted in fig. 4.

The Lagrangians involving the contact terms are obtained from the general
chiral Lagrangians involving the pseudoscalar meson and baryon octets [11, 26,
27, 28]

L(B)
1 =< B̄iγµ∇µB > −MB < B̄B >

+ D+F
2

< B̄γµγ5uµB > +D−F
2

< B̄γµγ5Buµ >,
(11)

where B is a 3×3 matrix, which in our case, where only protons and neutrons
are involved, reads as

B =







0 0 p

0 0 n

0 0 0





 (12)

The three pion and a nucleon vertices, fig. 3b, are derived in [20] with the
result

L(B)
1 = D+F

2
(p̄γµγ5u

11
µ p + n̄γµγ5u

22
µ n

+n̄γµγ5u
21
µ p + p̄γµγ5u

12
µ n)

+D−F
2

(p̄γµγ5u
33
µ + n̄γµγ5u

33
µ n) ,

(13)

where uij
µ denotes the (i, j) matrix element of the uµ matrix defined as

uµ = −
√

2
f

∂µΦ

+
√

2
12f3 (∂µΦΦ2 − 2Φ∂µΦΦ + Φ2∂µΦ)

+O(Φ5) .

(14)

The (D − F ) term in eq. (13) does not contribute in our case since u33
µ

contains kaon fields.
By using the nonrelativistic reduction γµγ5pµ → −~σ~p, the relevant terms

which are needed in our approach are evaluated and they are shown in the
Appendix.
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We can also generalize these vertices to the case of N∆ transition by sub-
stituting [20]

σiτj(for nucleons) → f ∗
πN∆

fπNN

S
†
i T

†
j (15)

where S†, T † are the spin, isospin transition operators from 1/2 to 3/2.
As an example let us write the contribution of the left hand side vertex of

the diagram of fig. 4a, which we depict in fig. 5a with labels for the momenta
and a particular choice of pion charges. In the π+π− CM frame (~k1 +~k2 = 0),
and projecting over s-wave, we obtain the contribution of this vertex

− it̃ph = i
1

6f 4
(
D + F

2
)2~q2

2UN (q2) (16)

where UN is the Lindhard function for ph excitation [29]. The use of the
Lindhard function accounts for forward and backward propagating bubbles and
hence we are automatically taking into account the two diagrams depicted in
fig. 5, where the proton of the ph excitation is an occupied state in diagram (a)
while the neutron is the occupied state in diagram (b). It is straightforward
to take into account the ∆h excitation. It is sufficient to substitute UN by
UN + U∆, where U∆ is the Lindhard function for ∆h excitation conveniently
normalized. Formulae for UN , U∆ with the normalization required here can be
found in the Appendix of ref. [30].

The next step requires the evaluation of this vertex in the isospin state
T = 0. The T = 0 state is

|ππ, T = 0 >= − 1√
6
|π+(~q)π−(−~q) + π−(~q)π+(−~q) + π0(~q)π0(−~q) > (17)

where the phases and normalization are chosen as in [13]. The extra factor 1√
2

in the normalization is chosen such as to preserve the closure sum,
∑

~q | ><

| = 1, because, the |ππ, T = 0 > is a symmetrical state.
By summing the contributions from the ph and ∆h on the upper meson

line we obtain

t̃ = − 1

3f 4
(
D + F

2
)2~q 2 U(q2) (18)

where ~q = ~q1 = −~q2.
Next we turn our attention to another sort of diagram which we obtain

from the consideration of the contact term in each one of the vertices of the
one loop diagram. This is depicted in fig. 6. Its contribution to the π+π− T

matrix with a π+ ph intermediate state is readily evaluated and one obtains,

t̃R,ph = i
1

36 f 6
(
D + F

2
)2
∫

d4q1

(2π)4
~q1

2D0(q1)UN (q2) (19)
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where D0(q1) is the pion propagator and q2 = k1 + k2 − q1.
Furthermore, substituting the π+ ph intermediate state by a π0 ph state

leads to a similar contribution but substituting 1
36

by 1
18

in eq. (19), account
taken of the symmetry of the intermediate state which introduces a relative
factor 1

2
since the diagram where the ph is excited in the lower one is topolog-

ically equivalent to the former one. One can work out the other combinations
with π0π0 in the initial or final states and then evaluate the T = 0 contribution
which is given by

t̃R = i
1

9f 6
(
D + F

2
)2
∫

d4q1

(2π)4
D0(q1)~q1

2 UN (q2) (20)

Once again, taking into account ∆h excitation is straightforward and one
simply substitutes UN by UN + U∆ in eq. (20).

4 Off shell extrapolation of amplitudes and

cancellations.

Let us come back to the diagram of fig. 2b. In the case of free pion scattering
we could prove that the ππ amplitude in the loops factorized on-shell, and the
off shell part went into renormalization of couplings and masses[13]. Here the
presence of the ph excitation changes the analytical structure of the diagram
and we must investigate what happens to the off shell extrapolation of the
ππ amplitudes. For this purpose we recall that we shall be interested in the
strength of the ππ system, which is related to ImT22. If we look at the diagram
of fig. 2b, the imaginary part can come, according to Cutkosky rules, when
the two intermediate pions are placed on-shell or when the lower pion and the
ph are placed on-shell. In both cases the lower pion with momentum q1 is
placed on-shell . The same occurs with the diagrams of fig. 4a,b. Thus, the
off-shell ππ potential in those diagrams, with external pions placed on-shell,
according to eqs. (4), (8), reads now

Voff = Von +
1

3f 2
(q2

2 − m2
π) (21)

The contribution of the diagram of fig. 2b to the ππ S = 0, T = 0 amplitude
is given by

−it(1) =
∫ d4q1

(2π)4
1
f 2 {V 2

on + 2
3f2 Von(q

2
2 − m2

π) + 1
9f4 (q2

2 − m2
π)2}

×(D+F
2

)2 D2
0(q2)D0(q1)~q

2
2U(q2)

(22)

On the other hand, the sum of the amplitudes of diagrams (a) and (b) of
fig. 4, which contribute equally, is given by
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−it(2) = −2
∫ d4q1

(2π)4
1

3f 4

(

D + F
2

)2
~q 2

2D0(q1)D0(q2) {Von + 1
3f2 (q2

2 − m2
π)}

×U(q2)
(23)

It is interesting to note that the terms proportional to Von in eq. (22) and
eq. (23) cancel exactly. This leaves us with the term with V 2

on in eq. (22) plus
the terms proportional to (q2

2 − m2
π)2 in eq. (22) and the one proportional to

(q2
2 −m2

π) in eq. (23). It is also interesting to note that these latter two terms
have the same structure as the term t̃R from eq. (20), corresponding to the
diagram of fig. 6, and the sum of the three also cancels exactly.

In practical terms the situation has become rather easy. The terms of fig.
4 and 6 do not have to be evaluated and those of fig. 2 must be included
but with Vππ evaluated on-shell. These findings agree with the results of [31]
which also show that the off shell contribution depends on the representation
chosen while observable quantities should be independent of it.

The arguments can be extended to higher order loops of the type of fig.
2 and fig. 4, with the result that we must omit the terms of the type of
fig. 4 and 6 and include only loops of the type of fig. 2 but with Vππ on-
shell. This allows the factorization of the potential outside the integrals and
the Lippmann Schwinger equations are readily evaluated since they become
algebraic equations like in the free ππ scattering case.

5 Coupled channel equations

We take as channels ππ and KK̄ but do not renormalize the KK̄ system as
discussed above. The series of terms in the Lippmann Schwinger eqns., which
include the potential, the terms of fig. 2 and higher order iterations of that
type, including also free KK̄ intermediate states, is given by

T22 = V22 + V21G11t12 + V22G̃22T22 (24)

where only T22 and G̃22 are renormalized in the medium. The other quantities
are evaluated in free space and are taken from ref. [13]. We can obtain T22

from eq. (24)

T22 =
V22 + V21G11t12

1 − V22G̃22

(25)

The integral of the two pion propagators in the medium, G̃22, is then given
by

G̃22 = i

∫

d4q

(2π)4
D(q)D(P − q) (26)

with
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V22 = V22,on = − 1

9f 2
(9s +

15m2
π

2
− 12m2

π) (27)

and

D(q) =
1

q2 − m2
π − Π(q)

(28)

where Π(q) is the pion selfenergy in the medium

Π(q) =
(D+F

2f
)2~q 2U(q)

1 − (D+F
2f

)2g′U(q)
(29)

with g′ the Landau-Migdal parameter, which we take as g′ = 0.7.
When including the pion selfenergy in eq. (28) we also go beyond the

lowest order diagrams in density that we have discussed in detail, but this is
the appropriate way to take the higher order diagrams into account.

We have also included the pion selfenergy accounting for 2p2h excitation.
Since we are concerned mostly around the pion threshold region (

√
s ∼ 2mπ)

we have taken this selfenergy from pionic atoms. The procedure is discussed
in detail in [32] and it amounts to substituting in eq. (29)

(

D + F

2f

)2

U(q) →
(

D + F

2f

)2

U(q) − 4πC∗
0ρ

2 (30)

with ρ the nuclear density and

C∗
0 = (0.105 + i 0.096) m−6

π (31)

It is interesting to note that eq. (25) leads to a zero very close to the one
where V22 = 0 (Adler zero) since the second term in the numerator of eq. (25),
involving kaon loops, is negligible around that energy. Hence our approach
fulfils the minimal chiral constraints (MCC) of ref. [10] even in the presence
of the nuclear medium.

6 Results and discussion

In fig. 7 we show ImT22 as a function of the energy for different values of
kF , the Fermi momentum. The results show a reduction of strength below the
‘σ’ region and an accumulation of strength at low energies around the pion
threshold. The results obtained omitting the 2p2h part of the pion selfenergy
are qualitatively similar to those in fig. 7 at energies below 600 MeV . In the
region close to the dip of the f0(980) resonance the results including the 2p2h
part are about 30 % smaller than those omitting them. At these energies a
more realistic evaluation of this part would be needed but since we are not
concerned about this region we do not elaborate further on the issue.
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The results obtained resemble very much those shown in fig. 12 of ref.
[8] and particularly those of fig. 3 of [33], where first attempts to relate the
accumulated strength around pion threshold to the experiment of [3] are done.

The association of the peaks found here to the extra strength around pion
threshold found in the experiment at small pion pair invariant mass [3] is not
straightforward. Indeed, even if this invariant mass is small, the pion pair
moves with some momentum. Here we have studied the ππ system at rest
in nuclear matter and there could be differences for a ππ pair moving with
respect to the rest frame of the Fermi sea. Yet the steps taken in [33] are
encouraging and more work along these lines would be welcome.

It should also be pointed out that we have selected the diagrams for ππ

free scattering and carried out the renormalization for the mesons while at the
same time have kept the partner terms which appear at the same order of the
chiral counting and make the scheme invariant under unitary transformations
of the fields. This would in principle guarantee that relationships like Ward
identities and other, which are sometimes used in the study of the interaction
of ρ-mesons with matter [34], would be satisfied. Alternative methods to test
Ward identities can be made using the master formula of [35], where the most
general amplitude for ππ scattering satisfying chiral constraints is derived and
expressed in terms of form factors and polarization functions. The use of
resonance saturation for the evaluation of these latter magnitudes leads to
a consistency check of the master formula [35]. Our approach [13, 15] leads
dynamically to the different meson meson resonances and would naturally
provide the resonance contribution to those functions, hence indirectly fulfilling
the test done in [35].

On the other hand, one can think of other many body diagrams which
in principle contribute to the process. Think for instance of a baryon box
diagram with 4 meson legs attached at different points of it, or the same box
diagram with two pairs of mesons attached at two points, etc. These diagrams
require the use of other terms of the chiral Lagrangians used above and do
not interfere with the counting done so far. Furthermore, inspection of these
diagrams proves that sometimes the isoscalar πN amplitude is involved, which
is quite small on shell, although it can be appreciably modified in some off shell
situations. Other times one meets with the p-wave πN interaction, while we
are interested in s-wave propagation. In most cases, like in those box diagrams,
a ph is forced to propagate carrying zero momentum and the two meson energy,
which places it very far off shell, etc. These are qualitative arguments which
indicate small contributions from such terms and would support our choice
of many body diagrams as the relevant set for the process studied. However,
detailed studies of these alternative many body mechanisms would be welcome.
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7 Conclusions

We have performed calculations of the ππ scalar-isoscalar amplitude in a nu-
clear medium starting from the standard chiral Lagrangians and using a uni-
tary framework with coupled channels which proved rather successful in de-
scribing the meson-meson interaction in the scalar sector.

Compared to other schemes that impose minimal constraints of chiral sym-
metry, essentially the vanishing of the ππ amplitude in the limit of mπ → 0,
our scheme uses the input of the standard chiral Lagrangians and generates
different terms, in the expansion on the number of meson fields, which appear
on the same footing in the ππ amplitude in the presence of a nuclear medium.
In this way, some terms related to the contact term πππNN , which appears
in the πN → ππN reaction, and which are new with respect to previous ap-
proaches, are generated here. Simultaneously, the off-shell extrapolation of the
chiral ππ amplitudes is used and it is shown to produce cancellations with the
terms coming from the contact vertices, with the remarkable result that only
the one shell part of the 0(p2) meson meson amplitudes is needed, like in the
case of free meson scattering.

This shows the usefulness of working explicitly with chiral Lagrangians in
order to find out those subtle cancellations. Our results show a reduction of
strength of ImT22 in the ‘σ’ region and an accumulation of strength close to
pion threshold which are features shared by most of the approaches.

Quantitatively our results resemble very much some results in the literature
which use models imposing minimal chiral constraints. Among a large variety
of prescriptions used in the past to account for ππ interaction in the medium,
the present approach offers a cleaner link to chiral dynamics. This has been
made possible by the work of [13] which could combine exact unitarity with the
input of the chiral Lagrangians, describing accurately the free meson meson
interaction. Work along these lines in the study of the modification of the
meson meson interaction in a nuclear medium for other channels is equally
possible and would be welcome.

On the other hand, the clear accumulation of strength around pion thresh-
old (even without singularities as claimed in some approaches) which is also
shared by some models, is an appealing feature that most probably can be
linked to present experiments showing enhanced distributions of ππ invariant
mass in T = 0 around pion threshold. Further investigation along these lines
is another of the challenging tasks ahead.
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Appendix

Matrix elements of the contact terms of fig. 8 in the meson-meson CM frame
(~k1 + ~k2 = 0):

iLa =
D + F

2

√
2

12f 3
2 ~σ · (3~k1 + ~q1), (32)

iLb =
D + F

2

√
2

12f 3
2 ~σ · (3~k2 + ~q2), (33)

iLc = ±D + F

2

√
2

12f 3

1√
2

4 ~σ · ~q1, (34)

with a plus(minus) sign for the proton(neutron) case,

iLd =
D + F

2

√
2

12f 3
4 ~σ · ~q1, (35)

iLe =
D + F

2

√
2

12f 3
4 ~σ · ~q2, (36)

iLf = 0 (37)
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Figure captions:

Fig. 1:
Diagrammatic representation of the ππ scattering matrix contained in the

Lippmann Schwinger coupled channel equations.
Fig. 2:

Terms appearing in the scattering matrix allowing the pions excite ph and
∆h components.
Fig. 3:

Pion pole (a) and contact term (b), appearing in the construction of the
πN → ππN amplitude.
Fig. 4:

Terms of the ππ scattering series in the nuclear medium tied up to the
contact terms of fig. 3.
Fig. 5:

Direct and crossed ph excitation terms contained in the modified 4π vertex,
accounted for by means of the ordinary Lindhard function.
Fig. 6:

Diagram tied to the contact term of fig. 3b, allowing for ph excitation and
a pion in the intermediate state.
Fig. 7:

Im T22 for ππ → ππ scattering in J = T = 0 (T00 in the figure) in the
nuclear medium for different values of kF versus the CM energy of the pion
pair. The labels correspond to the values of kF in MeV.
Fig. 8:

Contact terms appearing in the construction of the πN → ππN amplitude.
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(1991) 325.

[5] J.A. Johnstone and T.S. H. Lee, Phys. Rev. C34 (1986) 243.

[6] J. W. Durso, A. D. Jackson and B. J. Verwest, Nucl. Phys. A345 (1980)
471.

[7] Z. Aouissat, G. Chanfray and P. Schuck, Mod. Phys. Lett. A8 (1993)
1379.

[8] Z. Aouissat, R. Rapp, G. Chanfray, P. Schuck and J. Wambach, Nucl.
Phys. A581 (1995) 471.

[9] D. Lohse, J.W. Durso, K. Holinde and J. Speth, Phys. Lett. B234 (1989)
235; Nucl. Phys. A516 (1990) 513.

[10] R. Rapp, J.W. Durso and J. Wambach, Nucl. Phys. A596 (1996) 436.

[11] J. Gasser and H. Leutwyler, Nucl. Phys. B250 (1985) 465.

[12] A. Dobado, M.J. Herrero and T.N. Truong, Phys. Lett. B235 (1990) 129;
A. Dobado and J.R. Pelaez, Phys. Rev. D47 (1992) 4883; ibid, Phys. Rev.
D56 (1997) 3057.

[13] J.A. Oller and E. Oset, Nucl. Phys. A620 (1997) 438.

[14] T. N. Truong, Phys. Rev. Lett. 61 (1988) 2526; ibid 67 (1991) 2260.

[15] J. A. Oller, E. Oset and J. R. Peláez, Phys. Rev. Lett. 80 (1998) 2452.
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