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Abstract

The reaction A(π, ππ)X has been studied at low energies, paying particu-

lar attention to the interaction of the two final pions in the scalar isoscalar

(I=J=0) channel. We have developed a microscopic model for the pion pro-

duction, and then implemented the two pion final state interaction by using

the results of a non-perturbative unitary coupled-channels method based in

the standard chiral Lagrangians. The resulting model, describes well the

reaction on the nucleon for all different isospin channels. Finally, we have

considered the reaction in nuclei. Our calculation takes into account Fermi

motion, Pauli blocking, pion absorption, and also the strong modification of

the ππ interaction in the nuclear medium.
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I. INTRODUCTION

The reaction A(π, ππ)X has attracted much interest lately, as a means to investigate the

properties of correlated I = J = 0 pion pairs, the ”σ” meson, in nuclear matter [1,2]. This

has been partly motivated by recent experimental results, which show an A dependent large

enhancement of the cross section at low invariant masses of the dipion system [3,4]. The

enhancement occurs for the A(π−, π+π−)X process (Iππ = 0 and 2 at low energies), but is

conspicuously absent for the A(π+, π+π+)X case (Iππ = 2). Thus, it happens only when

Iππ = 0 pion pairs are produced, and could be related to the medium dependence of the ππ

interaction in the σ channel.

Our theoretical understanding of the ππ scattering in vacuum has improved considerably

in the last few years. Close to threshold, the ππ interaction is well described by Chiral

Perturbation Theory (χPT). At higher energies, where unitarity matters and we are out of

the χPT range of validity, some very successful non perturbative models have been developed

[5,6]. They are able to give a good description of the ππ scattering in the σ channel up to

energies above 1 GeV.

Whereas in vacuum the low energy ππ interaction in the I = J = 0 channel, although

attractive, is too weak to admit a bound state, it was soon realized that the nuclear medium

attraction of the pions could lead to the accumulation of some strength close to the two

pion threshold, or even to the appearance of a new bound state [7]. A similar conclusion

has been reached in Ref. [2], where an enhancement of the the spectral function in the σ

channel, just above the 2π threshold, has been predicted as a consequence of a possible

partial restoration of chiral symmetry in the nuclear medium. Actually, in more detailed

calculations, based on the ππ interaction model of ref. [5] it has been found that spontaneous

s-wave pion pair condensation could appear at densities as low as ρ0 [8–10]. Further works

along the same line, but using the chirally improved Jülich model for the meson-meson

interaction, have shown that instabilities are pushed up in density when chiral constraints

are imposed [11,12]. Nonetheless, some accumulation of strength close to the two pion
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threshold was found. Similar results have been obtained in ref. [13]. The latter work is

based in the model for ππ interaction of ref. [6], which generates the scattering amplitude

using the chiral lagrangians, and then unitarizes it by the inverse amplitude method.

The first experimental signals showing a small enhancement of the ππ spectral function

in the A(π, 2π)X reaction were found in ref. [14], although the experiment didn’t measure

below Mππ = 300 MeV, and hence, missed the most interesting region. The advent of

CHAOS improved considerably the experimental possibilities, and it has provided us with

a wealth of good quality data for several charge channels and nuclei. The results show the

emergence of a very clear peak in the Mππ spectral function close to threshold, when pions

in the scalar isoscalar channels are present in the final state [3,4,15]. This peak, absent

for the reaction on deuterium already appears on light nuclei, and grows as a function of

the atomic number. In contrast, only minor changes are observed when the cross section

of the (π+, 2π+) reaction in deuterium is compared to the same process in heavier nuclei.

Certainly, the different behaviour of the two processes cannot be caused by trivial nuclear

effects, like Fermi motion, Pauli blocking, or pion absorption, which are practically identical

for both cases.

In ref. [1], a calculation of the A(π, 2π)X reaction has been presented in which the ππ

FSI was taken into account using the approach of ref. [11]. The emphasis being placed

on the analysis of FSI, the elementary mechanism of pion production on a single nucleon

(πN → ππN) was described in a simplified manner, taking only the most important pieces of

the amplitude. Also, some simplifications were done on the treatment of nuclear effects, like

Fermi motion, or pion absorption. The results are very stimulating, and show some enhance-

ment on the Mππ distribution close to threshold, which agrees well with the experimental

data.

Our aim in this paper is to do a more detailed study of the reaction, including a realistic

πN → ππN amplitude, and incorporating some nuclear effects omitted in the previous work,

and which could affect its conclusions.

In sec. II we give a brief outline of the model for ππ scattering in the scalar isoscalar

3



channel both in vacuum [6] and in nuclear matter [13]. Then, in sec. III we develop a model

for the πN → ππN reaction. Finally, in sec. IV we discuss the process in nuclei.

II. BASIC THEORY OF THE ππ SCATTERING IN THE SCALAR ISOSCALAR

CHANNEL

A. ππ scattering in vacuum

The ππ scattering amplitude is calculated solving the coupled channels Bethe-Salpeter

(BS) equation

Tππ = Vππ + VπlGllTlπ, (1)

where the subindex π corresponds to the state |ππ, I = 0 > and the subindex l accounts

for the |ππ, I = 0 > and the |KK̄, I = 0 > states. The potentials Vij are obtained from

the lowest order chiral Lagrangians [16]. Explicit expressions can be found in Ref. [13]. The

VGT term of eq. 1 stands for

VGT =
∫

d4k

(2π)4
V(q1, q2, k)G(P, k)T (k; q′1, q

′
2), (2)

where q, q′, P , and k are the momenta of the mesons as defined in fig. 1. A cutoff (qmax = 1

GeV) is used in the evaluation of the integral. G(P, k) is the product of the two meson

propagators in the loop,

Glj(P, k) = i
1

k2 −m2
l + iǫ

1

(P − k)2 −m2
j + iǫ

. (3)

The particular Vij off-shell dependence leads to the simplification of the integral BS equation

which can be transformed into the purely algebraic expression

Tik = Vik + VijGjjTjk , (4)

where Vil is now the on-shell part of the potentials (when the momenta are taken such that

p2
i = m2

i ), and
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Gjj = i
∫

d4k

(2π)4

1

k2 −m2
1j + iǫ

1

(P − k)2 −m2
2j + iǫ

. (5)

The resulting amplitude reproduces well experimental phase shifts and inelasticities in the

I = J = 0 channel up to 1.2 GeV.

B. ππ in nuclear matter

In the nuclear medium, the pion propagators are strongly modified, mainly due to their

coupling to particle-hole (ph) and ∆−hole (∆h) excitations. Therefore, new terms, of the

type depicted in fig. 2 have to be included in the calculation of the scattering amplitude. It

has been shown [17,13] that the terms c),d),f),... of fig. 2 cancel the off shell contribution

of the terms a),b),e),... so that only these latter terms must be considered with the ππ

amplitudes factorized on shell. As a result the new BS equation is written as

Tππ = Vππ + VπKGKKTKπ + VππG̃ππTππ. (6)

As the KK̄ state contributes very little to Tππ at low energies, the vacuum values are kept

for GKK . Only Tππ and G̃ππ are renormalized in the medium. The function G̃ππ is now

given by

G̃ππ = i
∫ d4k

(2π)4

1

k2 −m2
π − Π(k)

1

(P − k)2 −m2
j − Π(P − k)

, (7)

where Π(k) is the pion selfenergy in the nuclear medium calculated as

Π(k) =
( f

mπ
)2~k 2U(k)

1 − ( f

mπ
)2g′U(k)

, (8)

with g′ the Landau-Migdal parameter (g′ = 0.7), f the NNπ coupling constant (f = 1),

and U the Lindhard function for both ph and ∆h excitations [18]. In addition, we have also

included the contribution of 2p2h excitations as explained in ref. [13].

In fig. 3 we show the imaginary part of the ππ scattering amplitude for several nuclear

densities. The results show a displacement of strength towards low energies. Although

eq. 6 leads to a zero value for the amplitude close to the Adler’s zero, (s = m2
π/2 with s
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the Mandelstam variable of the two pions system), the accumulation of strength close and

below the two pion threshold is large and grows rapidly as a function of the nuclear density.

Very similar results were found in other works using different models for ππ interaction but

imposing some minimal chiral constraints. See, for instance, fig. 12 of ref. [12] and fig. 3 of

ref. [19].

III. THE πN → ππN REACTION

Our understanding of the πN → ππN reaction at low energies has improved considerably

in the last few years both experimentally and theoretically [20–24]. The model we present

here follows closely that of ref. [20], where only the π−p→ π+π−n process was calculated. In

this paper we will extend it to other charge channels and will include additional mechanisms,

that have been found to be important in the calculation of some differential cross sections

[25,4].

At low energies, the only particles that need to be considered are pions, nucleons, and the

∆ and Roper resonances. The need of the latter seems surprising, because of its relatively

high mass and the smallness of the πNN∗ coupling. However, the Roper resonance partly

decays to a nucleon and a s-wave pion pair. This mechanism does not vanish at threshold,

unlike most other terms, and it has been found to be very important for all charge channels

that allow for an I=J=0 pion pair [25].

We have considered in our model the mechanisms represented by the diagrams of fig. 4.

The dashed lines are pions, and the internal solid lines are all possible baryons (N,N∗,∆).

Notice, that different charge channels allow or forbid some of the diagrams. Also all possible

different time orderings, not explicitly depicted, are included in the actual calculation. The

Feynman rules used to calculate the scattering amplitude are derived from the effective

Lagrangians of the Appendix. It is relevant to mention here that no attempt to fit the

πN → ππN data has been made. Rather, standard values for the coupling constants,

obtained from different experiments and/or analysis, have been used.

6



A. Isospin amplitudes

The scattering amplitudes for the different πN → ππN charge channels can be written as

linear combinations of four isospin amplitudes T2I,Iπ,π
. Here, I and Iπ,π are the total isospin

of the system and the isospin of the two final pions. The expressions, for the channels we

are interested in, are

T (π−p→ π+π−n) = − 1√
45
T32 +

√
2

3
T10 +

1

3
(T11 − T31) , (9)

T (π−p→ π0π0n) =
4√
45
T32 +

√
2

3
T10 , (10)

T (π+p→ π+π+n) = − 2√
5
T32 . (11)

Before proceeding, it is interesting to make some qualitative considerations. The symmetry

of the pion pair wave function implies that the orbital angular momentum of the two final

state pions will be even for the T10, T32 and odd for the Iππ = 1 amplitudes. Thus, at low

enough energies, where only s-wave would dominate, both T11 and T31 should be negligible.

On the other hand, the cross section for the π+p→ π+π+n channel is much smaller than for

the other two cases. Therefore T32 < T10, what implies that the amplitudes for the π+π−

and for the π0π0 case should be equal at low energies and also that they are, essentially,

dominated by the production of scalar isoscalar pion pairs. As a consequence, the π0π0 cross

section should be about one half the one for π+π−, once the different thresholds are taken

into account. Of course, the energies at which there are experimental data are not that

close to threshold and one cannot neglect T11 and T31. In our calculation, we will proceed

as follows. First, using the Lagrangians of the appendix we calculate the amplitudes for the

different charge channels. Then, by means of eqs. 9, 10 and 11, we obtain T10, T32, and the

combination T11 − T31, and finally, we modify T10 by including the final state interaction of

the I = J = 0 pion pairs .

At low energies, due to the smallness of the Iππ = 1 contributions, we only need to

consider the effects of the FSI on the Iππ = 0, 2 channels. Furthermore, as it is shown in ref.
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[1] the ππ interaction in for Iππ = 2 is quite weak and does not change appreciably inside

the nuclear medium. Thus only the FSI on the Iππ = 0 channel could produce large effects

on the scattering amplitude both in vacuum and in nuclei. To account for it, the amplitude

T10 is modified in the following manner,

T̃10 = T10F = T10 + T10G̃ππTππ (12)

where G̃ππ and Tππ are the two pions propagator and the scalar isoscalar two pions amplitude

defined in eqs. 7 and 6 respectively. Using again eqs. 9, 10 and 11, where T10 is now replaced

by T̃10 we obtain the scattering amplitudes for the physical channels.

As can be seen in fig. 5, this model, without free parameters, reproduces fairly well the

total cross sections for the three channels considered. This agreement extends to differential

cross sections, as it will be shown for some cases in next section. The net effect of the

inclusion of the pions FSI is a small enhancement of the total cross section for the π+π− and

π0π0 channels, and slight modifications of the differential cross sections, as it was expected,

given that the F factor changes very smoothly, in vacuum, over the available phase space.

IV. THE πA → ππX REACTION

There are several nuclear effects that could modify he pion production cross section,

like Fermi motion, Pauli blocking, pion absorption and quasielastic scattering. Additionally,

there could be new reaction mechanisms involving more than one nucleon, but the contri-

bution of this kind of processes has been shown to be quite small [4]. To account for the

medium effects we follow ref. [33]. Assuming only one nucleon mechanisms, the cross section

can be written as

σ =
π

q

∫

d2~b dz FISI

∫

d3~k

(2π)3

∫

d3~q1
(2π)3

∫

d3~q2
(2π)3

n(|~k|)(1 − n(|~q + ~k − ~q1 − ~q2|)) (13)

∑

sisf

|T |2 1

2ω(~q1)

1

2ω(~q2)
δ(q0 + E(~k) − ω(~q1) − ω(~q2) − E(~q + ~k − ~q1 − ~q2))Fout abs , (14)

where ~q,~k, ~q1, and ~q2 are the initial pion, initial nucleon and two final pions momenta;

E(~k), ω(~q1) and ω(~q2) are their energies. The spatial volume element is written in terms
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of ~b, perpendicular, and z parallel to the beam momentum. The occupation number n(.)

refers to the local density, it takes the value 1 when the argument is below the local Fermi

momentum (kF = (3π2ρ(~b, z)/2)) and zero above it. Note the sum over initial and final

spins, but not over isospin because the channels we study involve only protons in the initial

state and neutrons in the final one. In this paper, we only consider symmetric nuclei, and

we will use the same density for neutrons and protons. The nuclear densities are taken

from ref. [34]. The amplitude T is also evaluated at the local density, what fundamentally

means that its only changes occur in the F factor, related to the ππ interaction. Finally, the

factors FISI , and Fout abs account for the flux loss due to pion absorption and scattering in

the case of FISI and for pion absorption alone in the case of Fout abs. Both pion absorption

and quasielastic scattering are quite strong at the energy of the incoming pion and both

reduce the effective initial pion flux. That is clear for the absorption, but it is also true

for the π-nucleus quasielastic scattering, because in these collisions the pion loses always

some energy, what reduces enormously the possibility of a subsequent pion production. We

implement the flux lost with the eikonal factor

FISI = exp (
∫ z

−∞
dz′ (Pabs(ω(q), ρ) + Pqua(ω(q), ρ)), (15)

where Pabs, Pqua are the absorption and quasielastic scattering probability per unit length,

that we take from ref. [33]. Due to these interactions, the flux reaching the inner nucleus is

quite small and the reaction happens at the surface, what reduces considerably the possibility

of strong medium effects. As mentioned in ref. [1], the final pions have low energy and

absorption or quasielastic scattering is a minor effect in their case. This has also been

confirmed in the analysis of experimental data of ref. [14]. Nonetheless, it could affect more

those events happening at high densities in the center of the nucleus. Therefore, we include

the factor Fout abs that calculates the reduction of the cross section due to the absorption of

any of the final pions. It is given by

Fout abs = exp (
∫ ∞

−~b,z
dl1 Pabs(ω(q1), ρ)) exp (

∫ ∞

−~b,z
dl2 Pabs(ω(q2), ρ)) , (16)
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where dl1, dl2 are the elements of longitude along the ~q1 and ~q2 directions. The probability

of quasielastic collisions is very small at these energies and we ignore it.

V. RESULTS

The results that will be presented in this section are all compared with CHAOS data.

We have approximately implemented the experimental acceptance cuts in our calculation.

Let us take the beam direction as the z−axis, and x forming with z the horizontal plane,

then φ = 0±7 degrees, where φ is the pion angle with the xz plane, and 10 < θ < 170, with

θ the pion angle with the z direction. Also, we have taken a pion kinetic energy threshold,

Tπ > 11MeV .

In fig. 6, we show the invariant mass distributions for the deuteron case. We obtain a

quite good agreement in the π+π+ channel in both shape and size. The agreement is not as

satisfactory for the π+π− case. As can be seen in fig. 5, the total cross section is slightly

overestimated by our model, and a similar situation is found for the mass distribution.

In order to compare easily with the experimental shape, we have renormalized our result

reducing it by a 20% and this is what is shown in the figure. Let us remember here,

that no parameter has been adjusted, and some of them, like those related to the Roper

properties are very uncertain. A quite small change of a few percent in the Roper coupling

constants would produce a fine agreement in size. It is interesting to understand the quite

different behaviour of the two channels under consideration. As it was already stressed in

ref. [4], the π+π+ case follows closely a pure phase space distribution. The two peaks of the

figure respond only to the geometry of the experimental apparatus, which favours clearly

the situations in which either the pions go together (low Mππ ) or in opposite directions

(high Mππ). The smallness of the Mππ distribution in the π+π− reaction reflects the much

richer structure of the amplitude, and it is produced by the destructive interference of large

pieces. Consider, as an example, the mechanisms (I) π−p → n∗ → n(ππ)I=J=0 and (II)

π−p → n∗ → ∆π → nπ+π−. The (I) amplitude has a constant sign, all over the available

10



phase space. However, process (II) has an amplitude approximately proportional to the

scalar product of the final pions momenta. Therefore, it changes sign when passing from low

to high invariant masses. In fact, not only is there destructive interference at low masses,

the constructive interference increases the size of the high mass region.

Our results for Calcium are shown in fig. 7. Again, there is a very good agreement

with the π+π+ data. The shape of the figure is quite similar to the deuteron case. There is

some softening, and the distribution reaches higher masses. Both features are mostly due to

the Fermi motion of nucleons. Pion absorption is weak at low energies. Hence, it does not

affect much the final pions, although it is partly responsible for the reduction of the spectral

function at high masses. More important is the initial pion absorption, which apart from

changing the total cross section, prevents the pions from reaching the nucleus core, therefore

decreasing the effective density at which the reaction happens, and modulating all nuclear

effects.

The quality of the agreement on the latter channel, gives us confidence that all stan-

dard nuclear effects are properly taken into account. In particular that we have a proper

description of where in the nucleus the reaction takes place.

Finally, let us discuss the π+π− data, the channel in which the nuclear dependent ππ

interaction in the scalar isoscalar channel could be responsible of the presence of a low mass

peak. Our results show some enhancement close to threshold, even when the pion FSI is

calculated in vacuum. This is due to Fermi motion. In the full calculation, the inclusion

of the medium dependence in the FSI leads to a further enhancement and a displacement

towards low masses, although is not enough to reproduce the data.

One first question is the consistency of our results with those of ref. [1], which repro-

duce well the experiment. In order to do a proper comparison, we should impose some

approximations that were used there. In particular, we find that pion absorption forces the

reaction to occur at the nuclear surface, at densities lower than those used in ref. [1]. If we

impose a high fixed average density (see fig. 8), we also get a large, although insufficient

enhancement, and too high values for the mass distribution at high masses, produced by the
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excess of Fermi motion. If we neglect pion absorption, the results follow closely the curve

corresponding to ρ = 0.5ρ0, as expected, given the fact that for the Calcium nucleus, the

average density is approximately half the nuclear density.

In order to facilitate further the comparison with the results of ref. [1] we have also

considered a simplified model for the reaction, neglecting all terms with a ∆ resonance. The

two curves in fig. 9 correspond to FSI calculated in vacuum and with a density ρ = 0.5ρ0.

This simplified model has a similar structure to that of ref. [1], and although it is able to

reproduce the peaks structure in nuclei, it does so at the price of overestimating for the

deuteron case the threshold region by a large factor.

VI. CONCLUSIONS

We have studied the A(π+, π+π±)X reactions on the deuteron and on Calcium using a

realistic model for the elementary πN → ππN production, and including several nuclear

medium effects, like Fermi motion, pion absorption, pion quasielastic scattering, and the

medium dependent ππ interaction in the scalar isoscalar channel.

We find a very good agreement with the experimental data for the π+π+ production,

which gives us confidence on our treatment of the common nuclear effects. However, we are

unable to reproduce fully the strong enhancement close to the two pion threshold found in

the experiment for the π+π− production. We also find that approximations previously used

in the literature could be critical in reproducing such an enhancement. Several possibilities

open up. It could happen that the ππ interaction in the σ channel has a stronger depen-

dence on density than that provided by existing models. This would be most interesting.

However, we have also found that the smallness of the spectral function in the deuteron,

close to threshold, is due to destructive interference between large pieces of the amplitude. If

some of these pieces is substantially modified in the nuclear medium, the interference could

disappear, and the spectral function would look more like phase space, as it is the case for

π+π+ production. This would be enough to reproduce the experimental data. New dedi-
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cated experiments, with a wider phase space, and at lower energies, where the interference

effects are smaller are important to settle these questions.

We also find that absorption of the incoming pion, leads the reaction to occur at the

surface, therefore reducing the signals of any density dependent effect. Electromagnetically

induced reactions, free from such a disadvantage are clearly called for to investigate the

medium effects on the ππ interaction in the σ channel
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APPENDIX A: LAGRANGIANS USED IN THE πN → ππN MODEL

1. Pions and nucleons

The scattering amplitude of the mechanisms depicted in fig. 4, considering only nucleons

for the internal lines, can be derived from the chiral lagrangians with the inclusion of baryons

of ref. [16,35–37]. The relevant pieces can be written as

L = Lππ + LπN , (A1)

In this equation, Lππ contains the purely mesonic interaction and LπN the meson(s)-nucleon

terms. The mesonic part is given by

Lππ =
f 2

4
< ∂µU

†∂µU + χ(U + U †) >, (A2)

The brackets indicate the sum in flavour space. The matrices U and u are defined by

U(Φ) = u(Φ)2 = exp
{

i
√

2Φ/f
}

(A3)

where
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Φ ≡ 1√
2
~τ ~φ =









1√
2
π0 π+

π− − 1√
2
π0









, (A4)

where ~τ are the Pauli matrices and the π. are the pion fields. At lowest order, f is equal

to the pion decay constant, f = fπ = 92.4MeV . Assuming isospin symmetry, the mesonic

mass matrix is

χ =









m2
π 0

0 m2
π









, (A5)

The interaction with the nucleon is described by the term

LπN = Ψ̄(iγµ∇µ −M +
gA

2
γµγ5uµ)Ψ. (A6)

Here, M is the nucleon mass, Ψ is the nucleon isospinor

Ψ =









p

n









, (A7)

and gA ≈ 1.26 is related to the pion nucleon coupling constant (fNNπ/mπ) by the Goldberger-

Treiman relation fNNπ

mπ
= gA

2f
. The covariant derivative of the nucleon field ∇µΨ is given by

∇µΨ = ∂µB + ΓµB , Γµ =
1

2

(

u†∂µu+ u∂µu
†
)

. (A8)

Expanding U and u, and keeping the terms with up to four pion fields, the following set

of Lagrangians are obtained,

Lππππ =
1

6f 2
π

[

(∂µ
~φ~φ)2 − ~φ2(∂µ

~φ)2 +
1

4
m2

π
~φ4
]

, (A9)

LNNπ = −fNNπ

mπ

Ψ̄γµγ5∂µ
~φ~τΨ , (A10)

LNNπππ=
1

6f 2
π

fNNπ

mπ

Ψ̄γµγ5[(∂µ
~φ~τ)~φ2 − (~φ~τ)(∂µ

~φ~φ)]Ψ , (A11)

LNNππ = − 1

4f 2
π

Ψ̄γµ~τ (~φ×∂µ
~φ)Ψ . (A12)
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Whereas the expression of the LNNπ Lagrangian is quite standard, different forms can

be found in the literature for the A9 and A11 pieces, because different representations for

the pion field U(Φ) had been used. However, it can be shown that they produce the same

physical amplitudes. In particular, they are equivalent to the Weinberg Lagrangians used

in ref. [20] when the chiral symmetry breaking parameter ξ is taken to be zero.

The LNNππ term describes the isovector part of the πN → πN s-wave interaction. The

very small isoscalar part would appear at higher orders of the chiral Lagrangian. Adding

a phenomenological isoscalar part, and doing a low energy approximation, the Lagrangian

can be recast in the typical form

LNNππ = −4π

{

λ1

mπ

Ψ̄~φ2Ψ +
λ2

m2
π

Ψ̄~τ (~φ×∂t
~φ)Ψ

}

. (A13)

where λ2 = m2
π

16πf2
π
≈ 0.045. Fitting the constants to the s-wave πN scattering lengths [38],

one gets an slightly larger λ2 = 0.52, and λ1 = 0.048.

Finally, the pion and nucleon propagators are

Dπ(q) =
1

q2 −m2
π

, (A14)

GN(q) =
M

Eq

1

q0 −Eq + iǫ
, (A15)

where Eq =
√
q2 +M2

2. ∆ resonance

Diagrams d) and e) of fig. 4 could also have ∆ resonances as intermediate steps. The re-

quired ∆Nπ and ∆∆π vertices are described by the following phenomenological Lagrangians

L∆Nπ =
f ∗

mπ

ψ†
∆S

†
i (∂i

~φ)T†ψN + h.c. , (A16)

L∆∆π =
f∆

mπ

ψ†
∆S∆i(∂i

~φ)T∆ψ∆ , (A17)
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where the ψ†
∆(N) are two-component spinor fields, S† (T†), and S∆(T∆) are the spin (isospin)

1/2 → 3/2 and 3/2 → 3/2 transition operators. Definition, and some useful algebraic

relations of this operators can be found in ref. [39].

The ∆ propagator is given by

G∆(p) =
1

W −M∆ + 1
2
iΓ∆(p)

(A18)

where W is the ∆ invariant mass and the resonance width Γ∆ is

Γ∆(W ) =
1

6π

(

f ∗

mπ

)2
M

W
|qcm|3 Θ(W −M −mπ) . (A19)

with qcm the pion momentum in the resonance rest frame. The ∆Nπ coupling constant,

obtained from πN phase shifts or from the experimental width, using eq. A19, takes the

value f ∗ = 2.13. For the ∆∆π coupling we take the quark model value, f∆ = 4/5fNNπ [40].

3. Roper resonance

The Roper resonance can decay into a nucleon and a pion, a ∆ and a pion and a nucleon

and two s-wave pion. The effective Lagrangians we use to describe these interactions are

LN∗Nπ = − f̃

mπ

Ψ̄N∗γµγ5∂µ
~φ~τΨN + h.c. , (A20)

LN∗∆π =
fN∗∆π

mπ

ψ†
∆S

†
i (∂i

~φ)T†ψN∗ + h.c. . (A21)

and

LN∗Nππ = −CΨ̄N∗
~φ~φΨN + h.c. . (A22)

The coupling constants f̃ , fN∗∆π and C are calculated from the N∗ width and branching

ratios. There are considerable uncertainties in the experimental information, but using the

central values from ref. [41] one gets f̃ = 0.477, fN∗∆π = 2.07 and C = 2.3m−1
π [39]. The

Roper propagator is given by
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GN∗(p) =
1

W −M∗ + 1
2
iΓN∗(p)

(A23)

At low energy, the width is dominated by the decay into the Nπ channel, and it is given by

ΓN∗ ≈ ΓNπ =
3

2π

(

f̃

mπ

)2
M

W
|qcm|3 Θ(W −M −mπ) . (A24)

Whereas all other constants are obtained from different experiments, without two s-

wave pions in the final state, and hence are independently determined, we should handle

with more care fN∗∆π and C. Both constants correspond to processes with two pions in

the final state, which could be in the scalar isoscalar channel. The constants have been

fitted to the experimental Roper partial widths using the Born approximation (without

final state interaction of the pions), and therefore effectively incorporate already the vacuum

renormalization due to the final state interaction of the pions. As we will include the FSI

explicitly in our calculation, we have first to discount its effects on these two constants to

avoid double counting.

As explained in Sec. IIIA our model implements FSI by multiplying the scalar isoscalar

part of the amplitude by the factor F . This factor depends smoothly in vacuum on the

invariant mass of the two pion system, and is practically constant over the available phase

space region of the N∗(1440) decay. We thus take a corrected value for C

C → C

|F̄ | , (A25)

where F̄ is the value of F at the average invariant mass of the two pions in the N∗(1440)

decay. The correction is not as important for the fN∗→∆π case. First, because only a small

part of the partial width produces pion pairs in the scalar isoscalar channel, and second

because at the low energies of the experiment under analysis, the contribution of this kind

of mechanisms is small.
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FIGURES

FIG. 1. Diagrammatic representation of the Bethe-Salpeter equation.

FIG. 2. Some new terms of the Bethe-Salpeter equation in nuclear matter. Bubbles represent

particle-hole and ∆-hole excitations.

FIG. 3. Im Tππ in the scalar isoscalar channel at different nuclear densities as a function of

the CM energy of the pion pairs. The labels correspond to the nucleons Fermi momentum.

FIG. 4. Feynman diagrams contributing to the πN → ππN reaction. Dashed lines are pions.

External solid lines are nucleons. Internal solid lines are nucleons,∆’s and N∗(1440) where possible.

FIG. 5. Total cross section for the πN → ππN reaction vs. pion kinetic energy. Upper box:

π−p → π+π−n; Experimental points from refs. [26,27]. Middle box:π−p → π0π0n; Data from refs.

[28–30]. Lower box: π+p → π+π+n; Data from refs. [31,32].

FIG. 6. Two pion invariant mass distributions in the π− + d → π+π−nn (upper box), and

π+ + d → π+π+ (lower box) reactions. Experimental points are from ref. [15].

FIG. 7. Two pion invariant mass distributions in the π− + Ca → π+π−X (upper box), and

π+ + Ca → π+π+X (lower box) reactions. Solid line, full calculation; dashed line, no medium

effects in the FSI of the two pions. Experimental points are from ref. [3].

FIG. 8. Same as fig. 7, using a fixed averaged density. Short dashed line, ρ = 0.5ρ0; long

dashed line ρ = 0.7ρ0. Solid line, full calculation

.

FIG. 9. Same as fig. 7, using a fixed averaged density ρ = 0.7ρ0 and a simplified model (see

text). Dashed line, FSI in vacuum; Solid line, FSI in medium.
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