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Charged current weak production of the ∆ resonance
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The reactions e− p → ∆0 νe and e+ p → ∆++ ν̄e are considered as a possible source of
information about the weak N∆ transition form factors. The low q2 BNL data on νµ

production of ∆ are used to extract the axial vector N∆ coupling, taking into account
the deuteron structure and the ∆ width. Finally, pion production induced by neutrinos
in 16O in the ∆ region, relevant to atmospheric ν experiments, is investigated.

1. INTRODUCTION

The nucleon excitation spectrum is a valuable source of information about baryon
structure. The N∆ transition presents clear advantages from the experimental point
of view since the ∆ is separated from the rest of resonances. The bulk of the existing
information on the weak N∆ transition form factors (FF) comes from the analysis of the
ANL [1] and BNL [2] experiments, performed with νµ beams, whose energies span from
0.5 to 6.0 GeV with poorly known distributions. Nowadays, with the advent of the new
generation of electron accelerators in the GeV region and achieving high luminosities, it
is possible to perform electron scattering experiments in the resonance region. We have
considered the possibility to extend these studies to the weak charged current physics. For
this reason, we have studied the reactions e− p → ∆0 νe and e+ p → ∆++ ν̄e at the typical
energies of MAMI and TJNAF, and using the available information about the FF [3].

Since the vector N∆ FF are related to the isovector electromagnetic ones, which can
be obtained from electroproduction data, these experiments would allow to study the
axial FF and, in particular, the dominant CA

5 . The determination of its value at q2 = 0
is important in view of the discrepancies between the PCAC prediction and theoretical
estimates obtained in most quark models [4]. We have used the low q2 BNL data on the
ratio of µ−∆++ and µ−p events from νµd collisions to extract the value of the axial vector
coupling CA

5 (0), taking into account the deuteron structure and the ∆ width [5].
The study of weak N∆ transitions in nuclei is relevant for the analysis of atmospheric

neutrino experiments. In fact, the energy distribution of the part of the atmospheric ν
flux producing fully contained events at Kamiokande is such that < Eν >≈ 700 MeV,
well above the ∆ production threshold. These ∆’s decay into pions and photons (through
π0 decay), that are a source of background. For this reason, we have studied the impact
of nuclear effects in νe(µ) production of ∆ in 16O [6].
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2. WEAK ELECTROPRODUCTION CROSS SECTION

The matrix element for the process e−(k) + p(p) → ∆0(p′) + νe(k
′) is proportional to

the product of the leptonic and hadronic currents. The hadronic current is expressed in
terms of vector and axial vector FF CV

i and CA
i (i = 3, 4, 5, 6) [3]. The imposition of

the CVC hypothesis qµJ
µ
V = 0 implies CV

6 = 0. The other three vector FF are obtained
from the isovector electromagnetic ones. Assuming M1 dominance, one gets CV

5 = 0 and
CV

4 = − (M/M∆)CV
3 . CV

3 is determined from electroproduction experiments [7] and from
a quark model [8]

CV
3 (q2) = 2.05 (1 − q2/0.54 GeV2)−2 , (1)

CV
3 (q2) = M/(

√
3m) e−q̄2/6 , (2)

where m = 330 MeV is the quark mass and q̄ = |q|/αHO, with αHO = 320 MeV. Concerning
the axial FF, CA

6 can be related to CA
5 using pion pole dominance and PCAC, then

CA
6 (q2) = CA

5 (q2)M2/ (m2
π − q2). The value of CA

5 (0) can be taken from the off-diagonal
Goldberger-Treiman relation [7], CA

5 (0) = g∆Nπfπ/(
√

6M) = 1.15, where fπ = 92.4 MeV,
g∆Nπ = 28.6; CA

3 (q2), CA
4 (q2) and CA

5 (q2)/CA
5 (0) are given by the Adler model [9]

CA
i=3,4,5(q

2) = Ci(0)

[

1 − aiq
2

bi − q2

](

1 − q2

M2
A

)

−2

. (3)

with CA
3 (0) = 0, CA

4 (0) = −0.3, a4 = a5 = −1.21, b4 = b5 = 2 GeV2 and MA = 1.28 GeV.
The value of MA comes from a best fit to the µ−∆++ events at BNL [2]. For a comparison,
we also use a non-relativistic quark model calculation [8]

CA
5 (q2) =

(

2√
3

+
1

3
√

3

q0

m

)

e−q̄2/6 , CA
4 (q2) = − 1

3
√

3

M2

M∆m
e−q̄2/6 , CA

3 (q2) = 0. (4)

From the amplitude given above, the differential cross section dσ/dΩ∆ can be obtained
in the standard way. The ∆ width has been accounted for by means of the substitution

δ(p′2 − M2
∆) → −1

π

1

2M∆
Im

[

1

W − M∆ + 1
2
iΓ∆

]

, Γ∆ = Γ0
M∆

W

q3
c.m.(W )

q3
c.m.(M∆)

, W =
√

p′2 (5)

with qc.m. being the pion momentum in the ∆ rest frame and Γ0 = 120 MeV. The angular
distribution is shown in Fig. 1 for two different sets of FF: I, phenomenological [Eqs. (1),
(3)], solid line; II, quark model, [Eqs. (2), (4)], dashed line. The invariant mass has been
restricted to W < 1.4 GeV to select ∆ events. The differential cross section is found to
be high enough in a large angular region to consider the possibility of measuring them.

3. DETERMINATION OF THE AXIAL VECTOR COUPLING

In order to obtain CA
5 (0) we have evaluated the ratio

R(Q2) =
(dσ/dq2) (νd → µ−∆++n)

(dσ/dq2) (νd → µ−pp)
, Q2 = −q2 (6)

at Eν = 1.6 GeV, which is the mean energy of the BNL νµ spectrum; the ∆ production
cross section has been calculated in the impulse approximation, and using the deuteron
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Figure 1. ∆0 angular distribution in e−(k) + p(p) → ∆0(p′) + νe(k
′).

wave function of the Paris potential. The quasielastic cross section, in the same approxi-
mation, is taken from Ref. [10]. We found that, in the data region i.e. at Q2 ≤ 0.1 GeV2,
deuteron effects are negligible and, hence, one can treat the BNL data as if they were
data on the ratio of the free reactions

R(Q2) ≈ R0(Q
2) =

(dσ/dq2) (νp → µ−∆++)

(dσ/dq2) (νn → µ−p)
. (7)

At Q2 = 0, R0(Q
2) is given by the quotient of

dσ

dq2
=
(

CA
5

)2 1

24π2
G2 cos2 θc

√
s(M + M∆)2(s − M2

∆)2

(s − M2)M3
∆

∫

dk′0 Γ∆(W )

(W − M∆)2 + Γ2
∆(W )/4

(8)

and the well known expression for the forward quasielastic cross section. Equating this
ratio to the experimental value 0.55 ± 0.05 [1], we obtain CA

5 = 1.22 ± 0.06; this result
is consistent with the value given by the off-diagonal Goldberger-Treiman relation. The
proper inclusion of the ∆ width causes a 30 % reduction of the cross section and cannot
be neglected in the extraction of CA

5 (0).

4. NEUTRINO PRODUCTION OF ∆ IN 16O

When the reactions νl p(n) → l− ∆++(∆+) and ν̄l p(n) → l+ ∆0(∆−) take place in the
nucleus, the nucleon momentum is constrained within a density dependent Fermi sea.
The produced ∆ does not have this constraint, but its decay is inhibited by the Pauli
blocking of the final nucleon. On the other side, there are other disappearance channels
open through particle-hole excitations. The situation is well described if one replaces in
the ∆ propagator Γ∆ → Γ̂∆ − 2ImΣ∆ and M∆ → M∆ + ReΣ∆, where Γ̂∆ is the Pauli
blocked decay width and Σ∆ is the ∆ selfenergy in the nuclear medium [11]. The pions
produced inside the nucleus are rescattered and absorbed in their propagation through
the nucleus. The absorption coefficient required to estimate the produced pion flux has
been calculated in the eikonal approximation, taking the pion energy dependent mean
free path from Ref. [12]. For the N∆ transition FF, the phenomenological set I described
above has been taken; possible medium modification of the FF has not been considered.



4

In Fig. 2 a) dσ/dEk′ (k′ being the momentum of the outgoing electron) is shown for
Eν = 750 MeV. The medium modification effects cause an overall reduction of about
40 %. Therefore, the Kamiokande analysis, which makes use of free ∆ production cross
sections, overestimates one pion production. However, as can be seen in Fig. 2 b), the
ratio of total pion production cross sections induced by electron and muon type neutrinos
and antineutrinos R(Eν) = σ∆(µ)/σ∆(e) is not affected by these modifications.

a) b)

Figure 2. (a) νe induced ∆ excitation in 16O without (long-dashed line) and with medium
effects (solid line); pion production with medium effects, without (short-dashed line) and
with absorption (dotted line). (b) R(Eν) = σ∆(µ)/σ∆(e) with (solid line) and without
medium effects (dotted line).
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