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Baryon JP I Sπ Quark content Mass [MeV]

Quark model Experiment

[25, 34] [6]

Ξcc
1
2

+ 1
2

1+ ccn 3613 3518.9

Ωcc
1
2

+
0 1+ ccs 3712 –

Λc
1
2

+
0 0+ udc 2295 2286.5

Σc
1
2

+
1 1+ nnc 2469 2453.6

Σ∗
c

3
2

+
1 1+ nnc 2548 2518.0

Ξc
1
2

+ 1
2

0+ nsc 2474 2469.3

Ξ′
c

1
2

+ 1
2

1+ nsc 2578 2576.8

Ξ∗
c

3
2

+ 1
2

1+ nsc 2655 2645.9

Ωc
1
2

+
0 1+ ssc 2681 2695.2

Ω∗
c

3
2

+
0 1+ ssc 2755 2765.9

TABLE I. Quantum numbers of double-c and single-c heavy baryons involved in this study. Jπ and I are the spin-parity and
isospin of the baryon, while Sπ is the spin-parity of the two heavy or the two light quark subsystem. n denotes a u or d quark.

I. INTRODUCTION

Doubly heavy baryons offer a unique opportunity to study QCD in the presence of heavy quarks as well as providing,
through their decays, information on the weak sector of the Standard Model. From the experimental point of view
the SELEX Collaboration claimed evidence for the Ξ+

cc baryon, in the Λ+
c K

−π+ [1] and pD+K− [2] decay modes.
The combined analysis gave a mass of MΞ+

cc
= 3518.7 ± 1.7 MeV/c2. However, other experimental collaborations

like FOCUS [3], BABAR [4] and BELLE [5] found no evidence for doubly charmed baryons and the Ξ+
cc has only

been assigned a one star status by the Particle Data Group (PDG) [6]. Furthermore, no evidence for the Ω+
cc has

been reported so far. Nevertheless, being the lightest among the doubly heavy baryons, one expects doubly charmed
baryons masses and decay properties to be measured in the near future.

While there are many different theoretical determinations of the doubly charmed baryon masses [7–28], that range
from non-relativistic quark model calculations to unquenched lattice QCD, there are just a few studies of their decays.

Total decay widths were evaluated in Refs. [29–32], and total semileptonic and non-leptonic decay rates were
predicted in Ref. [30]. Some exclusive non-leptonic as well as semileptonic decay rates of the Ξcc baryon were
calculated in [31]. Finally the decay Ξcc → Ξ′

ce
+νe was analyzed in Ref. [33] 1. To our knowledge, there is not

exist any systematic study of the exclusive semileptonic c→ s and c→ d decay channels of the Ξcc and Ωcc baryons.
This is the purpose of this work, where we shall concentrate in transitions to the lowest-lying, 1/2+ or 3/2+, single-c
baryons in the final state. Besides, we will pay a special attention to possible violations of heavy quark spin symmetry
relations among the relevant form factors, which one might expect to be sizable at the charm mass scale.

In Table I, we show the quantum numbers of the baryons involved in our calculation. Quark model masses have been
taken from our previous works in Refs. [25, 34], where they were obtained using the AL1 potential of Refs. [35, 36].
Experimental masses are the ones quoted by the PDG and in the table we quote the average over the different charge
states. With the exception of the Ξcc, the agreement is fairly good. For the actual calculation of the decays we
shall use experimental masses except for the Ξcc, which is not well established, and for the Ωcc due to the absence of
experimental data. In those two cases, we take our model predictions in Table I which are in agreement with different
lattice estimates [13, 17, 26].

The paper is organized as follows: In Sec. II we give general formulae for the semileptonic decay width and the
form factor decomposition of the hadronic matrix elements of the weak current. In Sec. III we will find out heavy
quark spin symmetry relations between different form factors. Finally in Sec. IV we present the results. The paper
contains also two appendices: In Appendix A we give a brief description of the baryon states within the model and
the expressions for the wave functions of the different baryons and in Appendix B we relate the form factors to weak
matrix elements and show how the latter ones are evaluated in the model.

1 Note that the Ξ′
c baryon here is denoted as Ξc in Ref. [33].
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II. DECAY WIDTH AND FORM FACTOR DECOMPOSITION OF THE HADRONIC CURRENT

The total decay width for semileptonic c→ l transitions, with l = s, d, is given by

Γ = |Vcl|2
G 2

F

8π4

M ′2

M

∫ √
w2 − 1Lαβ(q)Hαβ(P, P

′) dw (1)

where |Vcl| is the modulus of the corresponding Cabibbo–Kobayashi–Maskawa (CKM) matrix element for a c → l
quark transition, for which we shall use |Vcs| = 0.97345 and |Vcd| = 0.2252 taken from Ref. [6]. GF = 1.16637(1)×
10−11MeV−2 [6] is the Fermi decay constant, P,M (P ′,M ′) are the four-momentum and mass of the initial (final)

baryon, q = P − P ′ and w is the product of the baryons four-velocities w = v · v′ = P
M · P ′

M ′ = M2+M ′2−q2

2MM ′ . In the
decay, w ranges from w = 1, corresponding to zero recoil of the final baryon, to a maximum value given, neglecting

the neutrino mass, by w = wmax = M2+M ′2−m2

2MM ′ , which depends on the transition and where m is the final charged

lepton mass. Finally Lαβ(q) is the leptonic tensor after integrating in the lepton momenta and Hαβ(P, P
′) is the

hadronic tensor.
The leptonic tensor is given by

Lαβ(q) = A(q2) gαβ +B(q2)
qαqβ

q2
(2)

where

A(q2) = −I(q
2)

6

(
2q2 −m2 − m4

q2

)
, B(q2) =

I(q2)

3

(
q2 +m2 − 2

m4

q2

)
(3)

with

I(q2) =
π

2q2
(q2 −m2) (4)

The hadronic tensor reads

Hαβ(P, P ′) =
1

2J + 1

∑

r,r′

〈
B′, r′ ~P ′∣∣Jα

cl(0)
∣∣B, r ~P

〉 〈
B′, r′ ~P ′∣∣Jβ

cl(0)
∣∣B, r ~P

〉∗
(5)

with J the initial baryon spin,
∣∣B, r ~P

〉 (∣∣B′, r′ ~P ′〉
)
the initial (final) baryon state with three-momentum ~P (~P ′)

and spin third component r (r′) in its center of mass frame. Jµ
cl(0) is the charged weak current for a c → l quark

transition

Jµ
cl(0) = Ψ̄l(0)γ

µ(1− γ5)Ψc(0) (6)

Baryonic states are normalized such that

〈
B, r′ ~P ′ |B, r ~P

〉
= 2E (2π)3 δrr′ δ

3(~P − ~P ′) (7)

with E the baryon energy for three-momentum ~P .

A. Form factors for 1/2 → 1/2 and 1/2 → 3/2 transitions

Hadronic matrix elements can be parameterized in terms of form factors. For 1/2 → 1/2 transitions the commonly
used form factor decomposition reads

〈
B′(1/2), r′ ~P ′ ∣∣Ψl(0)γ

µ(1− γ5)Ψc(0)
∣∣B(1/2), r ~P

〉
= ūB

′

r′ (~P
′)
{
γµ [F1(w) − γ5G1(w)] + vµ [F2(w) − γ5G2(w)]

+v′µ [F3(w) − γ5G3(w)]
}
uBr (

~P ) (8)

The ur are Dirac spinors normalized as (ur′)
†ur = 2E δrr′ . vµ, v′µ are the four velocities of the initial and final

baryons. The three vector F1, F2, F3 and three axial G1, G2, G3 form factors are functions of w or equivalently of
q2.
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For 1/2 → 3/2 transitions we follow Llewellyn Smith [37] to write
〈
B′(3/2), r′ ~P ′ |Ψl(0)γ

µ(1− γ5)Ψc(0) |B(1/2), r ~P
〉
= ūB

′

λ r′(
~P ′) Γλµ(P, P ′)uBr (

~P )

Γλµ(P, P ′) =

[
CV

3 (w)

M
(gλµq/ − qλγµ) +

CV
4 (w)

M2
(gλµqP ′ − qλP ′µ) +

CV
5 (w)

M2
(gλµqP − qλPµ) + CV

6 (w)gλ µ

]
γ5

+

[
CA

3 (w)

M
(gλµq/ − qλγµ) +

CA
4 (w)

M2
(gλµqP ′ − qλP ′µ) + CA

5 (w)gλµ +
CA

6 (w)

M2
qλqµ

]
(9)

Here uB
′

λ r′ is the Rarita-Schwinger spinor of the final spin 3/2 baryon normalized such that (uB
′

λ r′)
†uB

′ λ
r = −2E′ δrr′ ,

and we have four vector (CV
3,4,5,6(w)) and four axial (CA

3,4,5,6(w)) form factors.

In appendix B we give the expressions that relate the form factors to weak current matrix elements and show how
the latter ones are evaluated within the model.

III. HEAVY QUARK SPIN SYMMETRY

In hadrons with a single heavy quark the dynamics of the light degrees of freedom becomes independent of the
heavy quark flavour and spin when the mass of the heavy quark is much larger than ΛQCD and the masses and
momenta of the light quarks. This is the essence of heavy quark symmetry (HQS) [38–41]. However, HQS can not
be directly applied to hadrons containing two heavy quarks. The static theory for a system with two heavy quarks
has infra-red divergences which can be regulated by the kinetic energy term h̄Q(D

2/2mQ)hQ. This term breaks the
heavy quark flavour symmetry, but not the spin symmetry for each heavy quark flavour [42]. This is known as heavy
quark spin symmetry (HQSS). HQSS implies that all baryons listed in Table I with the same flavour wave-function
are degenerate. The invariance of the effective Lagrangian under arbitrary spin rotations of the c quark leads to
relations, near the zero recoil point (w = 1 ↔ q2 = (M −M ′)2 ↔ |~q | = 0), between the form factors for vector and
axial-vector currents between the Ξcc and Ωcc baryons and the single charmed baryons listed in Table I. These decays
are induced by the semileptonic weak decay of the c quark to a d or a s quark. The consequences of spin symmetry
for weak matrix elements can be derived using the “trace formalism” [43, 44]. To represent the lowest-lying S-wave
ccl baryons we will use wave-functions comprising tensor products of Dirac matrices and spinors, namely [45]2:

Ξcc = −
√

1

3

[
(1 + /v)

2
γ5

]

αβ

uγ(v, r) (10)

where we have indicated Dirac indices α, β and γ explicitly on the right-hand side and r is a helicity label for the
baryon. Under a Lorentz transformation, Λ, and a c quark spin transformation Sc, this wave-function of the form
Γαβ uγ transforms as:

Γu→ S(Λ)ΓS−1(Λ) S(Λ)u, Γu→ ScΓScu. (11)

The state in Eq. (10) is normalized3 to (−ūu = −2M), with M the mass of the state. On the other hand, the Λc, Σc

and Σ∗
c final baryons are represented by the following spinor wave functions [44]

Λc = uγ(v
′, r′) (12)

Σc =

[
1√
3
(v′λ + γλ)γ5u(v

′, r′)

]

γ

(13)

Σ∗
c = uλγ(v

′, r′) (14)

For the Σ∗
c , u

λ
γ(v

′, r′) is a Rarita-Schwinger spinor. For Σc, we have taken into account that the light quarks are
coupled to total spin 1 that gives a total spin 1/2 for the baryon when the spin of the light subsystem is summed
with the spin of the charm quark. Under a Lorentz transformation , Λ, and a c quark spin transformation Sc, the
above spinor wave functions transform like S(Λ)U and Sc U , respectively, with U (= u, 1√

3
(v′λ + γλ)γ5u, u

λ) each of

2 We will give here expressions only for the c → d transitions of the Ξcc baryon. Expressions for the Ωcc initial baryon and/or c → s
transitions are totally similar, and SU(3) flavour symmetry could be used to establish relations between the former and the latter ones.

3 Note, there are two ways to contract the charm quark indices, leading to ūuTr(ΓΓ) + ūΓΓu, with Γ = γ0Γ†γ0.
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the spinors appearing in Eqs. (12)–(14). States are normalized to ūu = 2M ′, (−ūu = −2M ′) and ūλu
λ = −2M ′ for

the Λc, Σc and Σ∗
c , respectively.

We can now construct amplitudes for semileptonic Ξcc → Λc,Σc,Σ
∗
c decays, determined by matrix elements of the

weak current Jµ = d̄γµ(1 − γ5)c. To that end, we write the most general form for the matrix element respecting the
heavy quark spin symmetry, taking into account that under a c quark spin transformation Jµ → JµS†

c . We should
distinguish two situations depending on whether the total spin of the two light quarks in the final baryon is S = 0 or
S = 1. In the first (second) case, the spinor wave–function U that represents the final baryon does not have (has) a
Lorentz index. With all these considerations, we have

〈Λc, v
′, r′|Jµ(0)|Ξcc, v, r〉 = ūΛc

(v′, r′)
(1 + /v)

2
γ5Ωγ

µ(1− γ5)uΞcc
(v, r) (15)

+ ūΛc
(v′, r′)uΞcc

(v, r)Tr[
(1 + /v)

2
γ5Ωγ

µ(1 − γ5)]

〈Σc, v
′, r′|Jµ(0)|Ξcc, v, r〉 = ūΣc

(v′, r′)
1√
3
(γλ − v′λ)γ5

(1 + /v)

2
γ5Ωλγ

µ(1− γ5)uΞcc
(v, r) (16)

+ ūΣc
(v′, r′)

1√
3
(γλ − v′λ)γ5uΞcc

(v, r)Tr[
(1 + /v)

2
γ5Ωλγ

µ(1− γ5)]

〈Σ∗
c , v

′, r′|Jµ(0)|Ξcc, v, r〉 = ūλΣ∗
c
(v′, r′)

(1 + /v)

2
γ5Ωλγ

µ(1− γ5)uΞcc
(v, r) (17)

+ ūλΣ∗
c
(v′, r′)uΞcc

(v, r)Tr[
(1 + /v)

2
γ5Ωλγ

µ(1 − γ5)]

with4

Ω = β1(w) + β2(w)/v
′ (18)

Ωλ = δ1(w)vλ + δ2(w)γλ + δ3(w)/v
′
vλ + δ4/v

′
γλ (19)

Note that near the zero recoil point, where the spin symmetry should work best, HQSS considerably reduces the
number of independent form factors, and it relates those that correspond to transitions where the spin of the two
light quarks in the final baryon is S = 1. Indeed, we find at w = 1

• 1/2 → 1/2 transitions (Ξcc → Λc,Ξc and Ωcc → Ξc), where the total spin of the two light quarks in the final
baryon is S = 0:

F1 + F2 + F3 = 3G1 ≡ η0 (20)

In the equal mass transition case one would find that η0 is normalized as η0(w = 1) =
√

3
2 .

• Total spin of the two light quarks in the final baryon is S = 1 .

* 1/2 → 1/2 transitions (Ξcc → Σc,Ξ
′
c and Ωcc → Ξ′

c,Ωc) .

F1 + F2 + F3 =
3

5
G1 ≡ η1 (21)

* 1/2 → 3/2 transitions (Ξcc → Σ∗
c ,Ξ

∗
c and Ωcc → Ξ∗

c ,Ω
∗
c).

√
3

2

(
CA

3

M −M ′

M
+ CA

4

M ′(M −M ′)

M2
+ CA

5

)
= η1 (22)

In the equal mass transition case one would have that η1(w = 1) = 1√
2
when the two light quarks in the final

state are different and η1(w = 1) = 1 when they are equal (Ωc and Ω∗
c).

Relations (20), (21) and (22) are exactly satisfied in the quark model when the heavy quark mass is made arbitrarily
large, and thus the calculation is consistent with HQSS constraints.

4 Terms with a factor of /v can be omitted because /v(1± /v) = ±(1 ± /v).
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w

0.6

0.8

1.0

1.2
F

1
+F

2
+F
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3G

1

Ξ
cc

 → Ξ
c 
e

+ ν
e

++ +

1 1.02 1.04 1.06 1.08 1.1
w

0.4

0.6

0.8

1 F
1
+F

2
+F

3
3G

1
Ξ

cc
→ Λ

c 
e

+ ν
e

++ +

1 1.02 1.04 1.06 1.08
w

0.4

0.6

0.8

1 -F
1
-F

2
-F

3
-3G

1
Ω

cc
→ Ξ

c 
e

+ ν
e

+ 0

FIG. 1. Comparison of F1 + F2 + F3 (solid) and 3G1 (dashed) for the specified transitions. The two light quarks in the final
baryon have total spin S = 0. In the limit in which the heavy quark mass is made arbitrarily large one has that, near zero
recoil (w = 1), F1 + F2 + F3 = 3G1.

IV. RESULTS AND DISCUSSION

We start by checking that our calculation respects the constraints on the form factors deduced from HQSS. In Figs. 1
and 2, we show to what extent the relations of (20), (21) and (22) deduced above are satisfied for the actual mc value.
In all cases we see moderate deviations, that stem from 1/mc corrections, at the level of about 10% near zero recoil,
though larger than those found in [46] for the b→ c transitions of the Ξbc and Ξbb baryons. These discrepancies tend to
disappear when the mass of the heavy quark is made arbitrarily large. This is illustrated in Fig. 3 where we show, for
w = 1 and for three different heavy quark masses, the form factor ratio 3G1

F1+F2+F3
from the Ξ++

cc → Ξ+
c transition, the

form factor ratio 3/5G1

F1+F2+F3
for the Ω+

cc → Ω0
c transition and the ratio

√
3
2

(
CA

3
M−M ′

M +CA
4

M ′(M−M ′)
M2 +CA

5

)
/(F1+F2+F3)

constructed with the CA
3,4,5 form factors from the Ω+

cc → Ω∗0
c transition and the F1,2,3 from the Ω+

cc → Ω0
c one. The

ratios are shown as a function of the corresponding pseudoscalar P heavy-light meson mass. As the pseudoscalar
meson mass increases (the heavy quark mass increases) the ratios tend to one as expected. Similar results are obtained
in the other cases. Even though we are not in the infinite heavy quark mass limit, HQSS turns out to be a useful
tool to understand the dynamics of the c→ s, d Ξcc and Ωcc decays near zero recoil. One also sees that at w = 1 our
results for η0(w = 1), η1(w = 1) are systematically smaller than would be expected for an equal mass transition. This
is a reflection of the mismatch in the wave functions due to the different initial (c) and final (d or s) quark masses in
the c→ d, s decays.
Now we discuss the results for the decay widths. Those are shown in Table II for the dominant (c → s) and

sub-dominant (c → d) exclusive semileptonic decays of the Ξcc and Ωcc to ground state, 1/2+ or 3/2+, single
charmed baryons and with a positron in the final state5. For the Ω+

cc baryon, semileptonic decays driven by a
s → u transition at the quark level are also possible. However, in this latter case phase space is very limited and
we find the decay widths are orders of magnitude smaller than the ones shown. To our knowledge there are just
a few previous theoretical evaluations of the Ξcc semileptonic decays. In Ref. [33] the authors use the relativistic
three-quark model to evaluate the Ξcc → Ξ′

ce
+νe decay, while in Ref. [31], using heavy quark effective theory and

non-relativistic QCD sum rules, they give both the lifetime of the Ξcc baryon and the branching ratio for the combined
decay Ξcc → Ξce

+νe + Ξ′
ce

+νe + Ξ∗
ce

+νe from which we have evaluated the semileptonic decay widths shown in the
table. We find a fair agreement of our predictions with both calculations. In Ref. [30], using the optical theorem and
the operator product expansion, the authors evaluated the total semileptonic decay rate finding it to be 0.151 ps−1

for Ξ++
cc and 0.166 ps−1 for Ξ+

cc. These values are roughly a factor of two smaller than the sum of our partial decay
widths or the results in Ref. [31]. For the Ω+

cc a total semileptonic decay width of 0.454 ps−1 is given in Ref. [30]. In
this case this is in better agreement with the sum of our partial semileptonic decay widths which add up to 0.353 ps−1.
An estimate of part of the uncertainties in our model can be done by evaluating the decay widths using wave

functions produced with different interquark interactions. We have done this by using the AP1 [35, 36] and Bhaduri [47]
interquark potentials finding changes in the decay widths to be at the level of 10%. Another source of uncertainties
may come from the contribution from intermediate heavy-light vector meson (D∗ and D∗

s) exchanges [48]. They are
neither considered in this work nor in the previous quark model calculation of Ref. [33]6. We expect such exchanges

5 Similar results are obtained for µ+νµ leptons in the final state.
6 We think, these effects are not explicitly taken into account either in the QCD sum rule approach of Ref. [31] or in that, based in the
optical theorem, followed in [30].
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1 1.02 1.04 1.06
w
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1 1.02 1.04 1,06
w

0.5

0.6
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0.8

0.9 Ω
cc

 → Ω
c 
 e

+ ν
e

0+

1 1.02 1.04 1.06 1.08
w

0.2

0.4

0.6

Ξ
cc
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c 
e

+ ν
e

++ +

1 1.02 1.04 1.06
w

0.2

0.3

0.4

0.5

0.6

Ω
cc

→ Ξ
c 
e

+ ν
e

+ ’ 0

FIG. 2. Solid (dashed): F1 + F2 + F3 (3G1/5) for the specified transitions. Dotted: the combination
√

3
2

(

CA
3

M−M′

M
+

CA
4

M′(M−M′)
M2 + CA

5

)

for the transition with the corresponding 3/2 baryon (Σ∗
c , Ξ∗

c or Ω∗
c) in the final state. In all cases

the two light quarks in the final baryon have total spin S = 1. In the limit in which the heavy quark mass is made arbitrarily

large one has that, near zero recoil (w = 1), F1 + F2 + F3 = 3
5
G1 =

√
3

2

(

CA
3

M−M′

M
+ CA

4
M′(M−M′)

M2 + CA
5

)

.

2 3 4 5
M

P
 [GeV]

0,9

0,925

0,95

0,975

1

FIG. 3. Form factor ratio 3G1
F1+F2+F3

(open circles) from the Ξ++
cc → Ξ+

c transition, form factor ratio 3/5G1
F1+F2+F3

(up triangles)

for the Ω+
cc → Ω0

c transition and the ratio

√
3

2

(

CA
3

M−M′

M
+CA

4
M′(M−M′)

M2 +CA
5

)

F1+F2+F3
(squares) constructed with the CA

3,4,5 form factors

from the Ω+
cc → Ω∗0

c transition and the F1,2,3 from the Ω+
cc → Ω0

c one. Ratios are shown as a function of the pseudoscalar P
heavy-light meson mass for three different heavy quark masses and for w = 1.

to produce small effects7 in the integrated widths, specially for the decays considered in this work, for which the D∗

and D∗
s poles are located far from

√
q2max. This is in sharp contrast with the situation for the B → π and D → π

decays [48, 49]. The model could be also improved by considering two body operators, and going in this manner
beyond the spectator approximation. However, two body current contributions are not straightforward to compute,

7 Moreover in the transitions studied here, the intermediate vector mesons would be far off shell. Thus, the uncertainties related to the
strength of their couplings with the singly and doubly charmed baryons, and those stemming from the lack of a reasonable scheme to
model how the latter interactions are suppressed when q2 approaches the endpoint of the available phase-space (q2 = 0) would make
meaningless the computation of these effects.
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Γ [ ps−1]

Bcc → Bce
+νe Quark transition This work [33] [31]

Ξ++
cc → Ξ+

c e
+νe (c → s) 8.75× 10−2

Ξ+
cc → Ξ0

ce
+νe (c → s) 8.68× 10−2

Ξ++
cc → Ξ′+

c e+νe (c → s) 0.146 0.208 ÷ 0.258

Ξ+
cc → Ξ′0

c e+νe (c → s) 0.145 0.208 ÷ 0.258

Ξ++
cc → Ξ∗+

c e+νe (c → s) 3.20× 10−2

Ξ+
cc → Ξ∗ 0

c e+νe (c → s) 3.20× 10−2

Ξ++
cc → Ξ′+

c e+νe +Ξ+
c e

+νe + Ξ∗+
c e+νe (c → s) 0.266 0.37± 0.04(∗)

Ξ+
cc → Ξ′0

c e+νe + Ξ0
ce

+νe + Ξ∗ 0
c e+νe (c → s) 0.264 0.47± 0.15(∗)

Ξ++
cc → Λ+

c e
+νe (c → d) 4.86× 10−3

Ξ++
cc → Σ+

c e
+νe (c → d) 7.94× 10−3

Ξ+
cc → Σ0

ce
+νe (c → d) 1.58× 10−2

Ξ++
cc → Σ∗+

c e+νe (c → d) 1.77× 10−3

Ξ+
cc → Σ∗ 0

c e+νe (c → d) 3.54× 10−3

Ω+
cc → Ω0

ce
+νe (c → s) 0.282

Ω+
cc → Ω∗ 0

c e+νe (c → s) 5.77× 10−2

Ω+
cc → Ξ0

ce
+νe (c → d) 4.11× 10−3

Ω+
cc → Ξ′0

c e+νe (c → d) 7.44× 10−3

Ω+
cc → Ξ∗ 0

c e+νe (c → d) 1.72× 10−3

TABLE II. Decay widths in units of ps−1. We use |Vcs| = 0.97345 and |Vcd| = 0.2252 taken from Ref. [6]. Results with an (∗),
our estimates from the total decay widths and branching ratios in [31]. Similar results are obtained for µ+νµ leptons in the
final state.

and since we expect moderate effects8, similar to the other uncertainties mentioned above, we will leave this issue
for future research. Moreover, there exists a greater source of uncertainties affecting our results that comes from our
limited knowledge on the masses of the initial double charmed baryons. As we pointed out in the introduction, for the
Ξcc and the Ωcc baryons, we have used our quark model predictions in Table I. If the SELEX Collaboration measured
mass for the Ξcc baryon is used instead, we would find significantly smaller decay widths by about 20%. This is
just because of the reduction on the available phase-space for the decay. None of the theoretical works mentioned in
Table II use the SELEX mass value.
To summarize this work, we would like to point out that we have carried out the first systematic study of all

dominant and sub-dominant semi-leptonic transitions of the doubly charmed Ξcc and Ωcc baryons to the lowest-lying,
1/2+ or 3/2+, single-c baryons. To that end, we have employed a simple constituent quark model scheme, which
benefits from the important simplifications [21, 34] of the non-relativistic three body problem that stem from the
application of HQSS. We have also derived, for the first time, HQSS relations among the relevant form factors that
govern these decays near zero recoil, and have found the size of the deviations induced by the finite charm quark mass.
Predictions of this framework have been successfully tested in the past in the context of the Λb and Ξb semileptonic

decays [50]. There, we obtained results for partially integrated decay widths that nicely compared with lattice
results [51], and from the experimental Λb−semileptonic decay, we could also determine the Vcb CKM matrix element
in excellent agreement with the accepted values quoted in the PDG [6].
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8 The difference between the sum of masses of the constituent quarks and that of the baryon provides a first estimate of these effects [50].
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Appendix A: Non-relativistic baryon states and wave functions

Our non-relativistic states are constructed as a superposition of three quark states

∣∣B, r ~P
〉
NR

=
√
2E

∫
d 3Q1

∫
d 3Q2

1√
2

∑

α1,α2,α3

ψ̂(B,r)
α1 α2 α3

( ~Q1, ~Q2 )
1

(2π)3
√
2Ef12Ef22Ef3

×
∣∣ α1 ~p1 =

mf1

M
~P + ~Q1

〉∣∣ α2 ~p2 =
mf2

M
~P + ~Q2

〉∣∣ α3 ~p3 =
mf3

M
~P − ~Q1 − ~Q2

〉
(A1)

The factor
√
2E is introduced for convenience in order to have the proper normalization. αj represents the spin

(s), flavour (f) and color (c) quantum numbers ( α ≡ (s, f, c) ) of the j-th quark, and (Efj , ~pj), mfj are its four-

momentum and mass. M is given by M = mf1 + mf2 + mf3 . Individual quark states are normalized such that

〈 α′ ~p ′ |α ~p 〉 = 2Ef (2π)
3 δα′ α δ

3(~p ′−~p ). ψ̂ (B,r)
α1 α2 α3( ~Q1, ~Q2 ) is the internal wave function in momentum space, being

~Q1 ( ~Q2) the conjugate momenta to the relative position ~r1 (~r2) between quark 1 (2) and the third quark. In the
transitions under study an initial c c l′ baryon decays into a final c l l′ one, where l = d, s and l′ = u, d, s. We construct
the wave functions such that the two c quarks in the initial baryon, or the two light quarks in the final baryon, are

quarks 1 and 2. Expressions for the different ψ̂
(B,r)
α1 α2 α3( ~Q1, ~Q2 ) are given below. These wave functions are normalized

as
∫
d 3Q1

∫
d 3Q2

∑

α1,α2,α3

(
ψ̂(B,r′)
α1 α2 α3

( ~Q1, ~Q2 )
)∗
ψ̂(B,r)
α1 α2 α3

( ~Q1, ~Q2 ) = δrr′ (A2)

so that we get for our non-relativistic baryon states
NR

〈
B, r′ ~P ′ |B, r ~P

〉
NR

= 2E (2π)3 δrr′ δ
3(~P ′ − ~P ).

The wave functions of the different non-strange states included in this study are given by

ψ̂
(Ξ++

cc ,r)
α1 α2 α3 ( ~Q1, ~Q2 ) =

εc1 c2 c3√
3!

φ̃ (Ξ++
cc )( ~Q1, ~Q2 ) δf1 c δf2 c δf3 u

× (1/2, 1/2, 1; s1, s2, s1 + s2) (1, 1/2, 1/2; s1 + s2, s3, r) (A3)

ψ̂
(Ξ+

cc,r)
α1 α2 α3( ~Q1, ~Q2 ) =

εc1 c2 c3√
3!

φ̃ (Ξ+
cc)( ~Q1, ~Q2 ) δf1 c δf2 c δf3 d

× (1/2, 1/2, 1; s1, s2, s1 + s2) (1, 1/2, 1/2; s1 + s2, s3, r) (A4)

ψ̂
(Λ+

c ,r)
α1 α2 α3( ~Q1, ~Q2 ) =

εc1 c2 c3√
3!

φ̃ (Λ+
c )( ~Q1, ~Q2 )

1√
2
(δf1 u δf2 d − δf1 d δf2 u) δf3 c (1/2, 1/2, 0; s1, s2, 0) δs3 r (A5)

ψ̂
(Σ+

c ,r)
α1 α2 α3( ~Q1, ~Q2 ) =

εc1 c2 c3√
3!

φ̃ (Σ+
c )( ~Q1, ~Q2 )

1√
2
(δf1 u δf2 d + δf1 d δf2 u) δf3 c

× (1/2, 1/2, 1; s1, s2, s1 + s2) (1, 1/2, 1/2; s1 + s2, s3, r) (A6)

ψ̂
(Σ0

c ,r)
α1 α2 α3( ~Q1, ~Q2 ) =

εc1 c2 c3√
3!

φ̃ (Σ0
c)( ~Q1, ~Q2 ) δf1 d δf2 d δf3 c

× (1/2, 1/2, 1; s1, s2, s1 + s2) (1, 1/2, 1/2; s1 + s2, s3, r) (A7)

ψ̂
(Σ∗ +

c ,r)
α1 α2 α3 ( ~Q1, ~Q2 ) =

εc1 c2 c3√
3!

φ̃ (Σ∗ +
c )( ~Q1, ~Q2 )

1√
2
(δf1 u δf2 d + δf1 d δf2 u) δf3 c

× (1/2, 1/2, 1; s1, s2, s1 + s2) (1, 1/2, 3/2; s1 + s2, s3, r) (A8)

ψ̂
(Σ∗ 0

c ,r)
α1 α2 α3( ~Q1, ~Q2 ) =

εc1 c2 c3√
3!

φ̃ (Σ∗ 0
c )( ~Q1, ~Q2 ) δf1 d δf2 d δf3 c

× (1/2, 1/2, 1; s1, s2, s1 + s2) (1, 1/2, 3/2; s1 + s2, s3, r) (A9)

where εc1c2c3 is the totally antisymmetric tensor with
εc1c2c3√

3!
being the fully antisymmetric color wave function.

The (j1, j2, j;m1,m2,m) are SU(2) Clebsch-Gordan coefficients. The different φ̃( ~Q1, ~Q2 ) wave functions verify

φ̃( ~Q2, ~Q1 ) = φ̃( ~Q1, ~Q2 ) and they have total orbital angular momentum 0 being invariant under rotations and thus

depending only on | ~Q1|, | ~Q2| and ~Q1 · ~Q2. They are normalized such that

∫
d 3Q1

∫
d 3Q2

∣∣∣φ̃( ~Q1, ~Q2 )
∣∣∣
2

= 1 (A10)
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For states with s-quark content we further have

ψ̂
(Ω+

cc,r)
α1 α2 α3( ~Q1, ~Q2 ) =

εc1 c2 c3√
3!

φ̃ (Ω+
cc)( ~Q1, ~Q2 ) δf1 c δf2 c δf3 s

× (1/2, 1/2, 1; s1, s2, s1 + s2) (1, 1/2, 1/2; s1 + s2, s3, r) (A11)

ψ̂
(Ξ+

c ,r)
α1 α2 α3( ~Q1, ~Q2 ) =

εc1 c2 c3√
3!

1√
2
[φ̃

(Ξ+
c )

us ( ~Q1, ~Q2 ) δf1 u δf2 s − φ̃
(Ξ+

c )
su ( ~Q1, ~Q2 ) δf1 s δf2 u] δf3 c

× (1/2, 1/2, 0; s1, s2, 0) δs3 r (A12)

ψ̂
(Ξ0

c,r)
α1 α2 α3( ~Q1, ~Q2 ) =

εc1 c2 c3√
3!

1√
2
[φ̃

(Ξ0
c)

ds ( ~Q1, ~Q2 ) δf1 d δf2 s − φ̃
(Ξ0

c)
sd ( ~Q1, ~Q2 ) δf1 s δf2 d] δf3 c

× (1/2, 1/2, 0; s1, s2, 0) δs3 r (A13)

ψ̂
(Ξ′+

c ,r)
α1 α2 α3( ~Q1, ~Q2 ) =

εc1 c2 c3√
3!

1√
2
[φ̃

(Ξ′ +
c )

us ( ~Q1, ~Q2 ) δf1 u δf2 s + φ̃
(Ξ′ +

c )
su ( ~Q1, ~Q2 ) δf1 s δf2 u] δf3 c

× (1/2, 1/2, 1; s1, s2, s1 + s2) (1, 1/2, 1/2; s1 + s2, s3, r) (A14)

ψ̂
(Ξ′ 0

c ,r)
α1 α2 α3( ~Q1, ~Q2 ) =

εc1 c2 c3√
3!

1√
2
[φ̃

(Ξ′ 0
c )

ds ( ~Q1, ~Q2 ) δf1 d δf2 s + φ̃
(Ξ′ 0

c )
sd ( ~Q1, ~Q2 ) δf1 s δf2 d] δf3 c

× (1/2, 1/2, 1; s1, s2, s1 + s2) (1, 1/2, 1/2; s1 + s2, s3, r) (A15)

ψ̂
(Ξ∗ +

c ,r)
α1 α2 α3 ( ~Q1, ~Q2 ) =

εc1 c2 c3√
3!

1√
2
[φ̃

(Ξ∗ +
c )

us ( ~Q1, ~Q2 ) δf1 u δf2 s + φ̃
(Ξ∗ +

c )
su ( ~Q1, ~Q2 ) δf1 s δf2 u] δf3 c

× (1/2, 1/2, 1; s1, s2, s1 + s2) (1, 1/2, 3/2; s1 + s2, s3, r) (A16)

ψ̂
(Ξ∗ 0

c ,r)
α1 α2 α3( ~Q1, ~Q2 ) =

εc1 c2 c3√
3!

1√
2
[φ̃

(Ξ∗ 0
c )

ds ( ~Q1, ~Q2 ) δf1 d δf2 s + φ̃
(Ξ∗ 0

c )
sd ( ~Q1, ~Q2 ) δf1 s δf2 d] δf3 c

× (1/2, 1/2, 1; s1, s2, s1 + s2) (1, 1/2, 3/2; s1 + s2, s3, r) (A17)

ψ̂
(Ω0

c,r)
α1 α2 α3( ~Q1, ~Q2 ) =

εc1 c2 c3√
3!

φ̃ (Ω0
c)( ~Q1, ~Q2 ) δf1 s δf2 s δf3 c

× (1/2, 1/2, 1; s1, s2, s1 + s2) (1, 1/2, 1/2; s1 + s2, s3, r) (A18)

ψ̂
(Ω∗ 0

c ,r)
α1 α2 α3( ~Q1, ~Q2 ) =

εc1 c2 c3√
3!

φ̃ (Ω∗ 0
c )( ~Q1, ~Q2 ) δf1 s δf2 s δf3 c

× (1/2, 1/2, 1; s1, s2, s1 + s2) (1, 1/2, 1/2; s1 + s2, s3, r) (A19)

Here, besides the properties above, the relation φ̃sn( ~Q1, ~Q2 ) = φ̃ns( ~Q2, ~Q1 ), with n = u, d, also applies.

These momentum space wave functions are the Fourier transform of the corresponding wave functions in coordinate
space. Details on how the latter are evaluated in our model for singly and doubly heavy baryons can be found in
Refs. [21, 34].

The two baryons states Ξc, Ξ
′
c differ just in the spin of the light degrees of freedom, and thus they could mix

under the effect of the hyperfine interaction between the c quark and any of the light quarks. We have evaluated this
mixing in our model finding it negligible9. Using the AL1 potential, the physical states resulting from the mixing are

Ξ
(1)
c = 0.999 Ξc − 0.0437 Ξ′

c and Ξ
(2)
c = 0.0437 Ξc + 0.999 Ξ′

c , being the mass changes of just 0.2MeV with respect
to the unmixed state case. We neglect this small mixing in our calculation.

Appendix B: Form factors and weak matrix elements

Taking the initial baryon at rest and ~q in the positive Z direction we define vector and axial matrix elements

V µ
r→r′ −Aµ

r→r′ =
〈
B′, r′ ~P ′ = −~q

∣∣Ψl(0)γ
µ(1− γ5)Ψc(0)

∣∣B, r ~P = ~0
〉

(B1)

9 In sharp contrast, spin mixings however play a fundamental role in the case of the semileptonic [25, 52] and electromagnetic [53] decays
of the bc baryons.
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In terms of matrix elements, the different form factors for the spin 1/2-baryon to spin 1/2-baryon transitions can be
evaluated as

F1 = −
√
E′ +M ′

2M

1

|~q |V
1
−1/2→1/2 (B2)

F2 =
1√

(E′ +M ′)2M

(
V 0
1/2→1/2 +

E′

|~q |V
3
1/2→1/2 +

M ′

|~q | V
1
−1/2→1/2

)
(B3)

F3 = − 1√
(E′ +M ′)2M

M ′

|~q |
(
V 3
1/2→1/2 − V 1

−1/2→1/2

)
(B4)

G1 =
1√

(E′ +M ′)2M
A1

−1/2→1/2 (B5)

G2 =

√
E′ +M ′

2M

1

|~q |

(
A0

1/2→1/2 −
M ′

|~q |A
1
−1/2→1/2 +

E′

|~q |A
3
1/2→1/2

)
(B6)

G3 = −
√
E′ +M ′

2M

M ′

|~q |2
(
A3

1/2→1/2 −A1
−1/2→1/2

)
(B7)

For the spin 1/2-baryon to spin 3/2-baryon case the relations between form factors and weak matrix elements are

CV
3 =

M ′

|~q |
1√

(E′ +M ′)2M

1√
2

(
V 1
1/2→3/2 +

√
3V 1

1/2→−1/2

)
(B8)

CV
4 =

1

|~q |3

√
E′ +M ′

2M

1√
2

(
−
√
3MM ′ V 3

1/2→1/2 +M(−2E′ +M ′)V 1
1/2→3/2 +

√
3MM ′ V 1

1/2→−1/2

)
(B9)

CV
5 =

1

|~q |3

√
E′ +M ′

2M

1√
2

(√
3|~q |M ′ V 0

1/2→1/2 +
√
3E′M ′ V 3

1/2→1/2 +M ′2 V 1
1/2→3/2 −

√
3M ′2 V 1

1/2→−1/2

)
(B10)

CV
6 =

1

|~q |3

√
E′ +M ′

2M

1√
2

(
−
√
3|~q |M ′M − E′

M
V 0
1/2→1/2 +

√
3|~q |2M

′

M
V 3
1/2→1/2

)
(B11)

CA
3 = −M ′

|~q |2

√
E′ +M ′

2M

1√
2

(
A1

1/2→3/2 +
√
3A1

1/2→−1/2

)
(B12)

CA
4 = −M

′

|~q |
1√

(E′ +M ′)2M

√
3

2

(
A0

1/2→1/2 +
E′ −M

|~q | A3
1/2→1/2

)

+
1

M |~q |2
1√

(E′ +M ′)2M

1√
2

( (
2M2(E′ +M ′)−MM ′(M +M ′)

)
A1

1/2→3/2 +
√
3MM ′(M +M ′)A1

1/2→−1/2

)

(B13)

CA
5 =

M ′

|~q |
1√

(E′ +M ′)2M

ME′ −M ′2

M2

√
3

2

(
A0

1/2→1/2 +
E′ −M

|~q | A3
1/2→1/2

)

+
1

M |~q |2
1√

(E′ +M ′)2M

M ′2

M

(
2M(E′ +M ′)− (M +M ′)2

) 1√
2

(
A1

1/2→3/2 −
√
3A1

1/2→−1/2

)
(B14)

CA
6 =

M ′

|~q |
1√

(E′ +M ′)2M

√
3

2

(
A0

1/2→1/2 +
E′

|~q | A
3
1/2→1/2

)
+
M ′2

|~q |2
1√

(E′ +M ′)2M

1√
2

(
A1

1/2→3/2 −
√
3A1

1/2→−1/2

)

(B15)

For this latter case, 1/2-baryon to 3/2-baryon transitions, the following restrictions are observed

V 0
1/2→1/2 = V 3

1/2→1/2 = 0 (B16)

V 1
1/2→−1/2 = V 1

−1/2→1/2 , V 1
1/2→3/2 =

√
3 V 1

−1/2→1/2 (B17)

A1
1/2→−1/2 = −A1

−1/2→1/2 , A1
1/2→3/2 =

√
3 A1

−1/2→1/2 (B18)
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so that

CV
3 =

M ′

|~q |
1√

2M(E′ +M ′)

√
6 V 1

−1/2→1/2 (B19)

CV
4 = −M

M ′ C
V
3 (B20)

CV
5 = CV

6 = 0 (B21)

CA
3 = 0 (B22)

CA
4 =

1√
(E′ +M ′)2M

√
3

2

[
−M

′

|~q |

(
A0

1/2→1/2 +
E′ −M

|~q | A3
1/2→1/2

)
+

2(ME′ −M ′2)

|~q |2 A1
−1/2→1/2

]
(B23)

CA
5 =

M ′

|~q |
1√

(E′ +M ′)2M

√
3

2

[
ME′ −M ′2

M2

(
A0

1/2→1/2 +
E′ −M

|~q | A3
1/2→1/2

)

+
2M ′(2ME′ −M2 −M ′2)

M2|~q | A1
−1/2→1/2

]
(B24)

CA
6 =

M ′

|~q |
1√

(E′ +M ′)2M

√
3

2

(
A0

1/2→1/2 +
E′

|~q |A
3
1/2→1/2 +

2M ′

|~q | A
1
−1/2→1/2

)
(B25)

The vector matrix elements have the general structure

V 0
1/2→1/2 = V

(0)
SF

√
2M

√
2E′

∫
d3Q1

∫
d3Q2

[
φ̃(B

′)( ~Q1 −
mc +ml′

M ′ ~q,− ~Q1 − ~Q2 +
ml′

M ′ ~q )

]∗
φ̃(B)( ~Q1, ~Q2)

×
√

(El(| ~Q1 − ~q |) +ml)(Ec(| ~Q1|) +mc)

2El(| ~Q1 − ~q |)2Ec(| ~Q1|)

(
1 +

| ~Q1|2 − |~q |Qz
1

(El(| ~Q1 − ~q |) +ml)(Ec(| ~Q1|) +mc)

)
(B26)

V 3
1/2→1/2 = V

(3)
SF

√
2M

√
2E′

∫
d3Q1

∫
d3Q2

[
φ̃(B

′)( ~Q1 −
mc +ml′

M ′ ~q,− ~Q1 − ~Q2 +
ml′

M ′ ~q )

]∗
φ̃(B)( ~Q1, ~Q2)

×
√

(El(| ~Q1 − ~q |) +ml)(Ec(| ~Q1|) +mc)

2El(| ~Q1 − ~q |)2Ec(| ~Q1|)

(
Qz

1

Ec(| ~Q1|) +mc

+
Qz

1 − |~q |
El(| ~Q1 − ~q |) +ml

)
(B27)

V 1
−1/2→1/2 = V

(1)
SF

√
2M

√
2E′

∫
d3Q1

∫
d3Q2

[
φ̃(B

′)( ~Q1 −
mc +ml′

M ′
~q,− ~Q1 − ~Q2 +

ml′

M ′
~q )

]∗
φ̃(B)( ~Q1, ~Q2)

×
√

(El(| ~Q1 − ~q |) +ml)(Ec(| ~Q1|) +mc)

2El(| ~Q1 − ~q |)2Ec(| ~Q1|)

× |~q |(Ec(| ~Q1|) +mc)− [Ec(| ~Q1|) +mc − El(| ~Q1 − ~q |)−ml]Q
z
1

(El(| ~Q1 − ~q |) +ml)(Ec(| ~Q1|) +mc)
(B28)

Here we have a c→ l transition at the quark level, while l′ is the light quark originally present in the initial baryon.

The V
(j)
SF depend on the flavour and spin structure of the baryons involved. Their values for the different transitions

appear in Table III. When the final baryon has just one s quark then φ̃(B
′) should be interpreted as φ̃

(B′)
sn or φ̃

(B′)
ds ,

for the case of c→ s or c→ d transitions, respectively.
Similarly, for the axial matrix elements we have

A0
1/2→1/2 = A

(0)
SF

√
2M

√
2E′

∫
d3Q1

∫
d3Q2

[
φ̃(B

′)( ~Q1 −
mc +ml′

M ′
~q,− ~Q1 − ~Q2 +

ml′

M ′
~q )

]∗
φ̃(B)( ~Q1, ~Q2)

×
√

(El(| ~Q1 − ~q |) +ml)(Ec(| ~Q1|) +mc)

2El(| ~Q1 − ~q |)2Ec(| ~Q1|)

(
Qz

1

Ec(| ~Q1|) +mc

+
Qz

1 − |~q |
El(| ~Q1 − ~q |) +ml

)
(B29)
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V
(0)
SF V

(3)
SF V

(1)
SF A

(0)
SF A

(3)
SF A

(1)
SF

Ξ++
cc → Ξ+

c

√
3√
2

√
3√
2

−1√
6

1√
6

1√
6

1√
6

Ξ+
cc → Ξ0

c

√
3√
2

√
3√
2

−1√
6

1√
6

1√
6

1√
6

Ξ++
cc → Ξ′+

c
1√
2

1√
2

−5
√

2
6

5
√

2
6

5
√

2
6

5
√

2
6

Ξ+
cc → Ξ′0

c
1√
2

1√
2

−5
√

2
6

5
√

2
6

5
√

2
6

5
√

2
6

Ξ++
cc → Ξ∗+

c 0 0 −1
3

−2
3

−2
3

1
3

Ξ+
cc → Ξ∗ 0

c 0 0 −1
3

−2
3

−2
3

1
3

Ξ++
cc → Λ+

c

√
3√
2

√
3√
2

−1√
6

1√
6

1√
6

1√
6

Ξ++
cc → Σ+

c
1√
2

1√
2

−5
√

2
6

5
√

2
6

5
√

2
6

5
√

2
6

Ξ+
cc → Σ0

c 1 1 −5
3

5
3

5
3

5
3

Ξ++
cc → Σ∗+

c 0 0 −1
3

−2
3

−2
3

1
3

Ξ+
cc → Σ∗ 0

c 0 0 −
√

2
3

−2
√

2
3

−2
√

2
3

√
2

3

Ω+
cc → Ω0

c 1 1 −5
3

5
3

5
3

5
3

Ω+
cc → Ω∗ 0

c 0 0 −
√

2
3

−2
√

2
3

−2
√

2
3

√
2

3

Ω+
cc → Ξ0

c
−
√
3√
2

−
√

3√
2

1√
6

−1√
6

−1√
6

−1√
6

Ω+
cc → Ξ′0

c
1√
2

1√
2

−5
√

2
6

5
√

2
6

5
√

2
6

5
√

2
6

Ω+
cc → Ξ∗ 0

c 0 0 −1
3

−2
3

−2
3

1
3

TABLE III. V
(j)
SF and A

(j)
SF spin-flavour factors.

A3
1/2→1/2 = A

(3)
SF

√
2M

√
2E′

∫
d3Q1

∫
d3Q2

[
φ̃(B

′)( ~Q1 −
mc +ml′

M ′
~q,− ~Q1 − ~Q2 +

ml′

M ′
~q )

]∗
φ̃(B)( ~Q1, ~Q2)

×
√

(El(| ~Q1 − ~q |) +ml)(Ec(| ~Q1|) +mc)

2En(| ~Q1 − ~q |)2Ec(| ~Q1|)

(
1− | ~Q1|2 − |~q |Qz

1 − 2Qz
1(Q

z
1 − |~q |)

(El(| ~Q1 − ~q |) +ml)(Ec(| ~Q1|) +mc)

)
(B30)

A1
−1/2→1/2 = A

(1)
SF

√
2M

√
2E′

∫
d3Q1

∫
d3Q2

[
φ̃(B

′)( ~Q1 −
mc +ml′

M ′ ~q,− ~Q1 − ~Q2 +
ml′

M ′ ~q )

]∗
φ̃(B)( ~Q1, ~Q2)

×
√

(El(| ~Q1 − ~q |) +ml)(Ec(| ~Q1|) +mc)

2El(| ~Q1 − ~q |)2Ec(| ~Q1|)

(
1− | ~Q1|2 − |~q |Qz

1 − 2Qx
1(Q

x
1 − iQy

1)

(El(| ~Q1 − ~q |) +ml)(Ec(| ~Q1|) +mc)

)
(B31)

where the A
(j)
SF axial spin-flavour factors can be found in Table III. Note that due to symmetry properties the integral

in 2Qx
1Q

x
1 in A1

−1/2→1/2 es equivalent to an integral in | ~Q1|2 − (Qz
1)

2, while the integral in 2Qx
1Q

y
1 is identically zero.
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