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Abstract

We present theoretical results for (γ, π0π0) production on nucleons
and nuclei in the kinematical region where the scalar isoscalar ππ am-
plitude is influenced by the σ pole. The final state interaction of the
pions modified by the nuclear medium produces a spectacular shift of
strength of the two pion invariant mass distribution induced by the
moving of the σ pole to lower masses and widths as the nuclear density
increases.

The nature of the σ meson has been the subject of continuous debate. Its
nature as an ordinary qq̄ meson or a ππ resonance has centered most of the
discussion [1]. The advent of χPT has brought new light into this problem
and soon it was suggested [2, 3] that the σ could not qualify as a genuine
meson which would survive in the limit of large Nc. The reason is that the
ππ interaction in s-wave in the isoscalar sector is strong enough to generate a
resonance through multiple scattering of the pions. This seems to be the case,
and even in models starting with a seed of qq̄ states, the incorporation of the ππ
channels in a unitary approach leads to a large dressing by a pion cloud which
makes negligible the effects of the original qq̄ seed [4]. This idea has been made
more quantitative through the introduction of the unitary extensions of χPT
(UχPT ) [5, 6, 7, 8]. These works implement unitarity in coupled channels in an
exact form and use the input of the lowest and second order chiral Lagrangians
of [9]. The inverse amplitude method is used in [7] and an expansion in powers
of O(p2) is done for the real part of the inverse of the scattering amplitude,
while in [8] the dynamics of the second order chiral Lagrangian is introduced
via the explicit use of the exchange of genuine mesons, following the lines of
[10], and unitarizing with the N/D method. These works also justified the
success in the scalar sector of the Bethe Salpeter approach used in [11, 12]. In
all these cases the σ meson appears as a pole of the ππ scattering amplitude
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in the second Riemann sheet, even when the second order Lagrangian, which
contains information of the exchange of genuine mesons according to [10],
is neglected. These unitary models have been tested with success in many
elementary reactions [13].

Another point of interest which can help us to understand the nature of
the σ meson is the modification of its properties at finite nuclear density. The
importance of the medium modification of the ππ interaction in the scalar
sector was suggested in [14] where the ππ amplitude in the medium developed
large peaks below the two pion threshold, somehow indicating that the σ pole
had moved to much lower energies. The issue has been revised and the models
have been polished incorporating chiral constraints [15, 16, 17] with the result
that the peaks disappear at normal density, but still much strength is shifted
to low energies.

Since present theoretical calculations agree on a sizeable modification in
the nuclear medium of the ππ scattering in the σ region, our purpose here
is to find out its possible experimental signature in a very suited process like
the (γ, π0π0) reaction in nuclei. Recent experiments at Mainz [18], where
preliminary results show a very clear shift of strength of the invariant mass
distribution of the two pions towards low invariant masses, seem to indicate
that medium effects are indeed large.

In the present paper we shall show how the ππ interaction in the final
state of the (γ, π0π0) reaction on nucleons enhances the cross section of this
reaction and how the medium corrections on the ππ interaction in nuclei lead
to an appreciable shift of the strength of the invariant mass distribution to-
wards lower invariant masses. Although a similar shift has been claimed in
the (π, ππ) reaction in nuclei [19, 20, 21], the fact remains that there are still
some discrepancies between these experiments and that the theoretical cal-
culations [22, 23] do not reproduce the data. The reason is that the (π, ππ)
reaction, involving initial pions which are much distorted in the nucleus, is
quite peripheral and the effective densities tested are small. A possible way
out to reconcile theory and experiment was suggested in [23], showing that the
small cross section in π−p → π+π−n at small invariant masses was abnormally
small because of a subtle cancellation of large terms. A medium modification
of these terms, through changes in the N∗ properties and others not having
to do with the ππ interaction, could offset that cancellation and lead to larger
final results. The (γ, π0π0) reaction is much better suited to investigate the
modification of the ππ interaction in the medium because the photons are not
distorted and one can test larger nuclear densities.

For the model of the elementary (γ, ππ) reaction we follow [24] which con-
siders the coupling of the photons to mesons, nucleons, and the resonances
∆(1232), N∗(1440), N∗(1520) and ∆(1700). In the region of relevance to the
present work, Eγ = 400 − 460 MeV, apart from some background terms, the
∆ Kroll Ruderman term, diagram i) of Fig. 1 in [24], is of importance and will
be dealt with separately from the rest. The model of [24] relies upon tree level
diagrams. Final state interaction of the πN system is accounted for by means
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of the explicit use of resonances with their widths. However, since we do not
include explicitly the σ resonance, the final state interaction of the two pions
has to be implemented to generate it.

The γN → Nπ0π0 amplitude can be decomposed in two parts: the one
that has as final state the combination of pions with isospin I=0, first term of
the RHS of Eq. (1), and the I=2 combination, last two terms of Eq. (1).

|π0(1)π0(2) >=
1

3
|π0(1)π0(2) + π+(1)π−(2) + π−(1)π+(2) >

︸ ︷︷ ︸

I=0 part

−1

3
|π0(1)π0(2) + π+(1)π−(2) + π−(1)π+(2) > +|π0(1)π0(2) >

︸ ︷︷ ︸

I=2 part

(1)

The interaction of pions in I=2 in s-wave at these energies is very weak and
hence we do not modify this part of the γN → Nπ0π0 amplitude due to the
final state interaction of the pions. However, the I=0 part is strongly modified.
We have also checked that at the low energies involved here the pions come
essentially in s-wave.

In ref. [23] the renormalization of the I = 0 (π, ππ) amplitude was done
by factorizing the on shell tree level πN → ππN and ππ → ππ amplitudes in
the loop functions. This was justified in [11] for the ππ interaction. The same
approach would lead in our case to

T Iππ=0
(γ,π0π0) → T Iππ=0

(γ,π0π0)

(

1 + GππtI=0
ππ (MI)

)

(2)

where Gππ is the loop function of the two pion propagators, which appears in
the Bethe Salpeter equation, and tI=0

ππ is the ππ scattering matrix in isospin
I=0. In order to show clearly how one is lead to this equation, we show in
Fig. 1 the diagrams involved in the two pion production including their final
state interaction.

+ + +  . . .

Figure 1: Diagrammatic series for pion final state interaction in I=0

The two final pions undergo multiple scattering which can be accounted
for by means of the Bethe Salpeter equation,

t = V + V Gππt (3)

where, following [11], V is given by the lowest order chiral amplitude for
ππ → ππ in I = 0 and Gππ, the loop function of the two pion propagators,
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is regularized by means of a cut off in [11], or alternatively with dimensional
regularization in [8]. In both approaches it was shown that V factorizes with
its on shell value in the Bethe-Salpeter equation of Fig. 1. Hence, in the Bethe-
Salpeter equation the integral involving V t and the product of the two pion
propagators affects only these latter two, since V and t factorize outside the
integral, thus leading to Eq. (3) where V Gππt is the algebraic product of V, the
loop function of the two propagators, Gππ, and the t matrix. Coming back to
Fig. 1 it is now clear that in case the vertex from where the two pions emerge
is a contact term with a constant amplitude, the series implicit in Fig. 1 is
summed as

T + TGππV + TGππV GππV + . . . =

= T [1 + Gππ(V + V GππV + . . .)] = T (1 + Gππtππ) (4)

which is Eq. (2). Now in the model for (γ, 2π) of [24] there are indeed contact
terms as implied before, as well as other terms involving intermediate nucleon
states or resonances. In this latter case the first loop function in the diagrams
of Fig. 1 is more complicated since it involves three propagators. Yet, if the
intermediate baryon is far off shell, as is the case for most diagrams, then
the baryon propagator does not change much in the loop function and the
factorization of Eq. (2) still holds. There is, however, an exception in the ∆
Kroll Ruderman term, since as we increase the photon energy we get closer
to the ∆ pole. For this reason, and because its weight is important at these
energies in the (γ, π+π−) amplitude which is needed in Eq. (1), we have singled
out this term which we work out in detail below. The I=0 part of the amplitude
requires the combination of the diagrams shown in Fig. 2 a) b)

∆(1232)
p4

p5

π−

+π

p5

p4

∆(1232)
π−

+π

p4

p5

πo

oπ

−π

+π
2
1
P + q

2
1
P − q

+ P

a) b) c)

Figure 2: Diagrammatic series for the ∆ Kroll Ruderman term with final pions in
I=0.

and hence the vertex contribution is (assuming the ∆ propagator, G∆, the
same in both cases)

G∆(~S~p5
~S†~ǫ + ~S~p4

~S†~ǫ) = G∆
~S(~p4 + ~p5) ~S†~ǫ = G∆

~S ~P ~S†~ǫ (5)

where ~S† is the spin transition operator from spin 1/2 to 3/2 and ~ǫ is the
photon polarization.

In the loop function originated from the sum of the terms a) and b) de-
picted in Fig. 2, assuming also the ∆ propagator constant, we would have the
contribution
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i
∫ d4q

(2π)4
2 ~S(

~P
2

+ ~q) ~S†~ǫ G∆
1

( 1

2
P+q)2−m2

π+iǫ

1
( 1

2
P−q)2−m2

π+iǫ
tππ =

= G∆
~S ~P ~S†~ǫ Gππ(s) tππ(s) (6)

since the term proportional to ~S~q vanishes because of parity reasons, and
then we see explicitly the factorization of the tree level amplitude. If we keep
explicitly the ∆ propagator in the loop some corrections arise since now we
have the loop function with the ∆ propagator and two pion propagators. This
loop integral is performed following the steps of [25], where the same loop
with three propagators, albeit with only strong vertices, is evaluated. By
performing explicitly the q0 integration in Eq. (6) we obtain

∫
d3q

(2π)3
2 ~S(

~P

2
+ ~q) ~S†~ǫ

M∆

E∆

1

2ωω′

1

P 0 + ω + ω′

1

P 0 − ω − ω′ + iǫ

· 1
√

s − ω′ − E∆ + i
Γ∆(p2

∆
)

2

1
√

s − ω − P 0 − E∆ + i
Γ∆(p2

∆
)

2

·
[

(ω + ω′)(
√

s − E∆ − ω − ω′) − ωP 0
]

(7)

where E∆ =
√

M∆
2 + ~p∆

2, ω =
√

m2
π + (

~P
2

+ ~q )2, ω′ =
√

m2
π + (

~P
2
− ~q )2,

p∆ =
~P
2
− ~q, p0

∆ = P 0+ω+ω′

2
and

√
s is the CM energy of the initial photon and

nucleon.
The improved loop calculation results in a 10 per cent reduction in the cross

section. The pion pole term (diagram j of Fig. 1 of ref. [24]) is essential in
the (γ, ππ) model to guarantee gauge invariance, but is numerically negligible

at the energies which we have here since it is proportional to ~P 2, while the
∆ Kroll-Ruderman term i) is proportional to ~P . Yet, inside the loops, the
contribution can be bigger since the γππ vertex now is proportional to the loop
momentum and not to the external pion momentum. In addition there is an
extra p-wave πN∆ vertex which also goes like the loop momentum. However,
there is also an extra pion propagator and one also finds cancellations from
the poles of the different propagators. This was done explicitly in [26] where
moderate effects from this pion pole term were obtained. We have performed
the appropriate calculation and found that the loop diagram from the pion pole
term is of the order of 10 per cent of the corresponding loop with the ∆ Kroll-
Ruderman term. Hence, we simply take care of it through the factorization
approximation. We also take advantage of this numerical calculation to include
two extra baryon form factors in the loop, as done in [25], to account for the
πN∆ vertex correction. This is also done for the other diagrams since πNN
vertices are also involved. The inclusion of the form factors leads to a further
reduction of about 15 per cent in the final cross section. Hence, the actual
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Figure 3: Selfenergy diagram for the evaluation of the cross section including the
final pions rescattering.

modification of the amplitude should be

T → T − T 00 +
(

T 00 − T 00
KR

)

(1 + Gππtππ) + T 00
KR + GKRtππ

= T +
(

T 00 − T 00
KR

)

Gππtππ + GKRtππ (8)

where T is the full (γ, π0π0) amplitude, T 00 is the (I = 0, I3 = 0) amplitude
for (γ, π0π0), T 00

KR is the same as T 00 but calculated only with the ∆ Kroll
Ruderman term, Gππ is the two pions loop including the strong πBB′ form
factors, tππ is the ππ scattering matrix in isospin I=0, GKR is the loop of Fig. 2
including in the integrand the two form factors and the T 00

KR that depends on
the momentum in the loops. (This is, Eq. (7) including the form factors and
the coupling constants and isospin coefficients of [24]).

After all this is done, we find it technically useful, in order to account for
these elaborate loop corrections, to still apply the factorization of the (γ, 2π)
tree level amplitude of Eq. (2) but with a slightly modified form factor included
in the Gππ loop function. The cut off of the monopole form factor is changed
from 1 GeV to 625 MeV to implement these changes, including also the small
effects from the projection in the two pion s-wave channel. This procedure is
quite accurate numerically and prevents the numerical task from blowing up
when we perform the calculations in nuclei.

There is also a small technical detail. One of the terms in our approach
contains the Roper excitation and its posterior decay into two pions in s-wave.
The Lagrangian used is given in [23] and the coupling constant is renormalized,
as in [23], in such a way that when the ππ final state interaction is taken into
account the empirical N∗ width is obtained.

The cross section for the nuclear process can be calculated using many
body techniques in a similar way to [27], [28]. The method proceeds in two
steps. In the first one the probability per unit length of a (γ, 2π) process in
nuclear matter is evaluated from the imaginary part of the photon selfenergy
diagram of Fig. 3 corresponding to the cut of the horizontal line. By using
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the local density approximation and, hence, substituting the density of nu-
clear matter by the empirical density of the nucleus ρ(~r) at a point ~r, this
provides the reaction probability in this point of the nucleus. The second step
requires to follow the individual particles produced through the nucleus in an
inclusive process where the nucleus can be excited to any state. This second
step is done by using semiclassical methods in which the pions produced follow
classical trajectories and are allowed to undergo quasielastic collisions or pion
absorption according to probabilities calculated previously using many body
techniques. As shown in [28], this procedure was very successful in describing
pion nucleus phenomenology at intermediate energies.

With these ingredients the nuclear cross section is given by

σ =
π

k

∫

d3~r
∫

d3~p

(2π)3

∫
d3~q1

(2π)3

∫
d3~q2

(2π)3

1

2ω(~q1)

1

2ω(~q2)

·
∑

si,sf

∑

pol

| T |2 n(~p) [1 − n(~k + ~p − ~q1 − ~q2)]

· δ(k0 + E(~p) − ω(~q1) − ω(~q2) − E(~k + ~p − ~q1 − ~q2))

· F1(~r, ~q1) F2(~r, ~q2) (9)

where n(~p) is the occupation number for a density ρ(~r). The factors Fi(~r, ~qi)
take into account the distortion of the final pions in their way out through the
nucleus and are given by

Fi(~r, ~qi) = exp

[
∫ ∞

~r
dli

1

qi

ImΠ(~ri)

]

(10)

~ri = ~r + li ~qi/ | ~qi |

where Π is the pion selfenergy, taken from [29], where the interaction of low
energy pions with nuclear matter was studied. This potential has been tested
against the different pionic reaction cross sections, elastic, quasielastic and ab-
sorption. The imaginary part of the potential is split into a part that accounts
for the probability of quasielastic collisions and another one which accounts
for the pion absorption. As we shall see, the probability that there is loss
of pion flux through pion absorption at low energies is larger than through
quasielastic collisions. One of the reasons is the Pauli blocking of the occupied
states.

When we renormalize the I=0 amplitude to account for the pion final state
interaction, we change Gππ and tI=0

ππ by their corresponding results in nuclear
matter [17] evaluated at the local density of the point ~r in the integral of
Eq. (9). We do not include here the direct coupling of the two pions to the
N∗(1440)h which was found extremely small in [30]. We do not include either
the direct coupling of the two pions to a p − h excitation. The s-wave would
proceed only through the tiny isoscalar πN → πN interaction, and the p-wave

7



260 280 300 320 340 360

M
 I
(π0π0) [MeV]

0

2

4

6

8

10

12

dσ
(π

0 π0 )/d
M

I [
nb

/M
eV

] Eγ
Lab

= 430 MeV

γ p --> p π0π0 

T00 with FSI

T00 without FSI

T20

coherent T20 + T00 with FSI
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Figure 4: Contributions of the different isospin channels to the 2π mass distribution.

part, weak in principle at the relatively small momenta of the pions, would be
only relevant at excitation energies of about 30-50 MeV, far below the region
of interest to us in the present problem. On the other hand, one should note
that other alternatives have been proposed to study the modification of the
isoscalar ππ interaction in the nuclear medium based on the reduction of the
pion decay coupling constant in the medium, which is tied to the dropping
of the quark condensate via the Gell-Mann–Oakes–Renner relation [31, 32],
or a combination of this effect and the dressing of the pion in the medium
[33]. However, in the approach which we follow, one must be cautious not to
include the dropping of f on top of the many body corrections done. Indeed,
the change of f as a function of density in [31, 34] and related works, obtained
through the GOR relation, is linked to the renormalization of the time com-
ponent of the axial current in nuclei, but in standard many body theory these
currents are renormalized using the same lagrangians as in the evaluation of
the pion selfenergy [35, 36, 37, 38]. Therefore, one should not modify f in
these latter approaches to avoid double counting if using an explicit perturba-
tive calculation with effective chiral lagrangians. Actually, a large change of
f at normal nuclear density would be difficult to accommodate to the quite
well known pion nucleus phenomenology (pionic atoms, pion absorption, etc).
Concerning this point it is worth noting the discussion in [39, 40, 41] about the
difference between the f(ρ) constant related to the quark condensate and the
f used in perturbative calculations with chiral lagrangians. These differences
were also stressed in [42], where it was also shown that taking the f(ρ) cou-
pling related to the quark condensate in the many body evaluation of the pion
nucleus optical potential led to unacceptably large widths of pionic atoms.

We have also used the complex ∆ selfenergy from [43] to dress the ∆
propagator. In addition to the proper real part of the selfenergy in [43] we
add the effective contribution to the selfenergy 4/9(f ∗/µ)2g′ρ coming from the
iterated ∆h excitation driven by de Landau Migdal interaction [44, 43].
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Figure 5: Total cross section for γp → π0π0p with and without pion final state
interaction. Experimental data from ref. [46].

In Fig. 4 we show the results of the invariant mass distribution of the
two pions for the γp → π0π0p reaction. We can see the contribution of the
I=0 part alone (T00), the I=2 part alone (T20) and the coherent sum of the
two, both with and without renormalization (FSI) of the I=0 amplitude. The
renormalization of the I=0 amplitude has important effects, nearly doubling
the cross section. This is reminiscent of the similar enhancement found from
chiral loops at threshold in [45]. When we sum coherently the I=0 and I=2
amplitudes the shape of the distribution exhibits a double hump, one at low
invariant masses and the other one at the high mass part of the spectrum.
This shape is corroborated by the preliminary experimental results of [18].

The integrated cross section compared with experiment can be seen in
Fig. 5 where we can appreciate that the inclusion of final state interaction
improves the agreement with the data. The amplitude for the (γ, π0π0) reac-
tion on neutrons is calculated along the same lines and leads to a similar mass
distribution as that of Fig. 4 albeit with a little smaller cross section.

In Fig. 6 a) and b) we show the cross section for 12C and 208Pb assuming
the FSI of the pions in the free case (ρ = 0), and we show the results without
pion absorption or quasielastic steps, with pion absorption alone, and a third
curve which corresponds to the case where the pions which undergo quasielastic
collisions together with those absorbed are eliminated from the outgoing pion
flux. This is actually not the case but the comparison of the two lower curves
gives us a measure of the amount of quasielastic collisions undergone by the
pions in their way out from the production point. The figures show that
more pions undergo absorption than quasielastic collisions. The larger part of
the quasielastic collisions would not change the charge of the pions, only their
energy and momentum would be changed. In this case the two π0 would still be
there and their invariant mass would be somewhat changed, sometimes leading
to larger two pion invariant masses and other to smaller ones. Hence, as an
average the invariant mass distribution of the two pions should not be much
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Figure 6: Two pion invariant mass distribution for 2π0 photoproduction in 12C and
208Pb. All three curves are calculated using the 2π final state interaction at 0 density
but they differ in the final pion distortion: continuous line: without absorption nor
quasielastic scattering. Long dashed line: only final pions absorption. Short dashed
line: final pions absorption and quasielastic scattering.

modified by these quasielastic collisions. In other cases there could be change
of charge and then we would not have two π0 in the final state. However, this
could also be compensated by having originally a π+π0 production followed by
a collision of the π+ with charge exchange. The distortion of the final pions
has been done simply by using the imaginary part of the optical potential and
leads to a reduction of the cross section. The results for the case of removal of
only the pions which are absorbed are obtained by putting in the imaginary
part of the pion selfenergy, Π, in Eq. (10), the part which comes from the
absorption and omitting the one that comes from quasielastic, which have
been separated in [29]. Additional effects from the real part of the potential
can be taken into account following the lines of [47] by introducing the real
part of the pion selfenergy in the pion propagators cut by the horizontal line
in Fig. 3 when one evaluates the photon selfenergy with a ph and two pions
in the intermediate state. We find a moderate increase of the cross section
by an amount of 20 percent in 12C from this effect when the ππ interaction
in the medium is considered in addition, but again it does not modify at all
the shape of the invariant mass distribution. All these things discussed, we
can conclude that while there are uncertainties of about 20 percent in 12C,
and a bit more in 208Pb, in the size of the total cross section, the shape of the
mass distribution is still determined basically by the implementation of the
ππ interaction in the medium.

In Fig. 7 we can see the results for the invariant mass distribution of the
two pions for 12C and 208Pb including the absorption of the final pions. The
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Figure 7: Two pion invariant mass distribution for 2π0 photoproduction in 12C and
208Pb. Continuous lines: Using the in medium final ππ interaction. Dashed lines:
using the final ππ interaction in free space.

difference between the solid and dashed curves is the use of the in medium ππ
scattering and G function instead of the free ones, which we take from [17].
As one can see in the figure, there is an appreciable shift of strength to the
low invariant mass region due to the in medium ππ interaction. This shift is
remarkably similar to the one found in the preliminary measurements of [18].

These results show a clear signature of the modified ππ interaction in the
medium. The fact that the photons are not distorted has certainly an advan-
tage over the pion induced reactions and allows one to see inner parts of the
nucleus. In this sense it is worth noting that from our calculations we can
determine the average nuclear density felt by the reaction which turns out to
be 35 per cent and 65 per cent of the normal nuclear density for 12C and 208Pb
respectively.

Although we have been discussing the ππ interaction in the nuclear medium
it is clear that we can relate it to the modification of the σ in the medium.
We have mentioned that the reason for the shift of strength to lower invariant
masses in the mass distribution is due to the accumulated strength in the
scalar isoscalar ππ amplitude in the medium. Yet, this strength is mostly
governed by the presence of the σ pole and there have been works suggesting
that the σ should move to smaller masses and widths when embedded in the
nucleus [31, 33, 48, 49, 32]. We should stress that in refs. [31, 33, 49, 32]
effects of chiral symmetry restoration from the dropping of the condensate
and/or the change in the bare σ mass are considered. In our approach which,
as we mentioned, relies upon a conventional many body expansion based on
standard chiral lagrangians, where the σ in the free space or in the nucleus is
generated dynamically, we can look at the σ poles and see their evolution with
the nuclear density. A detailed study of the poles in the complex plane for the
ππ interaction in the nuclear medium within this approach is now available
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in [50]. In this work it is indeed found that the pole position of the σ moves
to smaller energies as the density increases and the width is also reduced.
The present results, when contrasted by the definitive data, if they confirm
the preliminary ones of [18], should represent an evidence of this interesting
phenomenon which would come to strengthen once more the nature of the
σ meson as dynamically generated by the multiple scattering of the pions
through the underlying chiral dynamics.
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