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Abstract

Based on a prior determination of the φ selfenergy in a nuclear medium we per-

form a theoretical study of inclusive φ photoproduction in nuclei, looking at the A

dependence of the cross sections for different φ momenta. We find sizeable reductions

in the nuclear cross sections with respect to the elementary one, using a φ selfenergy

which implies a width about six times the free one at normal nuclear density. The cal-

culations are done to match the set up for an ongoing experiment at SPring8/Osaka
which should provide valuable information on the renormalization of the φ properties

in nuclei.

1 Introduction

The renormalization of the properties of the vector mesons in nuclear matter has re-
ceived much attention, particularly the ρ meson, (see [1] for a review). The φ meson
has received comparatively less attention, but it turns out to be a well suited tool to
understand the dynamics of the vector mesons in matter since the changes of some of
the φ properties are comparatively larger than those of the ρ meson, what would make
its experimental observation in principle easier. The change of the φ properties in the
medium at finite temperature and/or density has been studied in several approaches like
effective Lagrangians [2, 7, 4, 5, 6, 3] and QCD sum rules [8, 9, 10, 11]. Particularly, the
φ width modification in matter has been subject of study in dropping meson mass sce-
narios [6, 12, 13, 14, 15, 16], as a result of collisional broadening through φ-baryon [17] or
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φ-meson [18, 19] scattering processes and by modifying the K̄K decay channel by means
of in-medium kaon selfenergies [7, 20]. The majority of these works point at a sizeable
renormalization of the φ width and a small mass shift.

Indeed, in [3,7] it was found that the φ width at normal nuclear matter density, ρ0, was
about one order of magnitude larger than the free width. Particularly, the results of [7]
were based on the use of a K− selfenergy in nuclear matter which accounted for Pauli
blocking correction in the intermediate K−N sates in the scattering equation. Further
studies considering the selfconsistency of the K̄N in-medium scattering equation were done
in [21, 22] to determine the K− selfenergy. Following those results a reanalysis of the φ
width in the medium was done in [20], resulting in values around 22 MeV at ρ = ρ0. A more
recent evaluation, using the K− selfenergy of [22] and improving on some approximations
of [20] was done in [23], resulting in a width of about 28 MeV at ρ = ρ0 and a small shift
in the mass of about −6 MeV.

Several proposals to test the φ properties in a nuclear medium have been done, for
instance, regarding the detection of its decay products in A−A and p−A collisions [24,11].
Particularly a method to analyse the invariant mass spectra of the emitted charged kaon
pairs was studied in [25]. Having into account that the calculations in [3, 7, 20, 23] were
done for a φ at rest in the nucleus, it has been suggested to determine this large width
using reactions like π−p → φn in nuclei [7] and φ photoproduction in nuclei [26], assuming
the φ to emerge with a small momentum. The latter proposal is possible by means of the
elementary γN → φN reaction with the φ going in the backward direction and the help
of the Fermi motion of the nucleons. The small cross section for these particular events
makes this experiment difficult and in addition it was shown in [27] that the distribution
of the K+K− pairs from the Coulomb interaction in heavy nuclei removed the changes
in the φ width in the K+K− invariant mass that one might expect from the changes of
the φ width in the medium. Another possibility, not previously considered, to investigate
the changes of the φ width is to look for φ loss of flux in φ nuclear photoproduction.
The A dependence in this loss is related to the φ width in the medium. The drawback is
that in this experiment the largest fraction of the φ comes out with a momentum of the
order of 1500 MeV/c in the ongoing experiment at SPring8/Osaka [28]. The combination
of experiment and theoretical models, which can make the extrapolation of φ at rest to
φ with finite momenta, can thus make the experiment useful to learn about φ nuclear
properties.

With this aim, we present here a theoretical calculation of the A dependence of the
cross section for φ photoproduction in nuclei which could test the models of [3, 7, 20, 23].
Our work will be based on the models for the φ selfenergy of Oset-Ramos (OR) [20] and
Cabrera-Vicente (CV) [23], after a proper extension to account for the finite momentum.

2 φ photoproduction cross section

Let Π(p, ρ) be the φ selfenergy in a nuclear medium as a function of its momentum, p, and
the nuclear density, ρ. We have
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Π

2ω
≡ Vopt = ReVopt + i ImVopt , (1)

and hence
Γ

2
= −Im

Π

2ω
; Γ = −

ImΠ

ω
≡

dP

dt
, (2)

where ω is the φ energy and P is the φ decay probability, including nuclear quasielastic
and absorption channels. Hence, we have for the probability of loss of flux per unit length

dP

dl
=

dP

v dt
=

dP
p
ω
dt

= −
ImΠ

p
. (3)

The nuclear cross section for inclusive φ photoproduction will then be

dσA

dΩ
=

∫
d3~rρ(r)

dσ

dΩ
e−

∫
∞

0
dl−1

p
ImΠ(p,ρ(r′)) (4)

where dσ
dΩ

and dσA

dΩ
are the elementary and nuclear differential cross section and ~r ′ = ~r +

l ~p
|~p|

with ~r the φ production point inside the nucleus. The exponential factor in Eq. (4)
represents the survival probability of the φ meson in its way out of the nucleus. If the
φ did not get absorbed inside the nucleus then we would get the typical result for an
electromagnetic reaction dσA

dΩ
= A dσ

dΩ
. Eq. (4) relies in the eikonal approximation which is

accurate for the large φ momentum involved in the process. In practice one might expect
small corrections to the formula, even if the φ did not decay, from two sources:

i) Distortion of the φ trajectory because of the real part of the potential
ii) Change of direction and energy of the φ in quasielastic collisions φN → φ′N ′.

The first effect should be negligible since the real part of the potential is so weak that
only modifies the mass of the φ in about 6 MeV [3, 23]. The second effect should be very
weak too, account taken of the lack of direct coupling φNN because of the OZI rule. On
the other hand, the effect from this source would simply lead to a slight change in the φ
direction but not the disappearance of the φ. This simply means that collecting the φ in a
narrow cone along the forward direction, where practically all the φ go, both because of the
kinematics of the lab variables and the extremely forward direction of the γN → φN cross
section [29], would guarantee that the φ undergoing quasielastic collisions in the nucleus
are accounted for in the nuclear cross section. In order to adjust to this experiment we
should not remove theoretically the events in which there are φ quasielastic collisions. This
will be done by including in ImΠ only the φ absorption events.

The integral in Eq. (4) does not depend on the direction of the φ momentum and thus
we have

Pout ≡
σA

Aσ
=

1

A

∫
d3~rρ(r) e

∫
∞

0
dl 1

p
ImΠ(p,ρ(r′)) (5)

and this is the magnitude which we would evaluate as a function of p and A, which can be
interpreted as the probability for a φ to go out of the nucleus. The density profiles, ρ(r),
for the different nuclei have been taken from [30].
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3 Evaluation of the φ selfenergy at finite momentum

For the evaluation of ImΠ in nuclear matter we are going to use the OR and CV models
which are based on chiral SU(3) dynamics considering the K and K̄ in-medium properties.
In these works the evaluations were done for a φ at rest. Since in the present work we
are dealing with φ mesons with momentum up to 2 GeV, an extension of the models to
finite momenta is mandatory. In the following subsections we summarize these two models
stressing the modifications to consider the finite φ momentum.

3.1 Extension of the Oset-Ramos model to finite momentum

The OR accounts for φ → K+K− and φ → K0K̄0 decay diagrams where the kaons
are renormalized in the medium due to s-wave and p-wave interactions, Figs. 1 and 2
respectively.

KK

K

KK

Kπ, η,

b)

p−q

p

K

φ

N

q Y

a)

p−q

p

K

φ

N

q N

Figure 1: Diagrams contributing to the φ selfenergy coming from the s-wave K̄N interac-
tion. Y represents Λ, Σ or Ξ.

KK

p−q

p

φ

q

N

K

Y

Figure 2: Diagrams contributing to the φ selfenergy coming from the p-wave K̄N interac-
tion. Y represents Λ, Σ or Σ∗(1385).

To the diagrams of Fig. 2 one must add the vertex corrections shown in Fig. 3 for consistency
with gauge invariance.

In the evaluation of the previous diagrams, the K+, K0, selfenergy is taken as in [31]
following the tρ approximation
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a) b)
c)

Figure 3: Diagrams accounting for vertex corrections.

ΠK+,K0 = 0.13 m2
K

ρ

ρ0

MeV . (6)

Concerning the K̄, a large contribution to the φ selfenergy comes from the p-wave
and vertex correction diagrams. On the other hand, since the K− p-wave selfenergy is
proportional to ~q 2, it is likely to be more affected inside the loops by the finiteness of
the φ momentum. Hence we evaluate explicitly the φ selfenergy from the p-wave K−

selfenergy diagrams at finite φ momentum and take the same part coming from the K−

s-wave selfenergy as obtained for zero momentum. This latter part produces a contribution
to the imaginary part of the φ selfenergy that can be parametrized as

ImΠ(s) = −7.62ρ/ρ0 ω(p) MeV (7)

We now evaluate the contribution to ImΠ(p, ρ) of the K̄ p-wave selfenergy diagrams,
depicted in Fig. 2.

In Fig. 2, K represents K+ or K0, K̄ represents K− or K̄0 and Y the hyperons Λ, Σ
and Σ∗(1385). The φ selfenergy coming from these diagrams at finite momentum can be
obtained as

− iΠ(p)(p, ρ) = 2

∫
d4q

(2π)4
iD(q)iD(q)(−i)Π

(p)

K̄
(q, ρ)iD̃(p − q, ρ)

∑
VφKK̄VφKK̄ =

= 2g2
φ

∫
d4q

(2π)4
D(q)2Π

(p)

K̄
(q, ρ)D̃(p − q, ρ)

4

3

[
(q · p)2

m2
φ

− q2

]
(8)

where D(q) = (q2 − m2
K + iǫ)−1 is the K−, K̄0, propagator, D̃(p − q) = ((p − q)2 − m2

K −
ΠK+)−1 is the K+, K0, propagator with the selfenergy of Eq. (6). In the evaluation of
Eq. (8) we have used that VφKK̄ = −igφǫµ(pµ

K − pµ

K̄
), with gφ = 4.57. The factor 2 at

the beginning of the equation is due to the possibility of having K−K+ or K̄0K0 in the
intermediate states.

To obtain ImΠ we can apply the following Cutkosky rules for the cut represented by
the dotted line of Fig. 2

Π(k) → 2i ImΠ(k)

D(k) → 2i Θ(k0)ImD(k)
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which leads, after performing the q0 integration, to

ImΠ(p)(p, ρ) = g2
φ

∫
d3~q

(2π)3

(
1

q02 − ~q 2 − m2
K

)2
1

ω̃p−q

ImΠ
(p)

K̄
(q, ρ)

4

3

[
(q · p)2

m2
φ

− q2

]
Θ(q0)

(9)

with ω̃p−q =
√

(~p − ~q)2 + m2
K + 0.13m2

K
ρ
ρ0

, q0 = p0 − ω̃p−q and Θ is the step function. The

K̄ p-wave selfenergy, ImΠ
(p)

K̄
(q), is evaluated in [22] and is a function of the K̄NY vertices

and the Lindhard functions for hyperons. In Eq. (9) we also add, as in Ref. [7], a form
factor for each kaon-baryon vertex of dipole type, [Λ2/(Λ2 − q2)]2, with Λ = 1.05 GeV.

Finally, the evaluation of the vertex corrections of Fig. 3 is done in an analogous way.
In this case we need the φKNY vertex functions given by

VφKNY = gφṼK̄NY ~σ · ~ǫ (φ); Y = Λ, Σ

VφKNΣ∗ = gφṼK̄NΣ∗
~S† · ~ǫ (φ) , (10)

where ṼK̄NY and ṼK̄NΣ∗ are coefficients given in [20]. The resulting expression for the
imaginary part of the φ selfenergy coming from the vertex corrections is the same as
Eq. (9) but doing the following substitution

D(q)2~q 24

3

[
(q · p)2

m2
φ

− q2

]
−→ D(q)

4

3

[
~q 2 −

(p · q)(~p · ~q)

m2
φ

]
+

(
1 +

~q 2

3m2
φ

)
. (11)

3.2 Extension of the Cabrera-Vicente model to finite momentum

The φ selfenergy from K̄K loop diagrams, calculated in [7, 23] for a φ at rest in a nuclear
medium, is given by

ΠK̄K
φ (p0, ~p; ρ) = 2ig2

φ

4

3

∫
d4q

(2π)4

[(p · q)2

m2
φ

− q2
]
DK(p0 − q0, ~p − ~q; ρ)DK̄(q0, ~q; ρ) (12)

for a φ meson with a momentum p.
A spectral representation [7] which sums up to all orders the insertion of irreducible

kaon selfenergy terms is used in the kaon propagator. The imaginary part of ΠK̄K
φ , which

is of interest in the present work, can be written as

ImΠK̄K
φ (p0, ~p; ρ) = −

1

4π
g2

φ

4

3

∫ ∞

0

dq ~q 2

∫ 1

−1

du
1

ω̃p−q
[(p · q)2

m2
φ

− q2
]

q0=p0−ω̃p−q

SK̄(p0 − ω̃p−q, ~q; ρ) Θ(p0 − ω̃p−q) , (13)
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Figure 4: Imaginary part of the in medium φ selfenergy, without the inclusion of the free
part, as a function of the momentum of the φ and the density, for the finite momentum
modification of model [20] (dashed line) and [23] (solid line).

where u = ~p · ~q/|~p| |~q| and SK̄(K) is the spectral function of the K̄(K) meson,

SK̄(K)(q
0, ~q; ρ) = −

1

π

Im ΠK̄(K)(q
0, ~q; ρ)

|(q0)2 − ~q 2 − m2
K − ΠK̄(K)(q0, ~q; ρ)|2

. (14)

The main differences with respect to the approach described in section 3.1 are the
following:

• Eq. (13) considers higher order effects in the insertion of the kaon selfenergies as
compared to Eqs. (7) and (9). Moreover, the calculation at finite momentum is considered
for both the s- and p-wave K̄ selfenergy contributions. Note also that Eq. (13) includes
the φ free width into the K̄K channel, which will be subtracted to keep only the nuclear
effects in the φ selfenergy.

• We use the p-wave K̄ selfenergy given in [23] which, starting from the result in [20],
takes into account an improvement of the relativistic recoil corrections of the K̄NY vertices.
In addition, these vertices carry a static form factor of the form [Λ2/(Λ2 + ~q 2)]2, with
Λ = 1.05 GeV.

• The vertex correction diagrams considered in section 3.1 are also calculated here at
finite φ momentum, with the prescription of using the fully dressed kaon propagators in
the medium.

4 Results and discussion

In Fig. 4 we show the imaginary part of the φ selfenergy as a function of the φ momentum
for different nuclear densities and for the two models described in section 3.1 (dashed line)
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Figure 5: σA/(Aσ) as a function of the nuclear mass number for two different momentum
of the φ calculated with the two models described in the text.

and 3.2 (solid line). The contribution to ImΠ coming from the free φ decay into KK̄, non
density dependent, has been subtracted from the full ImΠ since the KK̄ coming from the
free decay would be detected and counted as a φ event, hence it does not contribute to
the loss of flux required in the argument of the exponential in Eq. (5). Despite the visible
differences in Fig. 4 between the two models at zero momentum, the trend of the plot
as the momentum increases is very similar. This initial discrepancy at zero momentum is
expectable due to the differences in the treatment of the s-wave contribution, the relativistic
recoil corrections and the fact that the model of section 3.2 goes beyond the first order in
density, implicitly considered in the model of section 3.1. The differences between the two
models in Fig. 4, however, are indicative of the intrinsic theoretical uncertainties.

In Fig. 5 we show the ratio σA/(Aσ), which represents the probability of one photo-
produced φ to go out the nucleus, calculated theoretically as a function of A and for two
different momenta. Again, a comparison between the two models is shown. We observe
that for p = 1400 MeV and heavy nuclei this ratio can be of the order of 0.65, indicating
a clear φ loss of flux which should be identifiable experimentally.

In Fig. 6 we show instead the results for σA/(Aσ) as a function of the φ momentum for
two nuclei and comparing the two theoretical models. In this figure we observe that the
amount of φ flux lost is larger for smaller φ momentum. This is logical to expect since the
probability of φ decay per unit length is −ImΠ/p, which is larger for small momenta because
of the factor 1/p. This occurs in spite of the fact that −ImΠ decreases with p, as can be
seen in Fig. 4, because this p dependence is weaker than that of 1/p. The set up of the
experiment at SPring8/Osaka [28] is such that it produces φ momenta around 1500 MeV,
using photons from 1.4 to 2.4 GeV, coming from φ production in the forward direction
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Figure 6: σA/(Aσ) as a function of the momentum of the φ for two different nuclei calcu-
lated with the two models described in the text.

in the CM frame. A possibility to extract further information is to use photons of lower
energy, around, 1.6 GeV, not far from threshold which leads to φ of around 100 MeV in the
CM frame and around 1000 MeV in the lab frame. As one can see in Fig. 6, in a nucleus
like 64Cu the depletion factor goes from 0.8 at p = 2000 MeV to 0.7 at p = 1000 MeV.
This latter factor would be 0.57 for A ≃ 240.

So far the only nuclear effects considered have been the ones related to the absorption of
the φ meson. At this point it is worth mentioning that other nuclear effects regarding the
production mechanism may lead to a further φ loss of flux or change in the φ distribution.
These other nuclear effects are mainly the Pauli blocking of the final nucleon and the Fermi
motion of the initial one. The first one may lead to a reduction of the φ flux in comparison
to the free case because a certain amount of events are forbidden due to the Pauli blocking
of the final nucleon. On the other hand the initial Fermi motion can distort the distribution
of the final φ mesons. In order to estimate the possible flux reduction due to these sources,
we have included in the integrand of Eq. (5) a factor G(Q, ρ) which considers a Fermi
average of these effects [32]:

G(Q, ρ) = 1 − Θ(2 − Q̃)

(
1 −

3

4
Q̃ +

1

16
Q̃ 3

)
(15)

where Q̃ = | ~Q|/kF with Q the momentum transfer of the nucleon and kF = (3
2
π2ρ(r))1/3

is the Fermi momentum of the nucleons.
In Fig. 7 we show σA/(Aσ), with the CV model, as a function of the φ momentum

for 64Cu. In solid line we show the result without considering the effect of Eq. (15), (i.e.,
the same as in Fig. 6). The other lines represent the results considering the Pauli effect
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Figure 7: Effect of the Pauli-blocking correction in the σA/(Aσ) as a function of the
momentum of the φ for 64Cu calculated with the CV model.

estimation, using Eq. (15). Note that the Q dependence of this G factor introduces another
kinematical variable in the Pout observable. We have chosen this extra variable to be the
zenithal angle of the φ meson in the Lab frame (θLab

φ ). The dashed and dot-dashed curves

represent the results considering the Pauli effect for θLab
φ = 0o and 5o respectively. We

can see that significant effects are obtained for large φ momenta, what is expectable since
large φ momenta imply small final nucleon momenta, which are strongly Pauli blocked.
The Pauli effect also decreases with the φ meson angle because the momentum transfer
strongly increases with this angle, therefore the largest effect is obtained for the φ forward
direction. Since the φ photoproduction is strongly forward peaked, one can expect Pout to
be actually somewhere between the dashed and dot-dashed lines in a real experiment.

In Fig. 8 we show the A dependence of Pout, with the CV model, without including the
Pauli correction (solid line) and including it for θLab

φ = 0o and 5o (dashed and dot-dashed
lines respectively), all for pφ = 2000 MeV where the effect is maximum. We observe that
the loss of flux due to the Pauli correction is nearly constant in a wide range of the mass
number, resulting in a reduction of around 0.1 in Pout for the forward direction. Nonetheless
this effect is relatively smaller for heavier nuclei compared to the φ absorption.

The cross sections calculated in this work are inclusive, summing over all possible final
nuclear excited states. The coherent cross section, where the final nucleus is the original
one, is not included in the calculation. Its evaluation requires a complete knowledge of
the spin and isospin dependence of the elementary γN → φN amplitude and a different
treatment than the one done here. The coherent cross section involves the square of the
product of the mass number and the nuclear form factor times the square of the spin-
isospin averaged amplitude. The coherent and incoherent cross sections can in principle be

10



0 20 40 60 80 100 120 140 160 180 200 220 240 260

A
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P ou
t ≡

 σ
A

/(
A

σ) no Pauli-blocking correction

with Pauli-blocking correction,  θφ
Lab

= 5
o

with Pauli-blocking correction,  θφ
Lab

= 0
o

Figure 8: Effect of the Pauli-blocking correction in the σA/(Aσ) as a function of the nuclear
mass number for pφ = 2000 MeV calculated with the CV model.

separated experimentally, as done in the case of pions around the delta energy region [33].
However, this might be difficult at higher energies where one usually has a poorer energy
resolution. An alternative to this separation, concerning the present work, is to look for φ
production at finite angles where the momentum transfer to the nucleus is large and the
coherent process can be neglected. The incoherent cross section sums the square of the spin-
flip and non spin-flip amplitudes, while in the coherent part only the spin independent part
contributes. Thus, the ratio |A F (Q)|2/(A G(Q)), where F (Q) is the nuclear form factor
and G(Q) the Pauli blocking factor of Eq. (15), is an upper bound for the ratio of coherent
to incoherent nuclear cross sections. We have studied this ratio as a function of the photon
energy, the φ meson angle and the mass number. Our results can be summarized as follows:
1) We find that below Eγ = 2000 MeV the ratio of coherent to incoherent cross section is
smaller than ten percent for all angles and nuclei beyond A ∼ 12. 2) The ratio increases
rapidly with the photon energy, since the momentum transfer decreases. For instance at
Eγ = 2400 MeV, for 12C and forward angles, the ratio can be of the order of 50 percent,
but for heavier nuclei the ratio is smaller. For instance, for 27Al this ratio is smaller than
10 percent. We also obtain that beyond 4 degrees the ratio is only a few percent and can be
safely neglected. In practical terms, from the experimental point of view, we can say that
in nuclei around 16O or heavier and photon energies smaller than 2000 MeV, the coherent
contribution is negligible. This discussion may serve to select an experimental setup in
which the coherent contribution can be neglected, hence facilitating the interpretation of
the data.
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5 Conclusions

We have shown that using present models for the φ selfenergy in a nuclear medium, con-
veniently extrapolated to finite φ momenta, it is possible to evaluate the survival rate of φ
produced in nuclear φ photoproduction, and how this survival rate is tied to the φ width
in the medium and the momentum of the φ. The survival rates for φ coming from photons
in the range of 1.6 to 2.4 GeV are of the order of 0.7, a significant deviation from unity,
which are measurable experimentally. We have shown the A dependence of the expected
σA/(Aσ) ratio as well as its dependence on the φ momentum. Comparison of the results
with experimental numbers of the incoming experiments would help determine the accu-
racy of the models used. These models could then be used to extrapolate results at other φ
momenta and one could then get a fair idea of how the φ properties are modified in nuclear
matter for φ at any finite momenta below those studied in the present work.
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