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Abstract

We study the Λ(1520)D03 in a chiral coupled channel approach. This resonance
appears as dynamically generated from the interaction of the decuplet of baryons
and the octet of mesons in s-wave, and its treatment is improved here with the
phenomenological inclusion of the K̄N and πΣ channels in d-wave. Since the most
important building block in the Λ(1520) is the πΣ∗(1385)P13 channel, we study the
K−p → πΣ∗(1385)(π0Λ) reaction in the region of the Λ(1520) and above, and com-
pare the results with recent experimental data. With the coupling of the Λ(1520) to
the πΣ∗ channel predicted by the theory we find a cross section in good agreement
with the data and there is as well agreement for the invariant mass distributions
which show a neat peak for the Σ∗(1385) in the (π0Λ) spectrum. Predictions are
made of a strong Λ(1520) resonant peak of the cross section, as a function of the
K− momentum, in the region below the measured data which, if confirmed experi-
mentally, would give a stronger support to the idea of the Λ(1520) as a dynamically
generated resonance.
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1 Introduction

The chiral coupled channel approach, implementing exact unitarity in coupled channels and
using input from chiral Lagrangians, has allowed to make predictions beyond the restricted
range of energies of chiral perturbation theory and is having a great impact in the study
of meson baryon interaction at low energies. At the same time it has shown that many
known resonances listed by the Particle Data Group (PDG) [1] qualify as dynamically
generated, or in simpler words, they are quasibound states of a meson and a baryon.
After early studies in this direction showing that the Λ(1405)S01 and the N∗(1535)S11

were dynamically generated resonances [2, 3, 4, 5, 6, 7, 8, 9], more systematic studies have
shown that there are two octets and one singlet of resonances from the interaction of the
octet of pseudoscalar mesons with the octet of stable baryons [10, 11].

Further work in this direction [12, 13] has shown that many of the 3/2− low lying
baryonic resonances appear as dynamically generated from the interaction of the decuplet
of baryons and the octet of mesons. Clear peaks in the amplitudes and poles in the
complex plane appear for states that can be associated to the ∆(1700)D33, Σ(1670)D13,
Σ(1940)D13 and Ξ(1820)D13, while the N∗(1520)D13 and Λ(1520)D03 are reproduced only
qualitatively hinting at the relevance of extra coupled channels. In particular the Λ(1520)
appears displaced in mass, around 1560 MeV in [12] and 1570 MeV in [13]. In the chiral
coupled channel approach of Refs. [12, 13] this resonance couples to the πΣ∗(1385) and
KΞ∗(1530)P13 channels, particularly to the former one. With the π+Σ∗−, π−Σ∗+, π0Σ∗0

masses 7 MeV above, 2 MeV above and 1 MeV below the nominal Λ(1520) mass and the
strong coupling of the resonance to πΣ∗, the state could qualify as a loosely bound πΣ∗

state. However, the lack of other relevant channels which couple to the quantum numbers
of the resonance makes the treatment of [12, 13] only semiquantitative. In particular, the
Λ(1520) appears in [12, 13] at higher energy than the nominal one and with a large width
of about 130 MeV, nearly ten times larger than the physical width. This large width is
a necessary consequence of the large coupling to the πΣ∗ channel and the fact that the
pole appears at energies above the πΣ∗ threshold. On the other hand, if we modify the
subtraction constants of the meson baryon loop function to bring the pole below the πΣ∗

threshold, then the pole appears without imaginary part. Since the width of the Λ(1520)
resonance comes basically from the decay into the K̄N and πΣ(1193), the introduction of
these channels is mandatory to reproduce the shape of the Λ(1520) resonance.

In the present work we include the K̄N and πΣ channels into the set of coupled channels
which build up the Λ(1520). This is done phenomenologically with no links with chiral
Lagrangians. The novelty with respect to the other channels already accounted for [12, 13],
which couple in s-wave, is that the new channels couple in d-waves. Fitting two parameters
to the partial decay widths of the Λ(1520) into K̄N and πΣ, a good shape for the Λ(1520)
dominated amplitudes is obtained at the right position and with the proper experimental
width. The coupling of the Λ(1520) to the πΣ∗ channel is a prediction of the theory and
we use this to study the reaction K−p → πΣ(1385)(π0Λ) which is closely related to the
strength of this coupling. We then compare with recent experimental results measured
above the Λ(1520) energy. The agreement with the data is good and the cross section is
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sizeable thanks to the large coupling of the Λ(1520) to the πΣ∗ channel. Other standard
mechanisms for the K−p → π0π0Λ reaction without the Λ(1520) give too small a cross
section compared to experiment in a wide range of energies around the Λ(1520) peak.

We also compare the invariant mass distributions for π0Λ, where a distinct peak asso-
ciated to the Σ(1385) resonance is seen, in good agreement with experiment.

We also make predictions for the cross section for K−p energies around the Λ(1520),
where we find a large peak with the Λ(1520) shape, not measured so far, and which, if
confirmed experimentally, would give a strong support to the idea of the Λ(1520) as a
dynamically generated resonance.

Inclusion of the new channels K̄N and πΣ into the coupled channel approach allows
one to calculate the cross sections of other reactions where the Λ(1520) appears, much as
has been the case of the Λ(1405) [14], where a large variety of reactions could be studied
within the chiral unitary approach taking into account that the Λ(1405) is dynamically
generated from the K̄N and coupled channels in s-wave.

2 Decuplet octet interaction and the Λ(1520)

Following [13], we briefly recall how the Λ(1520) is generated dynamically in the s-wave
interaction of the decuplet of baryons with the octet of pseudoscalar mesons. We consider
the lowest order term of the chiral Lagrangian given by [15]

L = −iT̄ µD/Tµ (1)

where T µ
abc is the decuplet of Rarita Schwinger fields and Dν the covariant derivative given

by
DνT µ

abc = ∂νT µ
abc + (Γν)d

aT
µ
dbc + (Γν)d

bT
µ
adc + (Γν)d

cT
µ
abd (2)

with µ the Lorentz index and a, b, c the SU(3) indices. The vector current Γν is given by

Γν =
1

2
(ξ∂νξ† + ξ†∂νξ) (3)

with
ξ2 = U = ei

√
2Φ/f (4)

where Φ is the 3×3 matrix of fields for the pseudoscalar mesons [16] and f = 93 MeV.
Consideration of only the s-wave part of the baryon meson interaction and the use of non-
relativistic approximations as described in detail in [13] allows for substantial technical
simplifications, and writing Tµ ≡ Tuµ, with uµ the Rarita Schwinger spinor, the Lagrangian
can be written as the flavor trace

L = 3i T r
[

T̄ · T Γ0T
]

(5)

where
(

T̄ · T
)a

d
=

∑

b,c

T̄ abcTdbc (6)
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and Γ0T is the transposed matrix of Γ0 with Γν given, up to two meson fields, by

Γν =
1

4f 2
(Φ∂νΦ − ∂νΦΦ) . (7)

From the Lagrangian of Eq. (5) and with the ordinary correspondence of the T abc compo-
nents to the decuplet fields used in [13] we obtain the s-wave transition amplitudes for a
meson of incoming and outgoing momentum k and k ′ respectively as

Vij = − 1

4f 2
Cij(k

0 + k
′0). (8)

For the quantum numbers S = −1 and I = 0 the relevant channels are πΣ∗ and KΞ∗. The
corresponding coefficients Cij are shown in table 1 where we have used the isospin states1

|πΣ∗; I = 0〉 =
1√
3
|π−Σ∗+〉 − 1√

3
|π0Σ∗0〉 − 1√

3
|π+Σ∗−〉

|KΞ∗; I = 0〉 = − 1√
2
|K0Ξ∗0〉 +

1√
2
|K+Ξ∗−〉 . (9)

πΣ∗ KΞ∗

πΣ∗ 4 −
√

6

KΞ∗ −
√

6 3

Table 1: Cij coefficients for S = −1, I = 0.

The matrix V is then used as the kernel of the Bethe-Salpeter equation to obtain the
unitary transition matrix [4]. This results in the matrix equation

T = (1 − V G)−1V (10)

where G is a diagonal matrix representing the meson-baryon loop function

Gl = i 2Ml

∫

d4q

(2π)4

1

(P − q)2 − M2
l + iǫ

1

q2 − m2
l + iǫ

=
2Ml

16π2

{

al(µ) + ln
M2

l

µ2
+

m2
l − M2

l + s

2s
ln

m2
l

M2
l

− 2iπ
ql√
s

+
ql√
s

[

ln(s − (M2
l − m2

l ) + 2ql

√
s) + ln(s + (M2

l − m2
l ) + 2ql

√
s)

− ln(s − (M2
l − m2

l ) − 2ql

√
s) − ln(s + (M2

l − m2
l ) − 2ql

√
s)

]

}

,(11)

1we use |π+〉 = −|1 1〉
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in which Ml and ml are the masses of the baryons and mesons respectively, s = P 2,
with P the total four momentum of the meson baryon system and ql denotes the three-
momentum of the meson or baryon in the center of mass frame. In the second equality
we have removed an infinity, that we obtain for instance evaluating the integral with
dimensional regularization. In getting the finite expression at a regularization scale µ, we
are implicitly assuming that there is a higher order counterterm that has canceled the
infinity and provided a remnant finite part which is the subtraction constant al(µ). In as
much as the al(µ) will be a fit parameter in the theory there is no need to use explicitly the
counterterm Lagrangians. Alternatively one can think of a cut off regularization without
using higher order terms. A cut off in the three momentum of the order of 1 GeV is what
we would call natural size in this case, and then it was proved in [6] that this regularization
procedure was equivalent to that of Eq. (11) using µ ≈ 700 MeV and al(µ) ≈ −2. One
then looks for poles of the transition matrix T in the complex

√
s plane. The complex

poles, zR, appear in unphysical Riemann sheets. A good relationship between the real
and twice the imaginary part of the complex pole positions with the mass and width of
the associated Breit Wigner shapes in the real axis is obtained in what we call the second
Riemann sheet. This is defined by taking Gl from Eq. (11) (which is the expression for G
for the first Riemann sheet) and substituting

G2nd
l = Gl + 2i

ql√
s

Ml

4π
, (12)

where the variables on the right hand side of the above equation are evaluated in the first
(physical) Riemann sheet, for the channels which are above threshold at an energy equal
to Re(z). This prescription is equivalent to changing the sign of ql in Eq. (11) for those
channels.
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Figure 1: (Color online) Left: The Λ(1520) pole as seen in the πΣ∗ → πΣ∗ amplitude in
the complex

√
s plane. Right:|TπΣ∗→πΣ∗|2 in (MeV−2).
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Using the natural size values [6] a = −2 and µ = 700 MeV, we find a pole at zR =
1550− i67 as seen in fig. 1, which we can well associate with the 4-star resonance Λ(1520).
The residue at this pole indicates a strong coupling to the πΣ∗ channel [13]. However, the
experimental mass and width are lower and there are also large branching ratios of the
Λ(1520) to the K̄N and πΣ channels. In the following section we will phenomenologically
add these channels to our coupled channel scheme.

3 Introduction of the K̄N and πΣ channels

We will generate the resonance Λ(1520) in coupled channels involving the πΣ∗, KΞ∗, K̄N
and πΣ. However, we shall only couple the K̄N and πΣ channels to the dominant πΣ∗

channel as described below. The lowest partial wave in which K̄N and πΣ can couple to
spin parity 3/2− is L = 2 and thus we consider these states in d-wave. From the point
of view of strangeness and isospin other channels like ηΛ and KΞ would be allowed (and
they are considered in the s-wave study of K̄N and coupled channels in [4, 6, 8, 9, 10, 11].
However, their thresholds are at 1663 MeV and 1880 MeV respectively, such that their
influence in the region around 1520 MeV should be small. In any case, since the Λ(1520)
does not decay in these channels their influence could only be in the mass of the resonance,
not in its width, but the mass will be obtained by fine tunning the subtraction constant of
the dominant πΣ∗ channel.

K

Σ∗

π

d−wave s−wave
k

N (1/2,m) (3/2,M)

Figure 2: The K̄N → πΣ∗ vertex

Consider the transition K̄N (d-wave) to πΣ∗ (s-wave) as shown in fig. 2. We start with
an amplitude of the form

−itK̄N→πΣ∗ = −iβK̄N |~k|2
[

T (2)† ⊗ Y2(k̂)
]

0 0
(13)

where T (2) † is a (rank 2) spin transition operator defined by

〈3/2 M | T (2)†
µ |1/2 m〉 = C(1/2 2 3/2; m µ M) 〈3/2|| T (2)† ||1/2〉 ,

Y2(k̂) is the spherical harmonic coupled to T (2)† to produce a scalar, and ~k is the momentum
of the K̄. The 3rd component of spin of the initial nucleon and the final Σ∗ are denoted
by m and M respectively. Choosing appropriately the reduced matrix element we obtain

−itK̄N→πΣ∗ = −iβK̄N |~k|2 C(1/2 2 3/2; m, M − m)Y2,m−M(k̂)(−1)M−m
√

4π. (14)
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K

Σ∗ Σ∗

ππ

N(3/2,M) (1/2,m) (3/2,M´)

Figure 3: πΣ∗ → πΣ∗ through K̄N loop arising in the Bethe-Salpeter series

In the same way we write the amplitude for πΣ (d-wave) to πΣ∗ (s-wave) as

−itπΣ→πΣ∗ = −iβπΣ |~k|2 C(1/2 2 3/2; m, M − m)Y2,m−M(k̂)(−1)M−m
√

4π. (15)

Now, let us consider fig. 3. The loop function G involving the K̄ and N is given by

G = i

∫

d4q

(2π)4
GN DK̄ 4π

βK̄N |~q|2
∑

m

C(1/2 2 3/2; m, M ′ − m)Y2,m−M ′(q̂)(−1)M ′−m

βK̄N |~q|2 C(1/2 2 3/2; m, M − m)Y ∗
2,m−M(q̂)(−1)M−m (16)

where GN and DK̄ are the propagators for the nucleon and the K̄ respectively. Eq. (16) can
be further simplified by performing the angular integration of the two spherical harmonics,
which gives δMM ′ and then using the orthogonality of the Clebsch Gordan (CG) coefficients.
We obtain

G = i δMM ′2MN

∫

dq0

2π

∫ |~q|2 d|~q|
(2π)3

4π (βK̄N |~q|2)2 1

q2 − m2
K + iǫ

1

(P − q)2 − M2
N + iǫ

= i δMM ′2MN

∫

d4q

(2π)4
(βK̄N |~q|2)2 1

q2 − m2
K + iǫ

1

(P − q)2 − M2
N + iǫ

. (17)

A further simplification can be done in Eq. (17) by factorizing the vertex, βK̄N |~q|2, on shell.
This is done in the Bethe Salpeter approach of Ref. [4] and justified there for s-waves,
but one finds a more general justification in the N/D method as used in [6, 18] which we
sketch below. Unitarity states that, above threshold,

[

Im t−1(s)
]

αβ
= −qαMα

4π
√

s
δαβ (18)

Since the right hand side is −Im G one can perform a subtracted dispersion relation and
one would have

t−1(s) = G(s) + V −1(s) (19)

where G(s) contains an arbitrary subtraction constant (like a) and V −1(s) accounts for
contact terms which remain at tree level when we remove the loops by taking G = 0.
Eq. (19) can be cast as

t(s) = [1 − V (s)G(s)]−1 V (s) ⇒ t(s) = V (s) + V (s)G(s)t(s) (20)

7



where the last equation is the Bethe Salpeter equation except that V (s)t(s) factorize outside
the loop integral of the V GT term. The caveat in the derivation is that we have only
included the right hand cut in the dispersion relation. In as much as the contribution of
the left hand cut is negligible, which is the case in the meson baryon interaction since the
energies of this cut are very far from those in the real channel [6], the on shell factorization
is justified. In fact the caveat is less restrictive because it is sufficient that the energy
dependence of the left cut contribution is negligible in the region of interest to justify the
on shell prescription, and the contribution of the left hand cut can be absorbed into the
subtraction constants.

Factorizing the vertex, i.e. |~q|2, on shell results in the simplification that we can use
the transition matrix elements

VK̄N→πΣ∗ = βK̄N |~qon|2
VπΣ→πΣ∗ = βπΣ|~q ′

on|2 (21)

where ~qon and ~q ′
on are the (on-shell) CM momenta of the K̄ and π respectively for a given

value of s. After removing the factor (βK̄N |~q|2)2 in Eq. (17), the rest of the formula is the
ordinary G function for the s-wave meson baryon interaction, Eq. (11). This allows us to
use the same formalism as in ordinary s-wave scattering assuming an effective transition
potential βK̄N | ~qon|2 for πΣ∗ → K̄N .

With the matrix V now given by

V =

∣

∣

∣

∣

∣

∣

∣

∣

VπΣ∗→πΣ∗ VπΣ∗→KΞ∗ βK̄N |~qon|2 βπΣ|~q ′
on|2

VKΞ∗→πΣ∗ VKΞ∗→KΞ∗ 0 0
βK̄N |~qon|2 0 0 0
βπΣ|~q ′

on|2 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

, (22)

we solve Eq. (10) to obtain the amplitudes T . The actual transition amplitudes are related
to T through the following relations

tπΣ∗→πΣ∗ = TπΣ∗→πΣ∗

tK̄N→πΣ∗ = TK̄N→πΣ∗ C(1/2 2 3/2; m, M − m)Y2,m−M(k̂)(−1)M−m
√

4π

tπΣ→πΣ∗ = TπΣ→πΣ∗ C(1/2 2 3/2; m, M − m)Y2,m−M(k̂)(−1)M−m
√

4π

tK̄N→K̄N = TK̄N→K̄N

∑

M

C(1/2 2 3/2; m, M − m)Y2,m−M(k̂)

C(1/2 2 3/2; m ′, M − m ′)Y ∗
2,m ′−M(k̂ ′)(−1)m ′−m 4π . (23)

We then look for poles in the 2nd Riemann sheet of the complex plane. Assuming that
the pole corresponding to the Λ(1520) appears at z = zR where z stands for the (complex)

8



CM energy, the amplitudes close to the pole can be written as

TπΣ∗→πΣ∗ =
g2

πΣ∗

z − zR

TK̄N→πΣ∗ =
gπΣ∗ gK̄N

z − zR

TπΣ→πΣ∗ =
gπΣ∗ gπΣ

z − zR

(24)

where the couplings gπΣ∗ , gK̄N and gπΣ can be obtained from the residues at the pole.
Writing the amplitudes for the Λ(1520) decay to K̄N and πΣ respectively as,

− itΛ(1520)→K̄N = −igK̄N C(1/2 2 3/2; m, M − m)Y ∗
2,m−M(k̂)(−1)M−m

√
4π

−itΛ(1520)→πΣ = −igπΣ C(1/2 2 3/2; m, M − m)Y ∗
2,m−M(k̂)(−1)M−m

√
4π (25)

the partial decay widths of the Λ(1520) are obtained as,

ΓK̄N =
g2

K̄N

2π

MN

MΛ
kK̄

ΓπΣ =
g2

πΣ

2π

MΣ

MΛ

kπ (26)

where kK̄ = |~qon| = 242 MeV and kπ = |~q ′
on| = 263 MeV. The partial decay width to the

πΣ∗ channel is zero because the Λ(1520) pole is below the threshold for this channel. Note
that gK̄N and gπΣ automatically incorporate the βK̄N |~qon|2 and βπΣ|~q ′

on|2 of the transition
potential since at least one πΣ∗ → K̄N transition is needed in the Bethe Salpeter series.
Hence the term |~qon|4 kK̄ = k5

K̄
guarantees the d-wave character of the decay.

We vary βK̄N and βπΣ to reproduce the correct partial decay widths of the Λ(1520)
into K̄N(45%) and πΣ(42%) out of a total width of 15.6 MeV and simultaneously the
subtraction constant a in order to have the pole at the experimental Λ(1520) mass. This
exercise results in the values |gπΣ∗| = 1.57, |gK̄N | = 0.54 and |gπΣ| = 0.45 for the couplings
of the various channels to Λ(1520) using βK̄N = 2.4 × 10−7, βπΣ = 1.7 × 10−7 in units of
MeV−3 and a = −2.5, fixing µ = 700 MeV. With this we obtain the Λ(1520) pole at the
position zR = 1519.7 − i7.9 as seen in fig. 4.

The isoscalar part of the amplitudes for specific charge channels can be obtained using2

|πΣ; I = 0〉 = − 1√
3
|π−Σ+〉 − 1√

3
|π0Σ0〉 − 1√

3
|π+Σ−〉

|K̄N ; I = 0〉 =
1√
2
|K̄0n〉 +

1√
2
|K−p〉 (27)

and multiplying the I = 0 amplitudes obtained above by the relevant CG coefficients. It
is to be noted that βK̄N and βπΣ have been fitted to the partial decay widths. Hence we
are not making any prediction for these couplings, or equivalently gK̄N and gπΣ. However,
the coupling gπΣ∗ is a prediction of the theory, up to small changes in the fine tuning of
the subtraction constant.

2we use |K−〉 = −|1
2

1

2
〉 and |Σ+〉 = −|1 1〉
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Figure 4: (Color online) Left: The Λ(1520) pole as seen in the K̄N → πΣ∗ amplitude in
the complex

√
s plane. Right:|TK̄N→πΣ∗|2 in (MeV−2).

4 The reaction K−p → π0Σ∗0(1385) → π0π0Λ(1116)

Here we evaluate the cross-section for the reaction K−p → π0Σ∗0 generated by the coupled
channel scheme and the subsequent decay of the Σ∗0(1385) to π0Λ(1116) as shown in fig. 5.

To obtain the cross-section for K−p → π0Σ∗0 in the K−p CM frame we use the formula

dσ

dΩ
=

1

16π2

MNMΣ∗

s

|~p1|
k

∑

i

∑

f

|tK−p→π0Σ∗0|2 (28)

where |~p1| and ~k = (0, 0, k) denote the momenta of the outgoing pion and the incoming

kaon respectively. Using Eq. (23) and Y2,m−M(k̂) =
√

5
4π

δmM and taking into account the

CG coefficients we find

tK−p→π0Σ∗0 =

√

1

3
TK̄N→πΣ∗ δmM

{

−1 m = +1/2
+1 m = −1/2

}

(29)

where m is the spin of the proton and M that of the Σ∗0. The cross section is then given
by

σ =
1

12π

MNMΣ∗

s

|~p1|
k

|TK̄N→πΣ∗|2 . (30)

To obtain the cross section for K−p → π0Σ∗0 → π0π0Λ we now evaluate the Feynman
diagram of fig. 5 where the Σ∗0 appears as a particle propagator.

The vertex Σ∗0 → π0Λ is given by [19]

−itπ0Λ→Σ∗0 = −fΣ∗πΛ

mπ

~S† · ~p ′
2 (31)
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Σ∗ op

(k)

(1/2,m) (3/2,M) Λ (1/2,m´)

Figure 5: Scheme for K−p → π0Σ∗0(1385) → π0π0Λ(1116). The blob indicates the unita-
rized vertex.

where S† is the 1/2 to 3/2 spin transition operator and the coupling fΣ∗πΛ is fitted to the
partial decay width of 32 MeV for Σ∗0 → π0Λ. Using the SU(3) arguments of [19] one
obtains fΣ∗

πΛ

mπ

= 6
5

D+F
2f

. The amplitude for the process shown in fig. 5 in the K−p CM is
then obtained as

−it(~p1, ~p2) =
−iTK̄N→πΣ∗

3
√

2

fΣ∗πΛ/mπ

MR − MΣ∗ + iΓΣ∗(MR)/2

{

−2p ′
2z m ′ = +1/2

p ′
2x + ip ′

2y m ′ = −1/2

}

(32)

where m ′ is the spin of the outgoing Λ. Here, and in the following we will take the spin
projection m = +1/2 for the proton. The p-wave decay width of the propagating Σ∗ is
given by

ΓΣ∗(MR) =
1

6π

f 2
Σ∗πΛ

m2
π

MΛ

MR
|~p ′

2|3 (33)

from where we obtain fΣ∗πΛ = 1.3 for MR = MΣ∗ , which only differs from the SU(3) value
given above by about 10%. The momentum ~p ′

2 of the final pion in the rest system of the
Σ∗ is obtained as

~p ′
2 =

[(

ER

MR

− 1

)

(~p2 · ~p1)

|~p1|2
+

p0
2

MR

]

~p1 + ~p2 (34)

where M2
R = (p2 + pΛ)2 and E2

R = ~p2
1 + M2

R.
In the next step, the total squared amplitude for K−p → π0π0Λ is symmetrized in the

momenta ~p1 and ~p2 to account for the two π0s in the final state so that,

|Amp|2 =
∑

m ′

|t(~p1, ~p2) + t(~p2, ~p1)|2 . (35)

The cross section is then obtained by integrating the above amplitude over the three-
particle phase space (with a factor 1/2 for the identity of the two pions). Details are
discussed in the appendix. The results are shown in fig. 6. The peak in the cross section
for K−p → π0π0Λ (solid line) corresponds to the Λ(1520). We observe a fair agreement
with the experimental data [20] in the region of K− momenta up to about 600 MeV from
where other mechanisms for π0π0Λ not tied to π0Σ∗0 production become more relevant as
we shall see. The cross section for K−p → π0Σ∗0 multiplied by the Σ∗ → Λπ branching
ratio (=0.88) is also shown for comparison (dashed line). Recall that the threshold for
this reaction lies just above the peak of the Λ(1520). It is interesting to see that there is
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Figure 6: Cross-section as a function of the K− momentum

a good agreement between the two methods of calculation when we are above the π0Σ∗0

threshold. However, evaluating the K−p → π0Σ∗0 cross section, assuming the Σ∗0 as
a stable particle gives no cross section below the π0Σ∗0 threshold and then the explicit
evaluation of K−p → π0π0Λ using the Σ∗0 propagator becomes mandatory and provides
strength below this threshold. This feature is rather interesting because one can see the
shape of the Λ(1520) in the cross section as a function of the K− momentum. The strength
of this peak is a genuine prediction of the theory, as well as the strength predicted around
500–600 MeV/c K− momentum.

It would be instructive to get data around the energy of the peak, since it would be
a clean proof of the link between the Λ(1520) and the πΣ∗ channel which is the basic
prediction of the chiral unitary approach.

p
1

( )πo

p
2

( )
K
−

πo

(1/2,m)p Λ (1/2,m´)p

(k)
πo p

2
( )

Σ∗ο

p
1

( )πo

K
−

Λ (1/2,m´)p(1/2,m) p

(k)

(a) (b)

Figure 7: A conventional scheme for K−p → π0π0Λ

We will now consider other mechanisms, figs. 7 and 8 which are not tied to the Λ(1520)
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resonance. In fig. 7 we separate the K−p → π0Λ interaction in s-wave (a) and p-wave
(b), this latter one dominated by the Σ∗ pole [21]. Since there is no s-wave resonance in
π0Λ around the energies we investigate, it is enough to take for K−p → π0Λ the lowest
order chiral amplitude in s-wave in fig. 7(a), which we get from [4], and we obtain for the
amplitude of this diagram,

−it(s−wave) =

√
3

2

1

4f 2

D + F

2f

k0 ′ + p0 ′
2

EN (~k) − p0
1 − EN(~k + ~p1)

{

p1z m ′ = +1/2
p1x + ip1y m ′ = −1/2

}

(36)

where k0 ′ and p0 ′
2 are the energies of ~k and ~p2 written in the π0Λ CM frame.

K
− πo p

2
( )

πo p
1

( )

K
−

πo p
2

( )

πo p
1

( )

(k)

(1/2,m´)Λp(1/2,m) (1/2,m)pΛ (1/2,m´)

(a) (b)

K

(k)

Figure 8: A conventional scheme for K−p → π0π0Λ

The amplitude corresponding to the diagram of fig. 7(b), is given by

− it(p−wave) = −D + F

2f

fΣ∗πΛ

mπ

fK−pΣ∗0

mπ

~S† · ~p ′
2

~S · ~k ′ ~σ · ~p1

× 1

MR − MΣ∗ + iΓΣ∗(MR)/2

1

EN (~k) − p0
1 − EN(~k + ~p1)

(37)

where fK−pΣ∗0 is given in [19] by

fK−pΣ∗0

mπ
= −2

√
3

5

D + F

2f
. (38)

and

~S† · ~p ′
2

~S · ~k ′ ~σ · ~p1 =
{

− i
3
(~p ′

2 × ~k ′) · ~p1 + 2
3
(~p ′

2 · ~k ′) p1z + 1
3
(~p1 · ~p ′

2) k ′
z − 1

3
(~p1 · ~k ′) p ′

2z m ′ = +1/2
2
3
(~p ′

2 · ~k ′) (p1x + ip1y) + 1
3
(~p1 · ~p ′

2) (k ′
x + ik ′

y) − 1
3
(~p1 · ~k ′) (p ′

2x + ip ′
2y) m ′ = −1/2

}

where the boosted momenta ~p ′
2 and ~k ′ are obtained as in Eq. (34). Next we study the

amplitude corresponding to fig. 8. As shown in [22] the contact term of fig. 8(b) just cancels
the part of fig. 8(a) which comes from the off shell part of the meson meson amplitude.
Hence, using the diagram of fig. 8(a) with the meson meson amplitude calculated on shell
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accounts for the sum of the two diagrams. We take the K−K+ → π0π0 amplitude from [23]
and the K−pΛ vertex from [4] and we obtain

− it(K−pole) = − 1

4f 2

(

− 2√
3

D + F

2f
+

1√
3

D − F

2f

)

(p1 + p2)
2

(k − p1 − p2)2 − m2
K

×
{

(k − p1z − p2z) m ′ = +1/2
−(p1x + p2x) − i(p1y + p2y) m ′ = −1/2

}

. (39)
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Figure 9: Cross-section as a function of the K− momentum. The dot-dashed and dotted
lines are the contributions of the diagrams of figs. 7(a) and 7(b) respectively. The dashed
line shows the cross section with fig. 5 only and the solid line for a coherent sum of all
these diagrams.

We add all these amplitudes symmetrized to the former ones and recalculate the cross
section. Note that the amplitude t(K−pole) is already symmetric with respect to the mo-
menta p1 and p2 and does not have to be symmetrized again. The results are shown in
fig. 9. We find that by themselves the new mechanisms would give a cross section more
than one order of magnitude smaller than the experiment, up to 600 MeV/c, indicating
that the dominant mechanism by far is the one that we have investigated with the πΣ∗

tied to the Λ(1520) resonance. Added coherently to the dominant mechanism, these new
processes produce a negligible effect around the Λ(1520) peak and they become more vis-
ible far away from the resonance where they increase the cross section and help to get a
good agreement with the data.

Details on the new mechanisms are as follows:
a) The kaon pole term of fig. 8(a) produces a negligible effect in the cross section not

visible in fig. 9. The K propagator reduces the strength of the diagram and the factor
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(p1 + p2)
2 from the K+K− → π0π0 amplitude also contributes to the small size of the

term.
b) The term from the diagram of fig. 7(a) involving the s-wave K−p → π0Λ amplitude

contributes about one fifth of the total cross section at the highest energy of fig. 9 and
adds practically incoherently to the K−p → π0Σ∗0 mechanism.

c) The term from the diagram of fig. 7(b) involving the p-wave K−p → π0Λ amplitude
contributes about one half of the total cross section at the highest energy of fig. 9 and also
adds almost incoherently to the other mechanisms.

We also calculate the differential cross section dσ/dM2 as a function of the invariant
mass of a pair of π0Λ for two values of K− momentum which we plot in fig. 10. We find a
good agreement with the experimental curves in [20]. In the figure we can see the Σ∗(1385)
peak clearly. We also notice, as in [20], that the effect of symmetrization of the amplitudes
with respect to the two final pions is visible in the spectra. Indeed, we see that for pK=659
MeV/c some strength piles up on the left hand side of the resonance while for pK=750
MeV/c this strength is moved to higher energies and produces a shoulder on the right hand
side. These features are also clear in the experimental data.
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Figure 10: dσ/dM2 as a function of the invariant mass of π0Λ for two values of the
K− momentum in CM; Left: 659 MeV and Right:750 MeV. Solid lines represent our
results. The dotted histograms are the experimental results from [20] normalized to the
total experimental cross section. The dashed lines indicate the phase space normalized to
the theoretical cross section.

5 Conclusions

We have extended the chiral unitary approach for the interaction of the decuplet of baryons
with the octet of mesons, for the case of meson baryon scattering in the region of the
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Λ(1520) resonance, by including the K̄N and πΣ channels which couple in d-wave to
the main s-wave channels πΣ∗(1385) and KΞ∗(1533). The introduction of these channels
allowed us to obtain a more realistic description of the Λ(1520) resonance and make predic-
tions for reactions which evidence the nature of this resonance as a quasibound πΣ∗(1385)
state. We found a good example in the K−p → πΣ∗(1385)(π0Λ) reaction which has been
measured recently. We found that the strength of the cross section was well reproduced in
terms of the large coupling of the Λ(1520) to πΣ∗(1385), which is a prediction of the chiral
unitary approach. Both the total cross sections as well as the invariant mass distributions
of π0Λ were well reproduced. In addition the theory makes predictions for a large peak of
the total cross section of K−p → π0π0Λ for K−p energies around the Λ(1520), and hence
below the πΣ∗(1385) threshold. The prediction for this cross section is related to the large
coupling of the Λ(1520) to πΣ∗(1385) in spite of the fact that the πΣ∗(1385) is kinemat-
ically forbidden. This region falls just below the data measured in the reaction that we
analyze. It is then clear that a measurement of the reactions in this region becomes most
advisable, and confirmation of the quantitative predictions made here would support the
idea of the Λ(1520) as a dynamically generated resonance, and by extension for the other
resonances equally generated from the interaction of the decuplet of baryons and octet of
mesons.
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Appendix

Here we describe in some detail the procedure followed to perform the integration over the
three body phase space which was encountered in the evaluation of the cross section for
the reaction K−p → π0π0Λ due to the various Feynman diagrams described in this work.

For the differential cross section we follow the definition

dσ = (2π)4δ(4)(p1 + p2 + pΛ − k − p)
2MN 2MΛ

vrel 2ωK 2EN

S |Amp|2

× d3~p1

(2π)3 2ω1

d3~p2

(2π)3 2ω2

d3~pΛ

(2π)3 2EΛ

(A.1)

with vrel = [(k · p)2 − m2
KM2

N ]
1/2

/(ωKEN ) and S(= 1/2), the symmetry factor for the two
identical π0. In the K−p CM system, the cross section is obtained as

σ =
MN MΛ

λ1/2(s, m2
K , M2

N )

∫

d3~p1

(2π)3 2ω1

∫

d3~p2

(2π)3 2ω2

|Amp|2
2EΛ

(2π) δ(
√

s−ω1−ω2 −EΛ) (A.2)

with ~pΛ = −(~p1 + ~p2) as a result of the integration over ~pΛ and using 2vrelωKEN =
λ1/2(s, m2

K , M2
N). In order to simplify the angular integration we now make the following

coordinate transformation. Assuming φ1 = 0 without loss of generality, let us denote by
θ12 the angle between the vectors ~p1 and ~p2. We now generate the vector ~p2 in a frame in
which the polar angle is θ12 so that its components with respect to this rotated frame are
given by

~̃p2 =







p2 sin θ12 cos φ̃2

p2 sin θ12 sin φ̃2

p2 cos θ12

(A.3)

and the differential is given by d3~̃p2 = −|~̃p2|2 d|~̃p2| d(cos θ12) dφ̃2. The δ function can now
be used to perform the integral over cos θ12 and we have

σ =
MN MΛ

λ1/2(s, m2
K , M2

N )

1

8

1

(2π)4

∫ 1

−1

d cos θ1

∫ ωmax

mπ

dω1

∫ 2π

0

dφ̃2

∫ ωmax

mπ

dω2 |Amp|2 Θ(1−|A|2)
(A.4)

where

A = cos θ12 =
[(
√

s − ω1 − ω2)
2 − |~p1|2 − |~p2|2 − M2

Λ]

2 |~p1||~p2|
and

ωmax =
s + m2

π − (mπ + MΛ)2

2
√

s

is the maximum energy of the pion which is reached in the case when the other pion and
the Λ move together. The original vector ~p2 is recovered through

~p2 = Ry(θ1) ~̃p2 (A.5)
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where

Ry(θ1) =





cos θ1 0 sin θ1

0 1 0
− sin θ1 0 cos θ1





is the usual rotation matrix for a rotation by an angle θ1 around the y-axis. Note that
|~p2| = |~̃p2|.
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