
ar
X

iv
:n

uc
l-

th
/0

40
70

07
v2

  1
2 

Ja
n 

20
05

Θ+ Hypernuclei

D. Cabrera, Q.B. Li, V.K. Magas, E. Oset and M.J. Vicente Vacas

Departamento de F́ısica Teórica and IFIC, Centro Mixto
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Abstract

We present results for the selfenergy of the Θ+ pentaquark in nuclei associated
with two sources: the KN decay of the Θ+ and the two meson baryon decay channels
of the Θ+ partners in an antidecuplet of baryons. The first source is shown to produce
a small potential, unable to bind the Θ+ in nuclei, while the second source gives rise
to a large attractive potential. At the same time we show that the width of the Θ+

in nuclei is small, such that, in light and medium nuclei, many bound Θ+ states
would appear with a separation between levels appreciably larger than the width of
the states, thus creating an ideal scenario for pentaquark spectroscopy in nuclei.

1 Introduction

The physics of hypernuclei, Λ, Σ, Ξ is one of the active branches of nuclear physics with
steady progress at the experimental and theoretical levels [1–7]. It has brought information
on the ΛN interaction, the ΛN → NN weak transition, interesting examples of drastic
Pauli blocking effects in the Λ → πN decay in nuclei, one of the cleanest examples of the
accuracy of the mean field approximation in the case of Λ hypernuclei, a striking example of
medium effects with increases of a factor fifty or more in the mesonic Λ decay width due to
the interaction of the pion with the nucleus and other topics. So far only hypernuclei with
strangeness −1 or −2 have been formed. The discovery of an exotic baryon with positive
strangeness, Θ+ [8] (see also Ref. [9] for a list of experimental and theoretical related
works), opens new possibilities of forming exotic Θ+ hypernuclei which, like in the case of
negative strangeness hypernuclei, can provide information unreachable or complementary
to that obtained in elementary reactions.

Suggestions that Θ+ could be bound in nuclei have already been made. In Ref. [10]
a schematic model for quark-pair interaction with nucleons was used to describe the Θ+,
which suggested that Θ+ hypernuclei, stable against strong decay, may exist. In Ref. [11]
the Θ+ selfenergy in the nuclei is calculated, based on the Θ+ → KN decay mode, Pauli
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blocking and a mass modification of the nucleon in the nuclear matter. The resulting
selfenergy is too weak to bind the Θ+ in nuclei.

In the present work we redo the calculations of Ref. [11] modifying the assumption of
a strong shift of the nucleon mass and renormalizing the kaon cloud in the nucleus. The
results are qualitatively similar to those of Ref. [11] and a small potential is obtained from
this source. As a novelty, we also evaluate the imaginary part of the potential and show
that the Θ+ width becomes smaller for possible nuclear bound states and would be narrow
enough to allow distinct peaks to be seen experimentally, provided some large attraction
is obtained from other source. This is the other issue we deal with in this work. Indeed,
we show that the in-medium renormalization of the pion in the two meson cloud of the Θ+

leads to a sizable attraction, enough to produce a large number of bound and narrow Θ+

states in nuclei.
The coupling of the Θ+ to two mesons and a nucleon is studied in Ref. [12] where,

with the assumption that the N∗(1710) resonance has a large component in the same
antidecuplet as the Θ+, two terms of a SU(3) symmetric Lagrangian are constructed to
account for the N∗ → N (ππ, p−wave, I = 1) and N∗ → N (ππ, s−wave, I = 0) partial
decay widths of the N∗(1710). With this Lagrangian an attractive selfenergy is obtained
for all the members of the antidecuplet coming from the two meson cloud.

In this work we study the nuclear medium effects on the Θ+ selfenergy diagrams derived
from this Θ+ → KπN Lagrangian. This is accomplished by modifying the pion, kaon and
nucleon propagators in the nuclear medium. We find quite a large attractive potential of
the Θ+ which leads to bound states even for light nuclei. We also investigate a new source
of Θ+ decay width, namely Θ+ → NKph, where the ph (particle-hole) comes from the
absorption of a virtual pion, and we find it to be rather small. Altogether, the total in-
medium Θ+ width is much smaller than the separation of the deeper Θ+ energy levels that
we obtain for most nuclei, which could open the grounds for Θ+ spectroscopy in nuclei.

2 The Θ+ selfenergy from KN decay channel

We begin by evaluating the selfenergy of the Θ+ related to the KN decay channel in the
medium. The Θ+ selfenergy diagram is depicted in Fig. 1.

We assume first I = 0 and JP = 1
2

−

for the Θ+. This implies an L = 0 coupling to
KN . The KN state in I = 0 is

|KN, I = 0 >=
1√
2
(|K+n > −|K0p >) . (1)

The Θ+KN couplings in this case are

− i tΘ+K+n = −igK+n; −i tΘ+K0p = igK+n . (2)

For the I = 0, L = 1, JP = 1
2

+
case, the quantum numbers of the antidecuplet suggested

in Ref. [13], we would have

− i tΘ+K+n = −ḡK+n~σ~q; −i tΘ+K0p = ḡK+n~σ~q , (3)
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Figure 1: Θ+ selfenergy diagram related to the KN decay channel.

with q the outgoing kaon momentum. This amplitude is a nonrelativistic reduction of
the relativistic vertices used in Ref. [11]. We have also done the complete relativistic
calculations and the differences are negligible.

In the case of L = 1 we could also have JP = 3
2

+
and the couplings are written in

terms of the corresponding spin transition operators, but it is easy to see, following the
steps of [14], that the results for the selfenergy would be the same as in the JP = 1

2

+

case. Similarly, we could also assume I = 1, which would only change the relative sign of
the KN components in Eq. (1), which appear squared in the selfenergy. Thus, the Θ+

selfenergy does not change by assuming I = 0 or 1. We have only two independent cases,
L = 0 and L = 1, which we evaluate below.

For the L = 0 case the free Θ+ selfenergy from the diagram in Fig. 1 is given by

−iΣKN (p) = 2
∫ d4q

(2π)4
(−igK+n)2 M

EN(~p − ~q)

i

p0 − q0 − EN(~p − ~q) + iǫ

i

q2 − m2
K + iǫ

, (4)

where M is the nucleon mass, EN (k) =
√

M2 + ~k 2, and the factor 2 accounts for the K+n
and K0p channels, which leads to a Θ+ decay width

Γ = −2 Im ΣKN =
g2

K+n

π

qon

MΘ+

, (5)

where qon is the momentum of the kaon in the Θ+ → KN decay. The result for L = 1 is
obtained by the substitution

g2
K+n → ḡ2

K+n~q
2 ,

and hence

Γ =
ḡ2

K+n

π

q3
on

MΘ+

. (6)

We proceed now to evaluate the Θ+ selfenergy in an infinite nuclear medium with
density ρ. First, the nucleon propagator changes in the following way,

1

p0 − q0 − EN (~p − ~q) + iǫ
→ 1 − n(~p − ~q)

p0 − q0 − EN (~p − ~q) + iǫ
+

n(~p − ~q)

p0 − q0 − EN (~p − ~q) − iǫ
, (7)
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Figure 2: In-medium kaon p−wave selfenergy diagrams: (a) K crossed term; (b) K̄ direct
term.

where n(~k) is the occupation number of the uncorrelated Fermi sea. On the other hand,
the vacuum kaon propagator is replaced by the in-medium one,

1

q2 − m2
K + iǫ

→ 1

q2 − m2
K − ΠK(q, ρ)

, (8)

where ΠK(q0, |~q|, ρ) is the kaon selfenergy which accounts for s−wave and p−wave KN
interaction. The s−wave part of the self energy is well approximated by [15, 16]

Π
(s)
K (ρ) = 0.13 m2

Kρ/ρ0 [MeV2] , (9)

where ρ0 is the normal nuclear density. The p−wave part is taken such that

Π
(p)
K+(q0, |~q|, ρ) = Π

(p)
K−

(−q0, |~q|, ρ) , (10)

and for Π
(p)
K−

we take the model of Refs. [16,17] which accounts for Λh, Σh and Σ∗(1385)h
excitations, see Fig. 2. Since the p−wave selfenergy of the K+ involves crossed terms
of the Y h excitation, this part is small and there is practically no q0 dependence in the
K+ selfenergy, which makes the quasiparticle approximation accurate. Hence, the pole
structure of the free K+ propagator, with poles in q0 = ±ω(q) ∓ iǫ, is substituted by a
similar one with the poles shifted to ω̃(q), such that

ω̃(q)2 − ~q 2 − m2
K − ΠK(ω̃(q), |~q|, ρ) = 0 . (11)

This equation is solved selfconsistently and the result is very close to

ω̃(q) ≃
√

m2
K(1 + 0.13ρ/ρ0) + ~q 2 . (12)

In view of this, the q0 integration is performed in the modified Eq. (4) leading to

ΣKN(p0, ~p; ρ) =
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=
MΘΓ

Mqon

1

(2π)2

∫
d3q

M

EN(~p − ~q)
FL(q)

1

2ω̃(q)

1

p0 − ω̃(q) − EN (~p − ~q) − VN + iǫ

− MΘΓ

Mqon

1

(2π)2

∫
d3q

M

EN(~p − ~q)
FL(q)

n(~p − ~q)

[p0 − EN (~p − ~q) − VN ]2 − ~q 2 − m2
K − ΠK(q, ρ)

(13)

with q0 = p0 − EN(~p − ~q) − VN , VN = − k2
F

2M
, and F0 = 1, F1 = ~q 2

q2
on

. In Eq. (13) we have
also taken into account the nucleon binding and, consistently with the posterior use of the
results within the local density approximation (ρ → ρ(r) in the nucleus), we have taken the
Thomas-Fermi potential for the nucleons, VN = −kF (r)2/2M with kF (r) = (3π2ρ(r)/2)1/3.
For the calculations we have taken an average value of the momentum of the Θ+ in eventual
bound states of p = 200 MeV, similar to that of bound nucleons in nuclei.

The consideration of the Θ+ momentum is important for the imaginary part of ΣKN ,
and hence for the width of the Θ+ in the nucleus. This can be easily understood. Consider
a Θ+ at rest with 1540 MeV of energy decaying into K+n. The momentum of the neutron
is 269.6 MeV/c. Taking ρ = ρ0, kF = 269 MeV/c and hence the decay would be allowed.
However, if the Θ+ has a small initial momentum, it is clear that when boosting the neutron
momentum from the Θ+ rest frame to the Θ+ moving frame, approximately half of the
events would lead to pn > kF while the other half would lead to pn < kF , hence reducing
the Θ+ width to one half its free value.

This result is roughly valid for any momentum of the Θ+ smaller than kF . We should
expect a reduction by a factor around two of the Θ+ width only from this source. On
the other hand, if the Θ+ energy is smaller because it is in a bound state, then the
width is further reduced. We can see this in Figs. 3, 4 where we assume that Γ = 15
MeV. This is the upper limit in most experiments coming basically from the experimental
resolution. Studies based on K+N scattering suggest that the width should be smaller
than 5 MeV [18–20] or even of the order of 1 MeV [21–23]. What we see in these figures
is that even if Γ = 15 MeV in free space, inside the nucleus, particularly for the case of
L = 1 which corresponds to JP = 1

2

+
for the Θ+, the width is small; and for 20 MeV of

Θ+ binding the width would go down from 15 MeV to less than 6 MeV. This width could
be reasonably smaller than the separation between different bound levels.

Next, we consider the real part of the Θ+ selfenergy, shown in Fig. 5, after subtracting
the vacuum selfenergy from Eq. (4), for a typical finite momentum of 200 MeV. The
subtraction is convergent for the L = 0 case, whereas for L = 1 we use a cut-off in the
momentum of the particles in the loop. As shown in the figure, the cut-off dependence
is small. We find, in qualitative agreement with Ref. [11], that the Θ+ potential in the
medium is very small. Note however that the results are not directly comparable since we
present the real part of the selfenergy, instead of the in-medium Θ+ mass change presented
in Ref. [11]. According to Eq. (13) the selfenergy scales like Γ, which we have taken as
15 MeV for the results shown for both the real and imaginary parts of the selfenergy and
if, as suggested in [21–23], the width is of the order of 1 MeV, the in-medium selfenergy
associated to the KN decay channel would be negligible. In any case, up to ρ = ρ0 the
real part of the selfenergy is not enough to bind Θ+ in nuclei.

In the next section we investigate another source of attraction which leads to larger
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Figure 3: Imaginary part of the Θ+ selfenergy associated to the KN decay channel for
L = 0.
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Figure 4: Imaginary part of the Θ+ selfenergy associated to the KN decay channel for
L = 1.

6



1500 1520 1540 1560 1580 1600
E (MeV)

-3

-2

-1

0

1

2

3

R
e 

Σ K
N

 (
M

eV
)

L = 0
L = 1, Λ = 700 MeV
L = 1, Λ = 800 MeV

Figure 5: Real part of the Θ+ selfenergy associated to the KN decay channel at ρ = ρ0.
A momentum of the Θ+ of 200 MeV is taken.

attractive potentials.

3 The Θ+ selfenergy tied to the two-meson cloud

In this section we will study contributions to the Θ+ selfenergy from diagrams in which
the Θ+ couples to a nucleon and two mesons, like the one in Fig. 6. There is no direct
information on these couplings since the Θ+ mass is below the two-meson decay threshold.

From now on we will do several assumptions. The validity of our results depends on
them. First, the Θ+ is assumed to have JP = 1/2+ associated to an SU(3) antidecuplet, as
in Ref. [13]. In addition, the N∗(1710) is supposed to couple largely to this antidecuplet.

From the data on N∗(1710) decays we can determine the couplings to the two-meson
channels, and using SU(3) symmetry obtain the corresponding couplings for the Θ+.

In Ref. [12] two SU(3) symmetric Lagrangian terms, with minimal number of derivatives
in the meson fields, are proposed in order to account for the N∗(1710) decay into N(ππ, p−
wave, I = 1) and N(ππ, s − wave, I = 0). The first term is

L1 = ig1̄0ǫ
ilmT̄ijkγ

µBj
l (Vµ)

k
m , (14)

with Vµ the vector current which for two mesons is written as

Vµ =
1

4f 2
(φ∂µφ − ∂µφφ) , (15)
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Figure 6: Two-meson Θ+ selfenergy diagram.

with f = 93 MeV the pion decay constant and Tijl, Bj
l , φk

m SU(3) tensors which account

for the antidecuplet states, the octet of 1
2

+
baryons and the octet of 0− mesons, respectively

[24]. The second term is given by

L2 =
1

2f
g̃1̄0ǫ

ilmT̄ijk(φ · φ)j
l B

k
m , (16)

which couples two mesons in L = 0 to the antidecuplet and the baryon and they are in
I = 0 for the case of two pions. From the Lagrangian terms of Eqs. (14, 16) one can obtain,
after some SU(3) algebra, the transition amplitudes from any member of the antidecuplet
to the different MMB channels to which it couples, in particular N∗ → ππN . Taking the
central values from the PDG [25] for the N∗(1710) → N(ππ, p−wave, I = 1) (which we take
from the ρN fraction of the Nππ decay) and for the N∗(1710) → N(ππ, s − wave, I = 0),
the resulting coupling constants are g1̄0 = 0.72 and g̃1̄0 = 1.9.

The Θ+ selfenergy associated to the diagram of Fig. 6 is given by

Σ(V )(p) = 18 ΣV (p; KπN) + 18 ΣV (p; KηN) ,

Σ(S)(p) = 18 ΣS(p; KπN) + 2 ΣS(p; KηN) , (17)

with

Σj(p) = −
∫ d4k

(2π)4

∫ d4q

(2π)4
|tj |2 1

k2 − m2
1 + iǫ

1

q2 − m2
2 + iǫ

M

EN(~k + ~q)

1

p0 − k0 − q0 − EN(~k + ~q) + iǫ
, (18)

where j ≡ V, S and m1, m2 are the masses of the mesons in the loop (Kη, Kπ). Eq. (18)
stands for the Θ+ selfenergy at rest. In contrast to the KN decay channel, the dependence
on the Θ+ momentum is not relevant. The tj amplitudes in Eq. (18) are given by

|tS|2 =

(
g̃1̄0

2f

)2

,
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|tV |2 =

(
g1̄0

4f 2

)2
1

2M
{[EN(~k + ~q) + M ][ω1(k) − ω2(q)]

2

+2(~k 2 − ~q 2)[ω1(k) − ω2(q)] + [EN (~k + ~q) − M ](~k − ~q)2} . (19)

The implementation of the medium effects is done by including the medium selfenergy of
the kaon and modifying the nucleon propagator, as done in Section 2. On the other hand,
the pion being so light requires a more careful treatment and here we use, as normally
done [26–32], the p−wave selfenergy from ph and ∆h excitation. It is convenient to write
the pion propagator in terms of its Lehman representation [27] and we have

1

q2 − m2
π − Ππ(q0, ~q, ρ)

=
∫

∞

0
dω 2ω

Sπ(ω, ~q, ρ)

q02 − ω2 + iǫ
, (20)

where Sπ(ω, ~q, ρ) is the pion spectral function

Sπ(ω, ~q, ρ) = − 1

π

Im Ππ(ω, ~q, ρ)

|ω2 − ~q 2 − m2
π − Ππ(ω, ~q, ρ)|2

. (21)

By performing the energy integrals in Eq. (18) after the medium effects are incorporated,
we get for the KπN intermediate channel the following results

Σj(p) =
∫

d3k

(2π)3

∫
d3q

(2π)3

∫
∞

0
dω Sπ(ω, ~q, ρ)

∣∣∣tj
∣∣∣
2

1

2ω̃(k)

M

EN (~k + ~q)

1 − n(~k + ~q)

p0 − ω̃(k) − ω − EN(~k + ~q) − VN + iǫ
. (22)

The Kη channel contributes little to the Θ+ selfenergy and since the changes of η in the
medium are very small compared to those of the pion, we disregard this channel to account
for the medium contributions.

Once the Θ+ selfenergy at a density ρ is evaluated, the optical potential felt by the Θ+

in the medium is obtained by subtracting the free Θ+ selfenergy, and hence

Σ̃(p) = Σ(p, ρ) − Σ(p, ρ = 0) . (23)

We should also note that while the Θ+ → KπN decay is forbidden, in the medium the
π can lead to a ph excitation and this opens a new decay channel Θ+N → NNK, which is
open down to 1432 MeV, quite below the free Θ+ mass. We will show that the width from
this channel is also very small, but should the Θ+ free width be of the order of 1 MeV as
suggested in [22,23] the new decay mode would make the width in the medium larger than
the free width.

The integral of Eq. (22) is regularized by means of a cut-off. We use a cut-off of
around 700-800 MeV by means of which reasonable results for the vacuum selfenergy of
the antidecuplet, of the order of 7− 15 % of the antidecuplet masses, are obtained1. More

1In a recent paper where a QCD sum rule is used to obtain the mass of an S = 1, I = 0, JP = 1

2

+

state made from two diquarks and one antiquark, central masses around 1.64 GeV are obtained [33] which
welcome an extra attractive contribution of 100− 150 MeV from the MMB components (heptaquark) as
we find.
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Figure 7: Real part of the two-meson contribution to the Θ+ selfenergy at ρ = ρ0.

specifically for p0 = 1540 MeV and Λ = 700 MeV we find a contribution to the free Θ+

selfenergy of 48 MeV from the scalar Lagrangian and 40 MeV from the vector Lagrangian.
We find here that the additional attraction of the Θ+ in the medium at ρ = ρ0 is of the
same order of magnitude as the binding created by the mechanism considered in the Θ+

mass. Similar conclusions were found in the work of [10] where, although the formalisms
used are quite different, the works share some basic features, like the small coupling of the
Θ+ to KN and a sizeable coupling to KNπ, with Kπ with K∗ quantum numbers via the
vector Lagrangian, which in [10] is realized by a large coupling to K∗N . In Ref. [12] a
thorough study is done of the free selfenergy of all states of the antidecuplet due to the two
meson cloud, using the same Lagrangians as here as well as other ones which are allowed
by SU(3) symmetry considerations. Several constraints from phenomenology lead to the
Lagrangians which we use here as the leading ones. The vector Lagrangian is also further
modified in [12] to account for the decay of the N∗(1710) → N(ππ, p − wave) into the
actual Nρ channel quoted in the PDG. This reduces the strength of the vector Lagrangian
contribution, and hence the numbers obtained here for the binding would be reduced by
about 20% from these corrections.

We present the results in Figs. 7 and 8. From Fig. 7 we can see that the potential
for ρ = ρ0 is sizable and attractive and goes from −70 MeV using a cut-off of 700 MeV to
−120 MeV using 800 MeV.

Even with the large uncertainties we conclude that there is a sizable attraction of the
order of magnitude of 50-100 MeV at normal nuclear density, which is more than enough
to bind the Θ+ in any nucleus. In Fig. 8 we show the imaginary part of the Θ+ selfenergy

10
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Figure 8: Imaginary part of the two-meson contribution to the Θ+ selfenergy at ρ = ρ0,
using the Thomas-Fermi potential (solid line) or VN(r) = −50ρ(r)/ρ0 [MeV] (dashed line)
for the nucleon potential.

related to the two-meson decay mechanism for two different nucleon potentials in the
nucleus discussed below. We can see that Γ = −2 Im Σ would be smaller than 5 MeV for
bound states with a binding of ∼20 MeV and negligible for binding energies of ∼40 MeV or
bigger. This, together with the small widths associated to the KN decay channel, would
lead to Θ+ widths below 8 MeV, assuming a free width of 15 MeV, and much lower if the
Θ+ free width is of the order of 1 MeV. In any case, for most nuclei, this width would be
smaller than the separation of the deep levels.

The calculations done here are performed for infinite nuclear matter. In order to apply
the results to finite nuclei we resort to use the local density approximation, ρ → ρ(r),
with ρ(r) the realistic density distribution in the nucleus, which is shown to be a good
approximation in [34].

In order to illustrate the point about width and separation of levels we solve the
Schrödinger equation with two potentials: V (r) = −120ρ(r)/ρ0 (MeV), and −60ρ(r)/ρ0

(MeV). The density ρ(r) is taken from experiment [35] for several nuclei. The results are
shown in Table 3. In a light nucleus like 12C we find several bound states separated by
around 20 MeV or more with both potentials. For medium and heavy nuclei, as in 40Ca
shown in the table, we find more bound states and the energy separation is somewhat
smaller.

It is important to remark that the separation of the deep states is reasonably bigger
than the upper bounds estimated for the width of these states obtained by considering the
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KN and the KπN decay channels in the medium. This would make a clear case for the
experimental observation of these states.

We have considered two other sources of uncertainty in the calculations. In the first
place we have also included the pion selfenergy due to 2p2h excitation which leads to pion
absorption. The pion in the loop in Fig. 6 cannot be put on shell simultaneously with the
K and the nucleon. The pion can excite a ph and this gives the K+Nph decay mode of
the Θ+ which we have studied. The pion can also lead to 2p2h excitation and this would
give a new decay mode, K+N2p2h. Since this is a O(ρ2) correction compared to the O(ρ)
contribution of the ph decay channel, we can think a priori that the 2p2h channel will be
less relevant than the ph one. The situation is reminiscent of the one nucleon induced and
two nucleon induced Λ decay in nuclei [36, 37] where the Λ → Nπ decay is also forbidden
by Pauli blocking. There one finds [37] that the two nucleon induced decay represents a
fraction smaller that 20% of the ph one. In the present case there is even less energy left
for the pion as an average than in Λ decay, and Pauli blocking is also more effective, thus
we should expect smaller results. This is indeed the case as we find in actual calculations.
For this purpose we include the selfenergy given in [37],

Π2p2h
π = −4π~q 2C∗

0ρ
2 , (24)

with C∗

0 = (0.105+ i0.096)m−6
π , which is obtained from pionic atoms and is modified in [37]

to account for the different phase space offered by the off-shell pions which we find in the
present case. The result of the calculation is that the strength of the real part of the Θ+

selfenergy in the medium decreases by a few MeV and the imaginary part increases less
than 5%. Hence, the effect of including this new decay channel is negligible considering
the large uncertainty from other sources.

The other element considered has to do with the nucleon binding. In Eq. (13) we took
the Thomas-Fermi potential for the nucleon. Now we take a standard potential,

VN = −V0ρ/ρ0 ; V0 = 50 MeV , (25)

and recalculate the results. The real part increases by a few MeV and the imaginary part,
plotted in Fig. 8, shows some changes with respect to that obtained with the Thomas-Fermi
potential, still leading to a width of only 5 MeV for 20 MeV binding.

4 Conclusions

We have evaluated the selfenergy of the Θ+ in the nuclear medium associated to the KN
decay channels and the MMB decay channels of the Θ+ partners in the antidecuplet. We
obtain a small potential associated to the KN decay, even assuming a large free width of
around 15 MeV for the Θ+, but at the same time we also show that Pauli blocking and
the decreased phase space from the Θ+ binding decrease appreciably the Θ+ width in the
nucleus from the KN decay.

On the other hand, we find a large attractive Θ+ potential in the nucleus associated
to the two meson cloud of the antidecuplet. A new decay channel opens for the Θ+ in the
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V = −60 MeV ρ/ρ0 V = −120 MeV ρ/ρ0

Ei (MeV), 12C Ei (MeV), 40Ca Ei (MeV), 12C Ei (MeV), 40Ca

-34.0 (1s) -42.6 (1s) -87.3 (1s) -98.2 (1s)
-14.6 (1p) -30.9 (1p) -59.5 (1p) -83.3 (1p)
-0.3 (2s) -18.7 (1d) -32.0 (2s) -67.5 (1d)

-17.9 (2s) -31.9 (1d) -65.9 (2s)
-6.3 (1f) -8.6 (2p) -50.8 (1f)
-5.6 (2p) -5.6 (1f) -48.5 (2p)

-33.5 (1g)
-31.1 (2d)
-30.4 (3s)
-15.9 (1h)
-14.2 (2f)
-13.8 (3p)
-0.5 (4s)

Table 1: Binding energies of Θ+ in 12C and 40Ca.

medium, Θ+N → NNK, but the width from this new channel, together with the one from
KN decay, is still small compared to the separation of the bound levels of the Θ+ in light
and intermediate nuclei (very large nuclei like 208Pb would have the states too packed to
prove efficient in the detection of these states).

In reaching the former conclusions there are several assumptions done.

1. The Θ+ is assumed to be 1/2+ associated to an SU(3) antidecuplet;

2. The N∗(1710) is supposed to couple largely to this antidecuplet;

3. The Lagrangians have been chosen to reproduce the N(ππ, p − wave, I = 1) and
N(ππ, s − wave, I = 0) decay mode of N∗(1710) by imposing SU(3) symmetry with
a minimal number of derivatives in the fields.

4. Some values of the cut off have been chosen to obtain reasonable numbers for the
free Θ+ selfenergy;

5. The average value of the N∗(1710) width and the partial decay ratios, which ex-
perimentally have large uncertainties, have been taken to fix the couplings of the
antidecuplet to the baryon octet and the two meson octets.

It is clear that with all these assumptions one must accept a large uncertainty in the
results. So we can not be precise on the binding energies of the Θ+. However, the order of
magnitude obtained for the potential is such that even with a wide margin of uncertainty,
the conclusion that there would be bound states is quite safe. In fact, with potentials with
a strength of 20 MeV or less one would already get bound states. Furthermore, since the
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strength of the real part and the imaginary part from the NKph decay are driven by the
same coupling, a reduction on the strength of the potential would also lead to reduced
widths such that the principle that the widths are reasonably smaller than the separation
between levels would be saved.

The work done here provides thus a sensible case in favor of the existence of bound Θ+

states in nuclei which should spur experimental work in this area.
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