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Properties of hyperons in chiral perturbation theory
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1Departamento de Fı́sica Teórica and IFIC, Universidad de Valencia-CSIC, Spain
2Departamento de Fı́sica, Universidade de Coimbra, Portugal

Abstract

The development of chiral perturbation theory in hyperon phenomenology has been troubled due
to power-counting subtleties and to a possible slow convergence. Furthermore, the presence of
baryon-resonances, e.g. the lowest-lying decuplet, complicates the approach, and the inclusion
of their effects may become necessary. Recently, we have shown that a fairly good convergence is
possible using a renormalization prescription of the loop-divergencies which recovers the power
counting, is covariant and consistent with analyticity. Moreover, we have systematically incor-
porated the decuplet resonances taking care of both power-counting andconsistencyproblems.
A model-independent understanding of diferent propertiesincluding the magnetic moments of
the baryon-octet, the electromagnetic structure of the decuplet resonances and the hyperon vec-
tor coupling f1(0), has been successfully achieved within this approach. We will briefly review
these developments and stress the important role they play for an accurate determination of the
Cabibbo-Kobayashi-Maskawa matrix elementVus from hyperon semileptonic decay data.
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1. Magnetic Moments

The magnetic moments of the baryons are of the utmost importance since they contain in-
formation on their internal structure as read out by electromagnetic probes. A starting point
is the SU(3)F-symmetric model of Coleman and Glashow (CG) [1] that describes baryon-octet
magnetic moments in terms of two parameters. The success of this model relies on the almost
preserved global SU(3)V-symmetry of QCD withu, d and s flavors. The description of the
symmetry-breaking corrections of the baryon magnetic moments can be addressed in a system-
atic and model-independent fashion by means of chiral perturbation theory (χPT) [2, 3]. In this
approach, the CG result appears naturally at leading-order(LO) as tree-level. At next-to-leading
(NLO) order, there are only loop-contributions that dependon known couplings and masses and,
therefore, no new undetermined low-energy constants (LECs) besides those appearing in the
CG approach are to be included. The question is then if the SU(3)F-breaking corrections to the
baryon-octet magnetic moments can be successfully addressed from a first principles approach
by means ofχPT; namely whether or not the chiral loops improve the classical CG results. A
positive answer to this question has been given only recently [4, 5] when applying the extended-
on-mass-shell (EOMS) renormalization scheme [6] which is an extension ofMS developed to
overcome the power-counting problem in the baryon sector ofχPT. For a detailed presentation
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of our results and their comparison with heavy baryon (HB) [7, 8] or infrared (IR) [9, 10] for-
mulations of baryonχPT, see Refs. [4, 5]. The comparison of our results with thoseobtained
before stresses the importance in SU(3)F-χPT of the relativistic corrections, in the case of HB,
and of keeping unaltered the analytic properties of the theory, in the case of IR. Concerning the
inclusion of the decuplet resonances,natural contributions that do not spoil the improvement
over CG were found only in the EOMS framework and when the unphysical degrees of freedom
contained in the relativistic spin-3/2 vector-spinor were removed by means of theconsistent
couplings [11]. It is also noteworthy that we obtain a good convergence since the NLO contri-
bution is, at most, about one half of the LO one, what is consistent with oura priori maximal
expectation of∼ mη/ΛχS B.

The aforementioned covariant approach that includes both octet and decuplet contributions
has also been applied to the description of the electromagnetic structure of the decuplet reso-
nances [12]. In particular, the magnetic dipole moments of the∆+ and∆++ are predicted using
the well-measured one of theΩ− to fix the only LEC appearing up to NLO

µ∆++ = 6.0(6)µN, µ∆+ = 2.84(34)µN, (1)

where the error bars are an estimation of higher-order contributions obtained looking at the ratio
between NLO and LO contributions (we take 30% of the NLO over LO ratio) [12]. The relevance
of these results lies on the ongoing efforts from the experimental side to measure the magnetic
moments of these two resonances [13, 14, 15]. On the theoretical side, calculations from many
different approaches have arisen in the last decades [12]. Our results are compatible with the
values quoted by the Particle Data Group [16] and the agreement with the latest experimental
analysis,µ∆++ = 6.14± 0.51µN [17], is excellent.

2. Hyperon vector coupling f1(0)

The Cabibbo-Kobayashi-Maskawa (CKM) matrix [19, 20] playsa very important role in our
study and understanding of flavor physics. In particular, its low mass sector allows for a precise
test of the Standard Model through the CKM unitarity relation,

|Vud|
2 + |Vus|

2 + |Vub|
2 = 1, (2)

where one needs accurate values forVud, Vus, andVub. Among them,Vub is quite small and
can be neglected at the present precision. The elementVud can be obtained from superallowed
nuclear beta, neutron and pion decays, whereasVus can be extracted from kaon, hyperon, and tau
decays (for a recent review, see Ref. [16]). We now focus on how to determineVus from hyperon
semileptonic decay data.

The hyperon matrix elements of the weak flavor-changing currents are described by three
vector (axial) form factorsfi(q2) (gi(q2)) with i = 1, 2, 3. The decay ratio of the semileptonic
decayB → blν̄ will then be determined by these form factors, the Fermi constantGF , and the
CKM elementVus. Indeed, if we define as a relevant SU(3)-breaking parameterβ =

MB−Mb
MB

, we
can perform a power expansion of the decay rate about the SU(3)-symmetric limit

R∼ G2
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Table 1: Results on the relative SU(3)-breaking off1(0) in % for different channels obtained inχPT up to NNLO
including octet and decuplet contributions and those obtained in other approaches.

BχPT HBχPT LargeNc QM χQM lQCD

Λ N +0.1+1.3
−1.0 +5.8 +2± 2 −1.3 +0.1

Σ N +8.7+4.2
−3.1 +9.3 +4± 3 −1.3 +0.9 −1.2± 2.9± 4

ΞΛ +4.0+2.8
−2.1 +8.4 +4± 3 −1.3 +2.2

ΞΣ +1.7+2.2
−1.6 +2.6 +8± 5 −1.3 +4.2 −1.3± 1.9

where the form factors are evaluated atq2 = 0, although a linearq2 dependence inf1 andg1

must also be considered at this order [21]. Moreover, the SU(3)-symmetric limit for f2 can be
used. The most relevant contributions to the ratio come thenfromg1, f1 and alsog2. Therefore, in
order to extract accuratelyVus from semileptonic hyperon decay data, one requires to understand,
in a model-independent fashion, the SU(3)-breaking contributions to these moments. Theg2

vanishes in the SU(3)-symmetric limit, and we will assumeg2 = 0. The axial chargeg1, which is
described in the symmetric limit by the parametersD andF, receivesO(β) breaking corrections.
Nevertheless, as it has been proposed in Ref. [22], we can usethe measuredg1/ f1 ratios as the
basic experimental data to equateg1 in terms of f1 in Eq. (3). On the other hand,f1 is protected
by the Ademollo-Gatto Theorem [23] which states that breaking corrections start atO(β2).

The Ademollo-Gatto theorem is a consequence of the underlying SU(3)V symmetry of QCD,
which has also important consequences when addressing a calculation of f1(0) in χPT. Namely,
one finds that no unknown LECs contributing to this vector charge are allowed until chiral order
O(p5). Therefore, a loop calculation up to and including NNLO only depends on known masses
and couplings and is a genuine prediction ofχPT. Moreover, there are not divergencies or power
counting breaking terms up to this order so that a counting restoration procedure does not seem
necessary in this case. This program has been developed in different steps along the last two
decades [24, 25, 26, 28, 27, 29]. A full NNLO calculation including both octet and decuplet
contributions in the covariant framework has been undertaken recently [29]. In the latter work the
problem with the convergence found in the HB calculation of Ref. [27] has also been explained
and fixed.

In Table 1 we present the results for the relative SU(3)-breaking correction 1
100

(

f1(0)
f S U(3)
1 (0)

− 1
)

in covariantχPT (BχPT) and HBχPT including octet and decuplet contributions up to NNLO.
We also present those obtained in LargeNc [21], in a quark model (QM) [30], in a chiral quark
model (χQM) [31] and in lattice QCD [32, 33]. The error bars in the BχPT are an estimation
of higher order uncertainties [29]. The results quoted fromRef. [30] are quite general in quark
model calculations and reflect the naive expectation that SU(3)-breaking corrections, at least for
theΣN channel, should be negative. On the other hand, the different chiral approaches agree
in the positive sign and the approximate size of these corrections, what may indicate the non-
triviality of the multiquark effects induced by the chiral dynamics. It is also remarkable the
agreement with those obtained in a different systematic approach to non-perturbative QCD as
the LargeNc. The results of lattice QCD are marginally compatible with ours although they
favor negative corrections tof1(0). However, it must be pointed out that the pion masses in
these simulations are still rather high, namely∼400 MeV forΞ0 → Σ+ [33] and∼700 MeV
for Σ− → n [32]. Another issue to be highlighted is the chiral extrapolation of the lattice QCD
results to the physical point, for which our results might behelpful in the future. And the other
way around, the lattice QCD could provide information aboutthe higher-order local contributions
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in the chiral approach and could reduce the theoretical uncertainty of the BχPT calculation [32].
In any case, a lattice simulation close to the physical pointwill be very helpful and eventually
conclusive about the nature of the SU(3)-breaking corrections to f1(0).

With the elements developed above we obtain a determinationof the CKM elementVus that
combinesthe information on the different channels and includes the experimental errors [34] and
higher-order errors estimated forf1(0) in BχPT [29]

Vus = 0.2176± 0.0029± ∆V , (4)

where∆V accounts for other systematic uncertainties. At the order we work in Eq. (3), this
uncertainty is due to the SU(3)-breaking correction tog2 that has not been considered. This
contribution is∼ O(β2) and potentially as important for the extraction ofVus as the SU(3)-
breaking correction tof1.

We first compare our result with other determinations obtained from the decay rates and
g1/ f1 in the hyperon semileptonic data; namely,Vus = 0.2199± 0.0026 in LargeNc [21] and
Vus = 0.2250(27) in the SU(3)-symmetric model [22]. The comparisonwith the latter indicates
the sensitivity to a breaking correction tof1(0) of∼ O(β2) and suggests that the SU(3)-symmetric
assumption is not reliable enough for the accuracy requiredby the determination ofVus. The
agreement between the BχPT and the LargeNc is a consequence of the consistency shown in
Table 1 and of the fact that in both approaches the SU(3)-breaking correction tog2 have been
ignored.

On the other hand, our result is somewhat smaller than the ones obtained from kaon and tau
decays or from thefK/ fπ ratio [16]. It is not compatible either with the unitarity condition Eq.
(2) when using the value obtained from superallowed beta decays [16]. Nonetheless, the result
shown in Eq. ( 4) is not complete and has to be improved with themodel-independent description
of the SU(3)-breaking corrections tog2. As argued in Ref. [22], the trends shown byΣ− → n
andΛ→ p data indicate that the incorporation of the SU(3)-breakingcorrections tog2 will raise
the value ofVus in these two channels. Unfortunately, the data for hyperon decays is not yet
precise enough to address a quantitative study of this form factor. From the theoretical side, a
determination of these corrections in lattice QCD and an analysis in BχPT would be useful to
ascertain the effects thatg2 may have on the determination ofVus.
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