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Abstract

We study the nuclear effects in the electromagnetic structure function F2(x,Q
2)

in the deep inelastic lepton nucleus scattering process by taking into account
Fermi motion, binding, pion and rho meson cloud contributions. Calcu-
lations have been done in a local density approximation using relativistic
nuclear spectral functions which include nucleon correlations. The ratios

RA
F2(x,Q

2) =
2FA

2
(x,Q2)

AFD
2
(x,Q2)

are obtained and compared with recent JLab results

for light nuclei with special attention to the slope of the x distributions. This
magnitude shows a non trivial A dependence and it is insensitive to possible
normalization uncertainties. The results have also been compared with some
of the older experiments using intermediate mass nuclei.

Keywords: Structure function, Nuclear medium effects, Deep inelastic
scattering, Local density approximation

1. Introduction

Recently Jefferson Lab(JLab) [1] using a high intensity electron beam
of energy 5.767 GeV has measured the nuclear dependence of the structure
function in some nuclei by studying the ratio R(x,Q2)= 2σA

AσD , where σA is
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the inclusive cross section in nuclei and σD is the inclusive cross section
in deuterium. The experimental results for the ratio R(x,Q2) have been
presented by them [1] for 0.3 < x < 0.9 and have re-confirmed the older
EMC results [2, 3, 4] that the structure function of a nucleon is modified
when it is placed inside a nucleus. This experiment shows that the slope
of the EMC effect does not scale with the nuclear density and therefore the
simple models to implement these nuclear effects, based on A or average
density fits, for example as described by Gomez et al. [5], fail to describe the
new and precise results for light nuclei.

The behavior of RA
F2(x,Q

2) can be broadly divided into four categories
viz. x ≤ 0.1 is the shadowing region, 0.1≤ x ≤0.3 is the anti-shadowing
region, 0.3≤ x ≤0.8 is the EMC region and beyond x ≈ 0.8, known as the
Fermi motion region. Theoretically, many analysis have been done to study
the EMC effect and various models have been proposed and discussed in the
literature [6, 7, 8, 9]. Several phenomenological parameterizations for the
nuclear parton distribution functions(NPDFs) have been discussed in the
literature like the works of Hirai et al. [10], Eskola et al. [11], Schienbein et
al. [12, 13] which successfully reproduce the nuclear modifications in the deep
inelastic lepton-nucleus and neutrino-nucleus scattering.

In this work, we study the nuclear medium effects on the structure func-
tion within a model based on the theoretical calculation of Ref. [14] with the
aim of comparing it with the recent JLab data. The spectral function that
describes the energy and momentum distribution of the nucleons in nuclei is
obtained by using the Lehmann’s representation for the relativistic nucleon
propagator and nuclear many body theory is used to calculate it for an in-
teracting Fermi sea in nuclear matter [15]. A local density approximation is
then applied to translate these results into finite nuclei. The contributions
of the pion and rho meson clouds are taken into account in a many body
field theoretical approach which is based on Refs. [14, 16]. The model from
Ref. [14] has been improved in several ways. The old model used the Bjorken
limit and assumed the Callan-Gross relationship for nuclear structure func-
tions F2

A(x) and F1
A(x). Due to the fact that JLab data have been taken

in a region of relatively low Q2 (Q2 ∼ 3 − 6 GeV2) we have not assumed
the Bjorken limit. Also, for low Q2 and moderate x values Target Mass
Corrections (TMC) might play an important role. We have incorporated
them following Ref. [17]. Another difference with respect to Ref. [14] is the
fact that for the ratios we divide by the deuteron structure function, rather
than the nucleon one. This only implies substantial changes at moderate
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Figure 1: Feynman diagram for the deep inelastic lepton-nucleon scattering

and high x values. We have also considered shadowing because it reduces
the contribution coming from the pion and rho meson clouds [18, 19]. For
the numerical calculations, next to leading order (NLO) Parton Distribution
Functions (PDF) for the nucleons have been taken from the parameteriza-
tion of Martin et al. (MSTW) [20]. The NLO evolution of the deep inelastic
structure functions has been taken from the works of Vermaseren et al. [21]
and van Neerven and Vogt [22]. In the case of pions we have taken the pio-
nic parton distribution functions given by Gluck et al. [23, 24]. For the rho
mesons, we have applied the same PDFs as for the pions as in Ref. [14].

The structure of the paper is as follows: In Sect. 2 we introduce some
basic formalism for lepton-nucleon scattering, in Sect. 3 we analyse the dif-
ferent nuclear effects, in Sect. 4 we consider the deuteron case and we end
by comparing our results with data in Sect. 5.

2. Deep inelastic lepton-nucleon scattering

The double differential cross section for the reaction of scattering of a
charged lepton from an unpolarized nucleon in the one photon exchange
approximation,

l−(k) +N(p) → l−(k′) +X(p′), l = e, µ (1)

depicted in Fig.1 is given, in terms of the Bjorken variables x and y, by

d2σ

dxdy
=

8MEπα2

Q4

{

xy2F1(x,Q
2) +

(

1− y −
xyM

2E

)

F2(x,Q
2)

}

, (2)
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where

x =
Q2

2Mν
, y =

ν

El

(3)

and ν is the energy transferred to the hadronic system. Fi(x,Q
2) are dimen-

sionless structure functions. In the Bjorken limit, i.e. Q2 → ∞, ν → ∞, x
finite, the structure functions Fi(x,Q

2) depend only on the variable x and
satisfy the Callan-Gross relation [25] given by 2xF1(x) = F2(x). Using this,
the cross section of Eq.(2) can be expressed in terms of F2(x) and thus the
ratio of cross sections is equal to the ratio of structure functions F2. Even
far from the Bjorken limit or when one goes beyond the lowest order (LO),
where the Callan-Gross relation does not hold, the ratio of cross sections
still equals the ratio of structure functions F2 if the ratio of longitudinal to
transverse cross sections R = σL/σT does not depend on A. There is a con-
siderable amount of experimental evidence supporting this fact (e.g. Fig. 6
of Ref. [7]). Therefore, in the following we only consider F2 and compare
directly F2 ratios with cross section ones.

The nucleon structure functions are determined in terms of parton distri-
bution functions for quarks and anti-quarks. In this work, for the nucleons we
work at NLO 1 and we have used the Parton Distribution Functions (PDF) of
Martin et al. (MSTW) [20]. At this order, the expression for the F2 and FL

structure functions can be expressed as functions of the PDFs by [21, 22, 26]

x−1F2,L =
∑

f=q,g

C2,L ⊗ f, (4)

where C2,L are the coefficient functions for the quarks and gluons [21, 22, 26]
and f represents the quark and gluon distributions [20].

3. Nuclear effects

We have used the local density approximation (LDA) to incorporate nu-
clear medium effects2. Inside the nucleus, when the reaction given by Eq.(1)
takes place, several nuclear effects like Fermi motion, binding, pion and rho

1On the other hand, the leading order (LO) pionic parton distribution functions of
Gluck et al. [23, 24] have been used for pions as well as for rho mesons.

2The nuclear densities have been taken from Ref. [27].
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meson cloud contributions must be taken into account. Fermi motion and
nucleon binding are implemented through the use of a nucleon spectral func-
tion. The relativistic nucleon propagator in a nuclear medium can be cast
as [14, 15]:

G(p) =
M

E(p)

∑

r

ur(p)ūr(p)

[
∫ µ

−∞

d ω
Sh(ω,p)

p0 − ω − iη
+

∫

∞

µ

d ω
Sp(ω,p)

p0 − ω + iη

]

, (5)

where Sh(ω,p) and Sp(ω,p) are the hole and particle spectral functions re-
spectively. Full details can be found in Ref. [15]. We ensure that the spectral
function is properly normalized and we get the correct Baryon number for
the nucleus. Furthermore, we have also calculated the kinetic energy and
the binding energy per nucleon and have found that the theoretical binding
energy is very close to the experimentally observed ones for 9Be, 12C, 40Ca
and 56Fe.

Our base equation for the nuclear structure function FA
2 in an isoscalar

target is:

FA
2 (x,Q2) = 4

∫

d3r

∫

d3p

(2π)3

∫ µ

−∞

dω Sh(ω,p, ρ(r))

(

1− γ pz
M

)

γ2
(6)

×

(

γ′2 +
6x′2(p2 − p2z)

Q2

)

FN
2 (x′, Q2)

with p0 = M + ω, γ′2 = 1 + 4x′2p2/Q2 and x′ is Q2/(2p · q). This expres-
sion is equivalent to that of Ref. [18] after trivial algebraic transformations
and taking into account the different normalization of the spectral function
P0(ǫ,p) used in [18] such that

A P0(ǫ,p) −→ 4 · 2π

∫

d3r Sh(ω,p, ρ(r)) . (7)

In an earlier study, the behaviour of different nucleon spectral func-
tions has been analysed [28]. In particular, the spectral functions given by
Fernández de Córdoba and Oset [15], Kulagin and Petti [18], and Ankowski et
al. [29] were used and compared. It was found that the results do not change
appreciably. Finally, we should comment that the present formalism has also
been used to study the nuclear effects in the F3 structure function [30].
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3.1. π and ρ mesons contribution to the nuclear structure function

The pion and rho meson cloud contributions to the F2 structure function
have been implemented following the many body field theoretical approach
of Refs. [14, 16]. The pion structure function F2A,π(x) is written as

FA
2,π(x) = −6

∫

d3r

∫

d4p

(2π)4
θ(p0) δImD(p)

x

xπ

2M F2π(xπ) θ(xπ−x) θ(1−xπ)

(8)
where D(p) the pion propagator in the medium given in terms of the pion
self energy Ππ:

D(p) = [p02 − ~p 2 −m2
π − Ππ(p

0, p)]−1 , (9)

where

Ππ =
f 2/m2

πF
2(p)~p 2Π∗

1− f 2/m2
πV

′

LΠ
∗
. (10)

Here, F (p) = (Λ2 −m2
π)/(Λ

2 + ~p 2) is the πNN form factor and Λ=1 GeV,
f = 1.01, V ′

L is the longitudinal part of the spin-isospin interaction and Π∗

is the irreducible pion self energy that contains the contribution of particle -
hole and delta - hole excitations. In Eq.(8), δImD(p) is given by

δImD(p) ≡ ImD(p)− ρ
∂ImD(p)

∂ρ
|ρ=0 (11)

and
x

xπ

=
−p0 + pz

M
(12)

Assuming SU(3) symmetry and following the same notation as in Ref.[23],
the pion structure function at LO can be written in terms of pionic PDFs as

F2π(xπ) = xπ

(

5

9
vπ(xπ) +

12

9
q̄π(xπ)

)

(13)

where vπ(xπ) is the valence distribution and q̄π(xπ) is the light SU(3)-symmetric
sea distribution.

Similarly, the contribution of the ρ-meson cloud to the structure function
is written as [14]
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FA
2,ρ(x) = −12

∫

d3r

∫

d4p

(2π)4
θ(p0)δImDρ(p)

x

xρ

2MF2ρ(xρ)θ(xρ−x)θ(1−xρ)

(14)
where Dρ(p) is the ρ-meson propagator and F2ρ(xρ) is the ρ-meson structure
function, which we have taken equal to the pion structure function F2π using
the valence and sea pionic PDFs from reference [23]. Λρ in ρNN form factor
F (p) = (Λ2

ρ −m2
ρ)/(Λ

2
ρ + ~p 2) has also been taken as 1 GeV.

Further details concerning the pion and ρ-meson propagator can be found
in Ref. [14]. This model for the pion and ρ selfenergies has been abundantly
used in the intermediate energy region and provides a quite solid description
of a wide range of phenomenology in pion, electron and photon induced
reactions in nuclei, see e.g. Refs. [31, 32, 33, 34, 35] and references in [14].
In particular, a careful study of the in medium pion propagator used here
was carried out in Ref. [16]. There, several tests concerning the fulfillment
of sum rules, and the preservation of the analytical properties of the meson
propagator and the consistency of the results with similar calculations were
considered.

In addition, the balance of light-cone momentum between bound nucleons
and pions can be studied by means of a momentum sum rule as done in
Ref. [18]. The pion < y >π and nucleon < y >N fractions of the light cone
momentum are related by

< y >π + < y >N=
MA

AM
, (15)

where MA is the nucleus mass. See section 5.3 of Ref. [18] for details. The
sum rule should be valid for a nuclear model where the Hamiltonian would
contain only pions and nucleons. In fact, our model for the nucleon spectral
function is based on a phenomenological approach that also contains many
other pieces in the nucleon-nucleon interaction and thus the sum rule is not
directly applicable. Nonetheless, it can provide further constraints on the size
of the mesonic contribution and it will be discussed in the results section.

The mesonic cloud contribution is expected to be negligible for deuteron
as it depends, roughly speaking, quadratically on the baryon density which
is quite small for this case3. Therefore, these contributions have not been
included in the evaluation of the deuteron structure function.

3 A direct application of our model to deuteron, produces a mesonic contribution that

7



3.2. Target mass corrections

Target mass corrections have been incorporated by means of the approx-
imate formula [17]

F TMC
2 (x,Q2) ≃

x2

ξ2 γ3
F2(ξ, Q

2)

[

1 +
6µ x ξ

γ
(1− ξ)2

]

, (16)

where µ = M2

Q2 , γ =
√

1 + 4x2M2

Q2 and ξ is the Natchmann variable defined as

ξ =
2x

1 + γ
. (17)

3.3. Coherent nuclear effects

Furthermore, we have taken into account the shadowing effect following
the works of Kulagin and Petti [18]. We are interested in the relative effect
in FA

2 that can be written as

δR2 =
δFA

2

FN
2

=
1 +R2

1 +R
δRT (18)

where R(x,Q2) is calculated for the free nucleon. For δRT we use expression
63 in Ref. [18]. The most general expression for R(x,Q2), taking into account
the target mass is:

R(x,Q2) =
FL

FT

=
γ2F2 − 2xF1

2xF1
=

γ2F2

2xF1
− 1. (19)

4. Derivative expansion of F2

The difference between dividing by the deuteron FD
2 or by the free isoscalar

FN
2 structure function to calculate the ratios of structure functions is of only

a few percent in the x < 0.7 region. However, the quality of data requires
a proper description of FD

2 . On the other hand, our local density approach
is not appropriate for such a light nucleus (or even for 4He). Therefore, we

is always lower than a 0.6 percent of the nucleonic contribution for the analysed x range.
Thus, its inclusion would have a very minor effect in the ratios. Nonetheless, we should
mention that our formalism, which starts from selfenergies calculated in nuclear matter,
is not expected to be very reliable for the calculation of the mesonic effects in deuteron.
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need another method to calculate F2 in these cases. In terms of the deuteron
wave function, FD

2 can be written as

FD
2 (x,Q2) =

∫

d3p

(2π)3
|ΨD(p)|

2

(

1− γ pz
M

)

γ2

(

γ′2 +
6x′2(p2 − p2z)

Q2

)

FN
2 (x′, Q2).

(20)
Alternatively, a particularly appealing approach because of its simplicity,
is the use of derivative expansions that provide the structure function per
nucleon of a nucleus in terms of the free nucleon one, its derivatives and a
few expected values of nuclear observables [28, 37, 38, 39, 40]. We can write

FD
2,DEx(x,Q

2) ≃ FN
2 (x,Q2) + xFN ′

2 (x,Q2)
< E > + < TR >

M

+
x2

2
FN ′′

2 (x,Q2)
2 < T >

3M
, (21)

where < T > is the mean nucleon kinetic energy taken as 11.07 MeV, < E >
is the nucleon removal energy taken as 2.226 MeV, < TR >≃ 〈p2〉 /2M with
〈p2〉 = 0.533 fm−2 the average of the square of the nucleon momentum.
To include TMC, one must substitute in Eq. (21) the free nucleon structure
function and its derivatives by the approximate one given in Eq. (16).

The derivative expansions have some intrinsic limitations and it has been
shown that they fail to converge to the results obtained by folding with the
nuclear spectral functions for x & 0.5, for the case of medium and heavy
nuclei. A detailed study can be found in Ref. [28]. The convergence is
expected to be much better for a loosely bound nucleus such as the deuteron.
Indeed, FD

2 obtained using the Paris wave function [41] and the results of the
derivative expansion differ by less than 0.6 percent up to x = 0.6 as shown
in Fig. 2.

In Fig. 2, we also include for comparison the same ratio from Ref. [42],
which uses a different set of PDF’s. We have observed that the main differ-
ence with that calculation comes from the inclusion of a parametrization of
the off-shell effects (see dashed-dotted line) absent in our model.

5. Results and discussion

Our aim in this paper is to confront the model with the recent JLab
results of Ref. [1] that correspond to ratios of nuclei with deuteron and more
precisely with the slope of the x dependence that is more insensitive to the
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0.1 0.2 0.3 0.4 0.5
x

0.95

1

1.05

F 2D
/(

F
2p +

F 2n )

Full convolution 
Full convolution + Off-Shell
Ref. [42]
Derivative Expansion

Figure 2: FD
2
/(F p

2
+ Fn

2
) as a function of x at Q2=10 GeV2. Solid line: Derivative

expansion. Dashed line: Eq. 20. Dashed dotted: Eq. 20 including off-shell effects following
the prescription of Ref. [18]. Dotted line: Ref. [42].

0 50 100 150 200
Q

2
(GeV

2
)

0

0.1

0.2

F 2D

x=0.275
x=0.35
x=0.45
x=0.55
x=0.65
x=0.75

Figure 3: Electromagnetic structure function in deuteron FD
2

at different x values. The
theoretical curves are obtained by using Eq. (20). Experimental data are taken from
Ref. [43].
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Q

2
(GeV

2
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0
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0.2

0.3

F 2D

x=0.225
x=0.275
x=0.35
x=0.50

Figure 4: Electromagnetic structure function in deuteron FD
2

at different x values. Solid
lines are obtained by using Eq. (20) and the dotted lines are the results for the free nucleon
case. Experimental data are taken from Ref. [44].

normalization uncertainties. Nonetheless, we will also show some results for

the deuteron FD
2 (x,Q2) structure function as well as the ratio R(x,Q2)=

2FA
2

AFD
2

in intermediate mass nuclei like 40Ca and 56Fe.
In Fig. 3, we compare the theoretical calculation obtained using Eq. (20)

with the experimental results of Benvenuti et al. [43]. Overall, we find a
good agreement in the x region relevant for our study. Although the data
correspond to large Q2 values, this gives us confidence in the quality of this
approach for the evaluation of the ratios with respect to other nuclei. In
Fig. 4, we compare our results with data obtained with a muon beam on a
deuterium target [44]. We also show the results for the free nucleon case.
The nuclear corrections are very small for the range of x values analysed in
the experiment.

One of the most interesting results of the recent JLab data is that for both
Beryllium and Carbon the cross section ratios show a similar slope even when
they have a quite different average nuclear density. This conflicts with some
simple fits that describe well the slope for medium and heavy nuclei as a
function of the average nuclear density or with simple A dependences [5].
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0.3 0.4 0.5 0.6
x

0.9

0.95

1

1.05
2F

2B
e /A

F 2D

JLAB (2009)
Base
Total
Total - shadowing

Figure 5: Ratio R(x,Q2)=
2FBe

2

AFD

2

. Full model (solid line), without shadowing (dotted line)

and without pion, rho and shadowing contributions (dashed line). For each value of x,
Q2 has been calculated using an electron beam of 5.767GeV and scattering angle of 400

corresponding to JLab kinematics. Data are cross section ratios from Ref. [1].

On the other hand, the slope of the ratio in the region 0.3 < x < 0.6 is
particularly well suited to analysis because from the experimental point of
view it is quite unaffected by normalization uncertainties. Also theoretically
it is relatively simple because shadowing, or Fermi motion are of a little
importance over this region of x.

In Fig. 5, we show the results for Beryllium. The dashed line has been
calculated using Eq. (6) with TMC and the solid line corresponds to the full
model, including the meson cloud contributions, shadowing and TMC. We
show explicitly the effect of shadowing. It reduces the structure function
ratio by around 1% at x ∼ 0.3 and even less for higher x. We have found
that TMC has a really minor effect in the ratio for these x values (less than
1% at x ∼ 0.6 and even smaller for lower x values). Therefore, the difference
between the base curve and the full one comes basically from the π and
ρ contributions that play an important role. The size of the rho meson
correction is about half that of the pion. We find that the full model agrees
quite well with data both in slope and the size of the ratio.

A good agreement with data is also obtained for Carbon as shown in
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0.3 0.4 0.5 0.6
x

0.9

0.95

1

1.05

2F
2C

/A
F 2D

Base
Total
SLAC (1994)
JLAB (2009)

Figure 6: Ratio R(x,Q2)=
2FC

2

AFD

2

. Full model: solid line with Λ, Λρ = 1GeV; the band

corresponds to ±20% variation on Λ and Λρ. Full model without pion, rho and shadowing:
dashed line. Q2 for calculation and JLab data [1] as described in previous figure. SLAC
data [5] correspond to Q2 = 5 GeV2.

Fig. 6. The slope and size of the nuclear effects are similar to the Beryllium
case. This could look surprising given the quite different average density as
discussed in [1]. This points out to the fact that ”average density” could not
be the appropriate parameter for the description of the EMC effect in light
nuclei. For example, this has been discussed in Sect. IV of Ref. [36]. Again, a
determining factor in the agreement is the mesonic cloud contribution. Given
this, some words of caution are needed here. First, the parton distribution
functions are poorly known for the mesons and possible off-shell effects have
not been included in the calculation. Second, the results depend on the
meson selfenergies in the medium that also contain some uncertainties such
as the specific form of the spin-isospin interaction, specially for the ρ meson.
A full analysis of these uncertainties is out of the scope of this paper. To give
an idea of their size, we have shown in this figure the results for the ratio
using the full model with Λ, Λρ=1GeV and Λ, Λρ=1.2GeV and 0.8GeV. We
find that a 20% variation in the Λ’s, results in a 2-3% change in the ratio.

We have also tested the momentum sum rule discussed in section 3.1.
The mesons carry a light-cone momentum fraction of 3 percent for Λ = 1
GeV. The 2 percent prescribed by the sum rule can be obtained for a cut-off
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Λ = 0.8 GeV. This suggests that lower cut-off values should be preferred
but one must be careful before reaching such conclusion. For instance, the
nucleon momentum fraction is very sensitive to parameters like the expected
value of the nucleon kinetic energy that are not very well known and has some
uncertainty. We have used the values obtained with our nucleon spectral
function. The same results are obtained for 9Be. Heavier nuclei, such as iron
and calcium, have a mesonic momentum fraction of 5 percent and fulfill the
sum rule for Λ = 0.75 GeV.

In Fig. 6, the systematic difference in size between JLab and SLAC data
is consistent with the normalization uncertainties quoted in Refs. [5, 1]. It
may be noted, however, that the slope is very similar for both experiments
and in good agreement with our results. These normalization differences
have been recently discussed in Ref. [42].

For both nuclei, our results slightly overestimate data by around 2% at
x around 0.6 and more above that. However, that region is much affected
by possible off-shell effects [42], not included in our approach, and by high
momentum components of the nucleons wave function. Therefore, we cannot
make any strong statement about this discrepancy apart from the fact that
we are reaching one of the limits of validity of our model.

We have also checked that the use of next to next to leading order PDFs,
that considerably lengthens and complicates the calculation, does not appre-
ciably change the results, at the level of precision of the current data and the
size of other theoretical uncertainties.

There are JLab results even for lighter nuclei like 3He and 4He. Our local
density model is certainly not adequate for these cases that would require a
more microscopical approach for the calculation of a proper nucleon spectral
function and of the meson cloud contribution. Also, good data for larger
x values are available. They are particularly sensitive to TMC and to high
momentum components of the nucleon spectral functions. In order to analyse
these data, further work would be required to extend the validity of the
theoretical approach describing the nucleon spectral function.

As a further test, we have also studied the results for the ratio R(x,Q2)=
2FA

2

AFD
2

for intermediate mass nuclei like calcium and iron. The results are shown
in Figs. 7 and 8. In both cases, we have compared with SLAC results
from Ref. [5], with averaged Q2. No significant Q2 dependence was found
in Ref. [5] for their kinematic range. The theoretical curves have been cal-
culated for Q2 = 5GeV2 and we observe little sensitivity to that value. In
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0.3 0.4 0.5 0.6
x

0.9

0.95

1

1.05

2F
2C

a /A
F 2D

SLAC
Base
Total

Figure 7: Ratio R(x,Q2)=
2FCa

2

AFD

2

. Full model: solid line. Full model without pion, rho

and shadowing: dashed line. Dotted curve is the full result scaled by a factor 0.97.
Calculations have been done for Q2 = 5 GeV2. The experimental points are taken from
Ref. [5] (averaged Q2).

the case of calcium, our results overestimate the data by around 3%. This is
larger than the normalization uncertainties quoted in Ref. [5]. Nonetheless,
scaling our theoretical curve, we observe a good agreement with the slope of
the structure function.

The situation is much the same for heavier nuclei, such as iron. The slope
is well reproduced and calculation overestimates again data by around a 3%.
Similar results are obtained for silver and gold. This overestimation seems to
be consistent with the results of recent global fits to the nuclear parton distri-
bution functions (see e.g. Fig. 4 of Ref. [13]). Their results might point out
to some normalization uncertainty in the SLAC results such that the medium
and heavy nuclei ratios are too small. However, the recent more microscopi-
cal analysis of Ref. [42] that also finds normalization inconsistencies between
light and heavy nuclei favours the interpretation that the recent JLab data
should be rescaled by a global factor of around 0.98 and that the SLAC data
are correct. We should also mention that the two discussed experiments had
significantly different lepton energies and the simple A dependence assumed
for the σL/σT ratio could have to be revised.

Certainly, these normalization issues should be settled with new and bet-
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ter experiments. From the theoretical point of view, it seems that microscop-
ical models are hardly able to reproduce at the same time the high statistic
data from light nuclei at JLab and medium and heavy nuclei from other
collaborations. In any case, this does not affect the main point discussed
in this paper, namely the slope produced by the nuclear effects that is well
reproduced in our model.

In summary, the electromagnetic nuclear structure function FA
2 has been

studied including nucleonic and mesonic degrees of freedom for a x region
where shadowing, antishadowing and Fermi motion are not too important.
We have started from up to date nucleonic PDF. Nuclear effects like Fermi
motion and binding have been incorporated by means of the use of a spectral
function obtained for nuclear matter and implemented in nuclei using the
local density approximation. A similar approach has been used for the inclu-
sion of the contribution of mesonic clouds. Also shadowing and TMC have
been considered. The deuteron structure function has been calculated using
a derivative expansion and with the Paris wave function. The results success-
fully reproduce recent very precise JLab results for light nuclei at relatively
low Q2 values. Also the slope of previous experiments for heavier nuclei is
well reproduced although we fail to agree with them on the absolute size by
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up to a 3%, larger than the quoted experimental uncertainty. We have found
that the mesonic cloud (basically pion) gives an important contribution to
the cross section ratios but it still has considerable uncertainties. Even small
changes of the pion nuclear selfenergy can produce appreciable changes in
the cross section ratios.

The success of this local density model for light nuclei is in contrast with
the failure of simple models/parametrizations that fit well for the nuclear
effects for medium and heavy nuclei as a function of average density or the
mass number A [1]. The use of an approach that incorporates in an adequate
manner the nucleon and meson properties in the nuclei is clearly mandatory
for the analysis of the EMC effect in these cases.
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